用于缓冲感光信号的缓冲电路及其图像感测器

文档序号:1601609 发布日期:2020-01-07 浏览:17次 >En<

阅读说明:本技术 用于缓冲感光信号的缓冲电路及其图像感测器 (Buffer circuit for buffering photosensitive signal and image sensor thereof ) 是由 林郁轩 王仲益 于 2019-09-19 设计创作,主要内容包括:一种用于缓冲感光信号的缓冲电路及其图像感测器,该缓冲电路包含:一放大电路、一开关元件以及一电容。该放大电路的控制端耦接像素电路的输出端,该放大电路的第一端用以输出缓冲后感光信号,以及该放大电路的第二端耦接于一参考电压。该开关元件具有第一端耦接于该放大电路的控制端,以及第二端耦接于该放大电路的第一端。该电容具有第一端耦接于该放大电路的控制端,以及第二端耦接于该放大电路的第一端。其中,该开关元件在第一阶段中导通,以及在第二阶段中不导通,且该放大电路在第二阶段中产生该缓冲后感光信号。(A buffer circuit for buffering photosensitive signals and an image sensor thereof are provided, the buffer circuit comprising: an amplifying circuit, a switch device and a capacitor. The control end of the amplifying circuit is coupled with the output end of the pixel circuit, the first end of the amplifying circuit is used for outputting the buffered photosensitive signal, and the second end of the amplifying circuit is coupled with a reference voltage. The switch element has a first end coupled to the control end of the amplifying circuit, and a second end coupled to the first end of the amplifying circuit. The capacitor has a first end coupled to the control end of the amplifying circuit, and a second end coupled to the first end of the amplifying circuit. The switch element is conducted in the first stage and is not conducted in the second stage, and the amplifying circuit generates the buffered light sensing signal in the second stage.)

用于缓冲感光信号的缓冲电路及其图像感测器

技术领域

本发明涉及图像感测,特别关于一种用于缓冲像素电路的感光信号的缓冲电路以及相关的图像感测器。

背景技术

一般来说,像素电路产生的感光信号会通过读取电路所读出。而在读取电路将感光信号读出之前,会利用缓冲电路对感光信号进行信号缓冲。请参考图1,该图示出现有的缓冲电路的架构与应用示意图。在图1之中,像素电路10的端点VX上的感光信号V_sensed通过缓冲电路20被缓冲,并在端点VXS上产生缓冲后感光信号V_buffered,之后才由读取电路30读出。其中,在一个重置阶段中,端点VX会通过开关元件SW2被连接至一个特定电压电平,从而令感光信号V_sensed的电压电平上升至该特定电压电平。之后的感光阶段中,开关元件SW2被断开,电容C_S通过感光元件12放电,因此让端点VX的电压电平逐渐偏离该特定电压电平。最后,在读取阶段中,开关SW1导通,读取电路30读出缓冲后的感光信号V_buffered。然而,在某些光照条件不理想的情况下(例如,受光微弱或曝光时间很短),感光信号V_sensed的变化差异不大,导致无法确切地反映出像素电路10的受光情况。

发明内容

为了解决以上的问题,本发明提供一种用于缓冲像素电路的感光信号的缓冲电路。在本发明缓冲电路之中,包含一个设置为共源极组态的放大器。通过共源极组态放大器,可以有效地放大感光信号的变化,从而让感光信号可以更好地反映出光照环境。因此,本发明实质上提升了像素电路的感光效果。

本发明提供一种缓冲电路,该缓冲电路用于缓冲一像素电路的一感光信号,并且包含:一放大电路、一第一开关元件以及一电容。该放大电路的一控制端耦接于该像素电路的输出端,该放大电路的一第一端用以输出缓冲后感光信号,以及该放大电路的一第二端耦接于一参考电压。该第一开关元件具有一第一端耦接于该放大电路的控制端,以及一第二端耦接于该放大电路的第一端。该电容具有一第一端耦接于该放大电路的控制端,以及一第二端耦接于该放大电路的第一端。其中,该第一开关元件在一第一阶段中导通,以及在一第二阶段不导通;该放大电路在该第二阶段中产生该缓冲后感光信号。

