一种基于铁矿石高温冶金性能的配矿方法

文档序号:1639706 发布日期:2019-12-20 浏览:17次 >En<

阅读说明:本技术 一种基于铁矿石高温冶金性能的配矿方法 (Ore blending method based on high-temperature metallurgical performance of iron ore ) 是由 王永红 于原浩 孙立伟 刘广 秦玉栋 于 2019-09-11 设计创作,主要内容包括:本发明揭示了一种基于铁矿粉高温冶金性能的配矿方法,选取多种以上不同产地的铁矿粉,对不同铁矿粉的高温冶金性能进行测试分析,通过数据分析得出高温冶金性能值与化学成分的数学模型,进行铁矿粉高温冶金性能的优劣搭配,得到高温冶金性能优良、适宜烧结的混匀粉。本发明的方法揭示了单一矿及混合矿高温冶金性能值与化学成分之间的关系,以此为基础进行优化配矿,可得到高温冶金性能优良的混合矿,有利于烧结提高产量,改善烧结矿质量;同时在混矿时可利用不同铁矿粉高温冶金性能的互补,提高非主流低价矿的使用比例,降低烧结原料成本。(The invention discloses an ore blending method based on high-temperature metallurgical performance of iron ore powder, which comprises the steps of selecting more than one kinds of iron ore powder with different production places, testing and analyzing the high-temperature metallurgical performance of the different iron ore powder, obtaining a mathematical model of a high-temperature metallurgical performance value and chemical components through data analysis, and carrying out good and bad matching on the high-temperature metallurgical performance of the iron ore powder to obtain mixed powder which is good in high-temperature metallurgical performance and suitable for sintering. The method disclosed by the invention reveals the relationship between the high-temperature metallurgical property values and the chemical components of the single ore and the mixed ore, optimizes ore blending on the basis of the relationship, can obtain the mixed ore with excellent high-temperature metallurgical property, is beneficial to sintering, improves the yield and improves the quality of the sintered ore; meanwhile, the complementation of the high-temperature metallurgical properties of different iron ore powder can be utilized during ore mixing, the use proportion of non-mainstream low-price ore is improved, and the cost of sintering raw materials is reduced.)

一种基于铁矿石高温冶金性能的配矿方法

技术领域

本发明涉及钢铁冶炼技术领域,具体而言,尤其涉及一种基于铁矿石高温冶金性能的配矿方法。

背景技术

烧结混匀矿配矿是将不同矿粉按照烧结工艺的要求进行配比,使混匀矿的化学成分达到烧结配料工艺的指标要求。随着优质铁矿石资源的减少与枯竭,当前企业使用的铁矿石品种多而杂,成分粒度等稳定性也变差,已经不存在使用单一矿进行烧结生产的企业,因此需要将不同品种的矿石进行优化搭配,混出成分粒度稳定,冶金性能优良的混匀矿进行烧结生产。但如何将不同品种铁矿石搭配出成分性能合适,成本还符合企业要求的混匀矿,成为了当务之急。

目前烧结混匀矿配矿主要考虑混匀矿的化学成分,对矿粉的其他物理化学、高温冶金性能及烧结性能考虑甚少。基本做法是凭经验配矿,随意性较大,或顾此失彼,降低成本目的达到但烧结性能变差或恶化,或者烧结性能得到优化但成本大幅度上升,得不偿失。

对国内部分钢铁厂的高炉综合炉料进行了比较系统的研究后发现,合理的炉料结构决定于资源条件、矿石加工的技术水平、设备状况、造块成品矿的价格及其冶金性能;因此,要找到合理的综合炉料结构是一项复杂的系统工程,要找到合理的综合炉料结构中适合于操作者本高炉的最佳配合比例更是非常难于解决的技术问题。由于“基于高碱度烧结矿配加酸性炉料(酸性球团矿,天然块矿等)的高炉综合炉料配矿模式”能够获得较好的生铁冶炼效果,取得较好的高炉生产技术经济指标,因此人们已经在长期的高炉生产中形成了一种固定的配矿比模式,如高炉入炉烧结矿的比例一般在75%以上,烧结矿的质量及成本对高炉的冶炼有重要影响,而烧结矿质量及成本又主要受混匀矿成本质量的影响。

发明内容

本发明的目的是克服现有混矿仅仅从成分出发的不足,提供一种基于铁矿石高温冶金性能的配矿方法。

本发明的目的通过以下技术方案来实现:

一种基于铁矿粉高温冶金性能的配矿方法,包括如下步骤,

S1、铁矿粉选取步骤,选取一组不同产地的铁矿粉,并通过XRF荧光分析法测得不同铁矿粉的化学成分的含量;

S2、高温冶金性能测试步骤,首先将铁矿粉进行采样破碎,筛分出150目以下的粉末,利用微型烧结装置测试不同铁矿粉的高温冶金性能值;

S3、将测试的高温冶金性能值与相对应铁矿粉的化学成分进行数据分析,确定数学模型;

