Terahertz phase shifter with symmetrical impedance type phase shifting microstructure

文档序号:1630157 发布日期:2020-01-14 浏览:37次 中文

阅读说明:本技术 具有对称阻抗式移相微结构的太赫兹移相器 (Terahertz phase shifter with symmetrical impedance type phase shifting microstructure ) 是由 史金鑫 史宗君 周翼鸿 兰峰 杨梓强 于 2019-08-28 设计创作,主要内容包括:具有对称阻抗式移相微结构的太赫兹移相器,涉及太赫兹技术,本发明沿WR3标准波导E面的切分面并列设置有3个移相微结构体,所述切分面由波导轴线和与其平行的E面中线确定;每个移相微结构体由设置于石英介质基片上的4个子模块构成,每个子模块包括一个肖特基二极管和一个探针,肖特基二极管一端连接探针,另一端连接键合盘,4个探针以正交矩阵式排列,探针长轴沿平行且垂直于波导轴线的两条直线排列;探针位于波导的内腔。本发明的太赫兹移相器模型实现了0°、60°、120°、180°的四个不同相移量,并且表现出非常出色的线性度,每个状态对应的平均插入损耗小1.3dB,平均回波损耗大于10dB。(The invention discloses a terahertz phase shifter with a symmetrical impedance type phase shifting microstructure, which relates to the terahertz technology, and is characterized in that 3 phase shifting microstructure bodies are arranged in parallel along a splitting plane of an E surface of a WR3 standard waveguide, wherein the splitting plane is determined by a waveguide axis and an E surface central line parallel to the waveguide axis; each phase-shifting microstructure body is composed of 4 sub-modules arranged on a quartz medium substrate, each sub-module comprises a Schottky diode and a probe, one end of the Schottky diode is connected with the probe, the other end of the Schottky diode is connected with a bonding pad, the 4 probes are arranged in an orthogonal matrix form, and long axes of the probes are arranged along two straight lines which are parallel to and vertical to the axis of the waveguide; the probe is located in the lumen of the waveguide. The terahertz phase shifter model realizes four different phase shift amounts of 0 degrees, 60 degrees, 120 degrees and 180 degrees, and shows excellent linearity, the average insertion loss corresponding to each state is small by 1.3dB, and the average return loss is larger than 10 dB.)

1. The terahertz phase shifter with the symmetrical impedance type phase shifting microstructure is characterized in that 3 phase shifting microstructure bodies are arranged in parallel along a splitting plane of an E plane of a WR3 standard waveguide, and the splitting plane is determined by a waveguide axis and an E plane central line parallel to the waveguide axis; each phase-shifting microstructure body is composed of 4 sub-modules arranged on a quartz medium substrate, each sub-module comprises a Schottky diode and a probe, one end of the Schottky diode is connected with the probe, the other end of the Schottky diode is connected with a bonding pad, the 4 probes are arranged in an orthogonal matrix form, and long axes of the probes are arranged along two straight lines which are parallel to and vertical to the axis of the waveguide; the probe is located in the lumen of the waveguide.

Technical Field

The invention relates to a terahertz technology.

Background

TeraHertz (TeraHertz, THZ) waves include electromagnetic waves having a frequency of 0.1 to 10THZ, so that TeraHertz waves have the advantages of high natural frequency and large bandwidth, and thus TeraHertz (THZ) radar has high spatial resolution and distance resolution. The phase array radar has the advantages of flexible wave scanning, capability of tracking multiple targets, good anti-interference performance and the like, and is used as a key component of a Terahertz (THZ) phase array, and the cost and the performance of a phase shifter directly influence the manufacturing cost and the performance of a phase array radar system. Therefore, the research on the THz phase shifter with high performance, easy realization and low cost has very important practical significance for improving the performance and the structure of the phased array and realizing the THz phased array radar with small size and low power consumption.

The short wave band of THz wave can be developed into quasi-optical device, and most of transmission structure adopts photonic crystal waveguide, photonic crystal fiber and polymer waveguide. The long wave band of THz wave is coincided with the sub-millimeter wave band, and the development of the THz wave can be referred to the microwave technology. Microwave-band phase shifters are typically implemented by ferrite-based materials, Positive Intrinsic Negative (PIN) diodes, or Field Effect Transistor (FET) switch arrays. Generally, a positive-intrinsic-negative diode is adopted, and the diode is loaded based on a planar transmission waveguide, so that the microwave is transmitted along different paths by switching on and off the diode, thereby achieving different phase shifts, but the planar transmission waveguide loading diode is not adopted in the Terahertz (THZ) wave range, and the phase shift change is realized by changing the transmission path of the terahertz wave. Mainly because Terahertz (THZ) waves have too large losses in such open structures to enable transmission. The method is a good way to realize the terahertz wave propagation by using the waveguide with the closed structure, so that huge loss caused by an open structure such as a planar waveguide to the terahertz wave can be avoided to a great extent. However, with the development of phase control radars, the phase shifter has higher and higher precision and larger phase shift amount, and is more and more required to be easy to control. Therefore, the phase shifter is required to be digitized more and more, which results in that the digitization of the phase shifter is difficult to realize in the waveguide of the closed structure, while the digitization of the phase shifter is easy to realize in the planar structure, and the advantages of electric control and the like are also easy to realize.