本发明的一实施例提供一种图像感测器,该图像感测器包含有:一像素电路阵列以及至少一个缓冲电路。该像素电路阵列包含有多个像素电路。该缓冲电路,用以缓冲该多个像素电路中至少一个像素电路上的感光信号。该缓冲电路包含:一放大电路、一第一开关元件以及一电容。该放大电路的一控制端耦接于该像素电路的输出端,该放大电路的一第一端用以输出缓冲后感光信号,以及该放大电路的一第二端耦接于一参考电压。该第一开关元件具有一第一端耦接于该放大电路的控制端,以及一第二端耦接于该放大电路的第一端。该电容具有一第一端耦接于该放大电路的控制端,以及一第二端耦接于该放大电路的第一端。其中,该第一开关元件在一第一阶段中导通,以及在一第二阶段不导通;该放大电路在该第二阶段中产生该缓冲后感光信号。

附图说明

图1为现有缓冲电路的架构与应用示意图。

图2为根据本发明一实施例的缓冲电路的架构与应用示意图。

图3至图5为本发明缓冲电路在不同阶段下的操作状态示意图。

图6为根据本发明另一实施例的缓冲电路的架构与应用示意图。

图7为根据本发明一实施例的图像感测器的架构示意图。

其中,附图标记说明如下:

10、100 像素电路

12、120 感光元件

20、110、210 缓冲电路

121、221 放大电路

122 电流源

30、130 读取电路

SW1、SW2、SW11、SW12 开关元件

M1、M2 晶体管

C_S、C_GD 电容

300 图像感测器

310 像素电路阵列

具体实施方式

在说明书及权利要求当中使用了某些词汇来指称特定的元件。所属领域中技术人员应可理解,硬件制造商可能会用不同的名词来称呼同一个元件。本说明书及权利要求并不以名称的差异来作为区分元件的方式,而是以元件在功能上的差异来作为区分的准则。在通篇说明书及权利要求当中所提及的“包含”为一开放式的用语,故应解释成“包含但不限定于”。此外,“耦接”一词在此是包含任何直接及间接的电性连接手段。因此,若文中描述一第一装置耦接于一第二装置,则代表该第一装置可直接电性连接于该第二装置,或通过其他装置或连接手段间接地电性连接至该第二装置。

本发明的概念将搭配不同实施例与相关图示来进行说明。其中,于不同图示中具有相同标号的元件或装置代表着其有相似的操作原理与技术技术效果。故,以下内文将会省略重复性的叙述。再者,文中所提及的“一实施例”代表针对该实施例所描述的特定特征、结构或者是特性是包含于本发明的至少一实施方式中。因此,文中不同段落中所出现的“一实施例”并非代表相同的实施例。因此,尽管以上对于不同实施例描述时,分别提及了不同的结构特征或是方法性的动作,但应当注意的是,这些不同特征可通过适当的修改而同时实现于同一特定实施方式中。

请参考图2,该图为根据本发明一实施例的缓冲电路示意图。如图2所示,像素电路100包含有感光元件120以及寄生电容C_S。感光元件120对光照敏感,其阻抗随着光照的强度有所变化。在本发明的不同实施例中,感光元件120可为光敏电阻(photoresistor)或者是光电二极管(photodiode),又或者是任何对光照敏感,且基于光照变化改变其阻抗值的元件,本发明并不以此为限。像素电路100耦接至缓冲电路110。缓冲电路110用以缓冲像素电路100的输出端VX上的感光信号V_sensed,从而在端点VXS上输出缓冲后的感光信号V_buffered。缓冲电路110包含放大电路121、开关元件SW12、电容C_GD以及电流源122。在本发明中,放大电路121可能包含一个或多个晶体管。放大电路121包含一控制端C,一第一端E1,以及一第二端E2。其中,放大电路121的控制端C耦接开关SW12以及电容C_GD的第一端。放大电路121的第一端E1耦接至电流源122以及开关SW12与电容C_GD的第二端。放大电路121的第二端E2耦接于一接地端(或是一参考电压)。请注意,在以下的说明中,放大电路121包含仅一个晶体管,但此非本发明的限制。在本实施例中,放大电路121包含设置为共源极(common source)放大器的晶体管M1。其中,晶体管M1的栅极耦接放大电路121的控制端C,晶体管M1的漏极耦接放大电路121的第一端E1,而晶体管M1的源极则放大电路121的第二端E2。