S4、结合实验结果、生产现场配矿数据及烧结矿性能指标确定混合矿最优的高温冶金性能值;

S5、根据矿粉的高温冶金性能值选择合适的矿粉组合进行高温冶金性能的优劣搭配,优化配矿,进行烧结。

优选的,所述不同产地包括巴西、澳大利亚、印度、菲律宾、伊朗、塞拉利昂、南非、乌克兰。

优选的,所述步骤S1中,所述化学成分为SiO2、Al2O3、CaO。

优选的,所述步骤S2中,所述高温冶金性能值为同化性温度LAT、液相流动性FI、粘结相强度BST。

优选的,所述步骤S3中,所述的数学模型为:

同化性温度LAT=1320.67-156.25×(Al2O3/SiO2)

液相流动性指标FI={(CaO-2×SiO2)/TFe}/Al2O3

粘结相强度BST,定义B=Al2O3/(SiO2-2CaO)

当B<0.4,BST=-278.22-9022.27×B2+4353.03×B

当B>0.4,BST=-442.87+1111.83×B

其中:CaO为实验室为维持一定的碱度在矿粉中补充的CaO,CaO为矿粉本身含有的CaO,模型中出现的各个成分代表其在该铁矿粉中的重量百分比。

优选的,所述数学模型的确定过程包括,

根据测试的不同产地的铁矿粉的化学成分及同化温度值、液相流动性值、粘结相强度值,进行多元线性回归计算,

在进行粘结相强度与成分线性回归时首先要计算B值,根据B值与BST做曲线,找出拐点,确定的B值得界限值。

优选的,所述步骤S4中,所述的最优的高温冶金性能值:同化性温度LAT为1230℃—1260℃,液相流动性FI为1.4—1.8,粘结相强度BST为400N—800N。

优选的,所述步骤S4中,结合实验结果、生产现场配矿数据及烧结矿性能指标确定混合矿最优的高温冶金性能值,具体包括如下步骤:收集标准时间段生产现场的配矿单,根据模型计算出每一个配矿单的高温冶金性能值,同时统计相应的烧结矿质量指标值,统计分析出烧结质量指标比较优时对应的高温冶金性能值范围。

优选的,所述步骤S5中,根据矿粉的高温冶金性能值选择合适的矿粉组合进行高温冶金性能的优劣搭配,具体包括如下步骤:进行优化配矿时,设定好混匀粉的化学成分范围以及冶金性能值的范围,进行优化配矿计算,进而计算出不同产地矿的配比。

本发明的有益效果主要体现在:本发明通过将将不同高温冶金性能值的铁矿粉进行优劣互补搭配;当混匀矿的同化温度在1230℃—1260℃,液相流动性为1.4—1.8,粘结相强度为400N—800N时,有利于液相的形成,减缓液相的流动性,形成的液相粘结相冷却后强度可得到保证,有利于烧结矿冷强度的提高,同时也利于降低烧结生产的燃料消耗;同化温度在1230℃—1260℃时,亦有利于铁酸钙的生成,对提高烧结矿的还原性有利;由于限定了合适的同化温度,可以将采购成本相对低的低液相生成温度高液相生成温度的非主流矿进行合理搭配,大大降低配矿原料成本。

具体实施方式

本发明提出的方法是根据不同铁矿粉的高温冶金性能,通过合理优化配矿,使混匀矿的高温冶金性能值保持在合适的范围之内,有利于降低烧结过程中液相生成温度,提高烧结过程中粘结相的强度,提高烧结矿种复合铁酸钙的生成量,提高烧结矿还原性、提高烧结矿冷态强度,降低燃料消耗,同时降低混矿原料成本。

具体的,本发明的基于铁矿石高温冶金性能的配矿方法,包括如下步骤:

S1、铁矿粉选取步骤,选取10种或10种以上不同产地的铁矿粉,并通过XRF荧光分析法测得不同铁矿粉的化学成分的含量;

S2、高温冶金性能测试步骤,首先将选选取的不同产地铁矿粉破碎,筛分出150目以下的颗粒以待检测;其次利用微型烧结装置进行高温冶金性能值得测试;

S3、数学模型确定步骤,将测试的高温冶金性能值与相对应铁矿粉的化学成分进行数据分析,确定数学模型;所述的数学模型为:

同化性温度LAT=1320.67-156.25×(Al2O3/SiO2)

液相流动性指标FI={(CaO-2×SiO2)/TFe}/Al2O3

粘结相强度BST,定义B=Al2O3/(SiO2-2CaO)

当B<0.4,BST=-278.22-9022.27×B2+4353.03×B

当B>0.4,BST=-442.87+1111.83×B

其中:CaO为实验室为维持一定的碱度在矿粉中补充的CaO,CaO为矿粉本身含有的CaO,模型中出现的各个成分代表其在该铁矿粉中的重量百分比;