At present, the research on terahertz phase shifters is less, and no mature device structure solution exists. The comprehensive application of new materials, new mechanisms and new manufacturing processes are the solutions and development directions of Terahertz (THZ) phase shifters. At present, the main development trends of terahertz phase shifters are terahertz phase shifters based on special materials and terahertz phase shifters based on advanced technology. The terahertz phase shifter based on the special material is mainly divided into a terahertz phase shifter based on a liquid crystal material and a terahertz phase shifter based on graphene. The terahertz phase shifter based on the advanced technology is mainly divided into two forms of a terahertz phase shifter based on an MEMS switch and a terahertz phase shifter based on an integrated circuit technology.

Disclosure of Invention

The technical problem to be solved by the invention is to provide a terahertz phase shifter capable of balancing the contradiction between the large phase shift amount and the low insertion loss of the terahertz phase shifter.

The technical scheme adopted for solving the technical problems is that the terahertz phase shifter with the symmetrical impedance type phase shifting microstructure is characterized in that 3 phase shifting microstructure bodies are arranged in parallel along the splitting surface of the E surface of the WR3 standard waveguide, and the splitting surface is determined by a waveguide axis and the central line of the E surface parallel to the waveguide axis; each phase-shifting microstructure body is composed of 4 sub-modules arranged on a quartz medium substrate, each sub-module comprises a Schottky diode and a probe, one end of the Schottky diode is connected with the probe, the other end of the Schottky diode is connected with a bonding pad, the 4 probes are arranged in an orthogonal matrix form, and long axes of the probes are arranged along two straight lines which are parallel to and vertical to the axis of the waveguide; the probe is located in the lumen of the waveguide.

The invention utilizes the secondary transmission line which loads the microstrip line type phase-shifting microstructure on the main transmission line of the WR3 standard rectangular waveguide to solve and balance the contradiction between large phase-shifting quantity and low insertion loss of the terahertz phase shifter. The maximum phase shift amount is 180 DEG under the submillimeter wave band of 310GHz-325GHz, and the average insertion loss is less than 1.3 dB.

The terahertz phase shifter model realizes four different phase shift amounts of 0 degrees, 60 degrees, 120 degrees and 180 degrees, and shows excellent linearity, the average insertion loss corresponding to each state is small by 1.3dB, and the average return loss is larger than 10 dB.

Drawings

Fig. 1 is an assembly schematic of the present invention.

FIG. 2 is a schematic diagram of a phase-shifting microstructure unit of the terahertz phase shifter of the present invention.

Fig. 3 is a schematic diagram of phase shift characteristics of the terahertz phase shifter model in 4 different states.

Fig. 4 is a schematic return loss diagram of the terahertz phase shifter model in 4 different states.

Fig. 5 is a schematic diagram of insertion loss of the terahertz phase shifter model of the present invention in 4 different states.

Detailed Description

Referring to fig. 1 and 2, in the terahertz phase shifter with the symmetrical impedance type phase shift microstructure provided by the invention, 3 phase shift microstructure bodies are arranged in parallel along the splitting plane of the E plane of the WR3 standard waveguide, and the splitting plane is a plane determined by the waveguide axis and the central line of the E plane parallel to the waveguide axis; each phase-shifting microstructure body is composed of 4 submodules arranged on a quartz medium substrate 20, each submodule comprises a Schottky diode 21 and a probe 22, one end of the Schottky diode is connected with the probe, the other end of the Schottky diode is connected with a bonding pad 23, the 4 probes are arranged in an orthogonal matrix, and the long axes of the probes are arranged along two straight lines which are parallel to and vertical to the axis of the waveguide; the probe is located in the lumen of the waveguide. And 24 is a via ground.

The invention adopts WR3 standard rectangular waveguide to replace open planar structure as main transmission line; the dielectric substrate material of the auxiliary transmission line of the phase-shifting microstructure adopts quartz with low dielectric constant and low loss; because the schottky diode cannot grow on the quartz substrate, the schottky diode is loaded outside the rectangular waveguide because the relatively large-volume packaged schottky diode is adopted, and the large loss is caused if the packaged schottky diode is directly placed in the waveguide. A microstrip probe is used to couple electromagnetic waves from the waveguide to the schottky diode in the microstructure, the specific structure is shown in fig. 2.

The invention is arranged on the E surface of the WR3 standard rectangular waveguide

Figure BDA0002182259180000031

A secondary transmission line loaded with a phase-shifting microstructure; an auxiliary transmission line mode of loading the phase shift microstructure up and down symmetrically is adopted; each loaded phase-shifting microstructure secondary transmission line has 4 Schottky diodes, and 3 phase-shifting microstructure secondary transmission lines are loaded in total.

Through HFSS software, the terahertz phase shifter model disclosed by the invention is simulated, phase shifts of 4 states of 0 degrees, 60 degrees, 120 degrees and 180 degrees are realized under a submillimeter wave band of 310GHz-325GHz, the average insertion loss of the 4 states is less than 1.3dB, and specific simulation results are shown in FIGS. 3 and 5.

7页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种双频双极化带通三维频率选择表面

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!