请注意,尽管图2中的放大电路121仅包含晶体管M1,但在本发明其他实施例中,放大电路121可能还额外包含一个或多个主/无源元件(如:晶体管、电容或者是电阻)。例如,放大电路121可以是多个串接(cascode)的晶体管,并设置为共源极架构。

在一实施例中,电容C_GD可由放大电路121的控制端C与第一端E1之间的寄生电容实现的。例如,在图2的实施例中,放大电路121仅包含晶体管M1,因此,电容C_GD可为晶体管M1的栅极与漏极之间的寄生电容。例外,在一实施例中,缓冲电路110通过开关元件SW11耦接至读取电路130。当开关元件SW11导通时,读取电路130读取端点VXS上的缓冲后的感光信号V_buffered。

请参考图3至图5,关于缓冲电路110操作状态的进一步说明。首先,在如图3所示的一个重置阶段中,缓冲电路110中的开关元件SW12导通,这让端点VX与端点VXS短路,此时电流源122将对像素电路100提供电流,并对像素电路100中的寄生电容C_S充电,使得端点VX与端点VXS的电压电平达到一致。接着,在如图4所示的一个感光阶段中,缓冲电路110中的开关元件SW12断开,像素电路100中的感光元件120会随着光照而释放出电流。其中,寄生电容C_S通过感光元件120开始放电,这让端点VX的电压电平下降。由于端点VX的电压电平下降,使得晶体管M1的导通程度降低,导致端点VXS的电压电平上升。在一实施例中,假设端点VX的电压电平变化为ΔV,那么端点VXS的电压电平变化则为(CS/(CGD))*ΔV(其中,CS与CGD分别为电容C_S的电容值以及电容C_GD的电容值)。在妥善控制电容C_GD的电容值大小的情况下,可以让(CS/(CGD))的比例大于1。如此一来,端点VXS的电压电平变化便可以大于端点VX的电压电平变化。最后,在图5所示的读取阶段中,开关元件SW11导通,读取电路130从端点VXS上读取出缓冲后感光信号V_buffered。由于缓冲电路110对感光信号V_sensed进行了信号的放大,使得端点VXS的电压电平变化相对于端点VX的电压电平变化更为明显,因此读取电路130可更为容易地掌握光照环境。

图6示出了根据本发明另一实施例的由不同导通类型的晶体管所实现的放大电路。在图6所示的缓冲电路210中,放大电路221包含了一个设置为共源极组态放大器的P型晶体管M2。由于缓冲电路210的操作原理并无异于缓冲电路110,故此处不做赘述。

图7则示出了根据本发明一实施例的图像感测器300。如图所示,图像感测器300包含有一像素电路阵列310,像素电路阵列310由如图2所示的像素电路100所组成。图像感测器300中还包含有一个或多个缓冲电路110,用以对像素电路100的感光信号进行信号放大。并且,通过一个或多个读取电路130,读出由缓冲电路110缓冲后的感光信号。本发明通过缓冲电路110对感光信号进行了信号放大,因此图像感测器300可以拥有更好的感光效果。

本发明的优势在于,缓冲电路中的放大电路是由共源极组态放大器取代了现有架构采用的共漏极组态放大器。在一实施例中,由于共源极组态放大器相对于共漏极组态放大器有更好的电压增益,因此,本发明的缓冲电路可以更有效地放大像素电路所输出的感光信号。另一方面来说,在现有架构中,缓冲后感光信号的变化与寄生电容C_S的大小成反比,因此,若要放大感光信号,只能缩小寄生电容C_S的电容值大小。然而,若要缩小寄生电容C_S的电容值,则须降低感光元件的大小,这无疑会影响像素电路的感光效果。但在本发明之中,由于加入了电容C_GD,从而去除了寄生电容C_S大小的影响,转而让缓冲后感光信号的变化与电容C_GD的大小成反比。由于电容C_GD的电容值大小与感光元件的大小无关,因此缩小电容C_GD的电容值大小并不会影响到像素电路的感光效果。换言之,本发明可以在保证像素电路的感光效果的同时,有效地放大感光信号的变化,让后续读取电路更容易掌握光照环境。因此,本发明的缓冲电路实质上提升图像传感器的性能。

以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的构思和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

10页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:像素输出信号隔直电容的设计方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类