S4、混合矿合适冶金性能值确定步骤,结合实验结果、生产现场配矿数据及烧结矿性能指标确定混合矿最优的高温冶金性能值,具体包括如下步骤:收集标准时间段生产现场的配矿单,根据模型计算出每一个配矿单的高温冶金性能值,同时统计相应的烧结矿质量指标值,统计分析出烧结质量指标比较优时对应的高温冶金性能值范围;所述的最优的高温冶金性能值:同化性温度LAT为1230℃—1260℃,液相流动性FI为1.4—1.8,粘结相强度BST为400N—800N;

S5、混合矿高温冶金性能值计算步骤,根据确定的数学模型,结合混合矿的化学成分进行混合矿高温冶金性能值的计算。

S6、优化配矿步骤,根据矿粉的高温冶金性能值选择合适的矿粉5-6种进行高温冶金性能的优劣搭配,优化配矿,进行烧结,具体包括如下步骤:进行优化配矿时,设定好混匀粉的化学成分范围以及冶金性能值的范围,进行优化配矿计算,进而计算出不同产地矿的配比。

一般来说,在烧结矿中铁酸钙的量越多,烧结矿还原性越好,强度越高;铁酸钙在1250℃附近可大量生成,温度继续升高超过1280℃时,会造成生成的铁酸钙大量分解,影响烧结矿中铁酸钙量。通过大量的实验及生产实践数据统计表明:一般混匀矿的同化温度在1230℃—1260℃、液相流动性指数在1.4—1.8,粘结相强度在400N—800N时,铁酸钙生成量及结晶形态最好,烧结矿有较好的转鼓强度及粒度组成,还原性也较好。本发明确定的混匀矿的适宜的高温冶金性能值能很好的满足铁酸钙生成量及结晶形态的要求,烧结后烧结矿具有较好的冶金性能和质量。因此,本发明选取的所述的高温冶金性能值中同化温度为1230℃-1260℃,所述的液相流动性为1.4—1.8,所述的粘结相强度为400N—800N。

以下通过具体的实验来进行证明。

选取12种不同产地铁矿粉,进行优化配矿的实验。不同产地铁矿粉,不仅化学成分不同,内部结构也不同,所以会造成后面的实测结果有差异,当然最主要还是化学成分的影响,本发明中尚未考虑结构不同带来的影响。本实施例中通过XRF(荧光分析法)测得不同铁矿粉的化学成分的含量(重量百分比)。

本实施例在微型烧结装置及烧结杯实验装置上进行。例如中国专利201110091029.1《利用微型烧结试验研究铁矿石烧结性能的方法》所揭示的方法。

(1)铁矿粉选择

选取12种不同产地铁矿粉,品位从55%—65%不等。

(2)铁矿粉冶金性能测试

将选取的铁矿粉分别破碎,筛分出150目以下的粒级,利用微型烧结装置进行高温冶金性能的测试。对粒度的要求主要是考虑实验过程中对样品制取的要求。

(3)优化配矿

根据各铁矿粉的高温冶金性能值进行优劣搭配,优化配矿,将混合矿的高温冶金性能值控制在要求的范围之内。

(4)烧结杯实验

根据优化配矿方案,进行混匀矿的配矿,然后在烧结杯设备上进行烧结实验,并进行烧结指标的测试分析。

(5)实验结果

表1铁矿粉高温冶金性能测试值

表2配矿方案

表3优化配矿后高温冶金性能值

表4-1优化前后烧结指标

表4-2优化前后烧结指标

实施例选取了一个典型的配矿方案,并根据高温冶金性能值进行了优化,由表3可看出,优化后的方案,混匀矿高温冶金性能值中同化温度提高了14.35℃,液相流动性降低了0.13,粘结相强度提高了204.21N;同化温度提高,有利于延迟液相的产生,减缓液相的流动性,增加粘结相的强度。

由表4-1可看出,配矿方案经过优化后,烧结矿的化学成分基本维持不变。有表4-2可看出,经过优化后,由于粘结相强度的提高,转鼓强度提高了1.13个百分点,可磨指数降低了0.21个百分点,烧结矿物理强度得到了改善;烧结矿粒度指标中适合高炉冶炼的粒度10—40mm增加了8.16个百分点,10—5mm的粒度减少了9.73个百分点,有利于高炉料层透气性的改善,同时烧结粉末量也减少了1.55个百分点,提高了烧结成品率。

本发明通过将不同产地铁矿粉,根据其高温冶金性能值进行优劣搭配,使混匀矿高温冶金性能值在合适范围之内,有利于提高烧结过程中液相粘结相的强度,也有利于烧结过程中铁酸钙的生成,改善烧结矿物理强度及粒度指标,对烧结矿还原性也有改善。同时,利用该方法进行优化配矿,可提高低品高硅矿的使用比例,有利于烧结配矿原料成本的降低。

应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施方式中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。

上文所列出的一系列的详细说明仅仅是针对本发明的可行性实施方式的具体说明,它们并非用以限制本发明的保护范围,凡未脱离本发明技艺精神所作的等效实施方式或变更均应包含在本发明的保护范围之内。

8页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:呈现热学变色龙现象的各向同性双壳层结构及其实现方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!