行驶控制装置

文档序号:1651858 发布日期:2019-12-24 浏览:25次 >En<

阅读说明:本技术 行驶控制装置 (Travel control device ) 是由 上田健介 伊东悠太郎 池本宣昭 森本洋平 于 2018-02-26 设计创作,主要内容包括:控制汽车(30,33)行驶的行驶控制装置(13)包括第一规划部(S100)、第二规划部(S300)和控制部(S500)。在预测到上述汽车将进入对行驶条件有限制的限制区间的情况下,上述第一规划部规划满足上述限制的行驶条件的行驶方法,作为上述限制区间内的行驶方法。第二规划部规划行驶方法,在进入上述限制区间之前的准备区间中,上述行驶方法用于将与在上述第一规划部中规划的行驶方法有关的至少一个参数值调节成适用于在上述第一规划部中规划的行驶方法的准备值,以实现通过上述第一规划部规划的行驶方法。控制部控制上述准备区间中的行驶,以实现通过上述第二规划部规划的行驶方法。(A travel control device (13) for controlling the travel of automobiles (30, 33) includes a first planning unit (S100), a second planning unit (S300), and a control unit (S500). When it is predicted that the vehicle will enter a restricted section having restricted travel conditions, the first planning unit plans a travel method that satisfies the restricted travel conditions as a travel method in the restricted section. And a second planning unit planning a travel method for realizing the travel method planned by the first planning unit by adjusting at least one parameter value relating to the travel method planned by the first planning unit to a preparation value suitable for the travel method planned by the first planning unit, in a preparation interval before entering the restriction interval. The control unit controls the traveling in the preparation section to realize the traveling method planned by the second planning unit.)

行驶控制装置

相关申请的援引

本申请基于2017年5月9日申请的日本申请号2017-092741号,在此援引其记载内容。

技术领域

本发明涉及汽车的行驶控制。

背景技术

专利文献1公开了汽车行驶在弯道的期间,禁止包含在燃尽滑行控制中的加速行驶。所谓“燃尽滑行控制”,是用于在预先设定的上限车速和下限车速之间反复进行加速行驶和惯性行驶的控制,其中,上述加速行驶是使内燃机处于工作状态而通过驱动力驱动汽车的行驶,上述惯性行驶是使内燃机处于非工作状态而通过惯性行驶的行驶。为了提高燃料效率而实施燃尽滑行控制。

现有技术文献

专利文献

专利文献1:日本专利特开2010-13042号公报

发明内容

在上述现有技术的情况下,由于在弯道的行驶中禁止加速,因此即使在以更高速行驶方式燃料效率会变好的情况下,也不进行加速而维持燃料效率差的行驶方法。上述技术问题不限于以燃尽滑行控制为前提的情况,在以包含加速的其他控制为前提的情况下也同样。上述技术问题不限于禁止加速这样的限制,在对某些行驶条件施加限制的情况下也同样。对行驶条件施加限制的状况不限于弯道的行驶,在因其他状况对行驶条件施加限制的情况下也同样存在上述技术问题。

本发明解决的技术问题是在对某些行驶条件施加限制的状况下进行行驶的情况下,提高燃料效率。

本发明的一个方式是,一种控制汽车的行驶的行驶控制装置,上述行驶控制装置包括:第一规划部,在预测到上述汽车将进入对行驶条件施加限制的限制区间的情况下,上述第一规划部规划满足上述限制的行驶条件的行驶方法,作为上述限制区间内的行驶方法;第二规划部,上述第二规划部规划行驶方法,在进入上述限制区间之前的准备区间中,上述行驶方法用于将与在上述第一规划部中规划的行驶方法有关的至少一个参数值调节成适用于在上述第一规划部中规划的行驶方法的准备值,以实现通过上述第一规划部规划的行驶方法;以及控制部,上述控制部控制上述准备区间中的行驶,以实现通过上述第二规划部规划的行驶方法。

根据该方式,在进入限制区间之前,调节与行驶有关的至少一个参数,因此能够使限制区间的燃料效率提高。

附图说明

参照附图和以下详细的记述,可以更明确本发明的上述目的、其他目的、特征和优点。附图如下所述。

图1是汽车的框结构图。

图2是表示内燃机的转矩与转速的关系中输出的等值线的曲线图。

图3是表示行驶控制处理的流程图。

图4是表示在限制区间以发电行驶进行行驶的情况下的车速的时间变化的曲线图。

图5是表示在限制区间以发电行驶进行行驶的情况下的SOC的时间变化的曲线图。

图6是表示在限制区间以EV行驶进行行驶的情况下的车速的时间变化的曲线图。

图7是表示在限制区间以EV行驶进行行驶的情况下的SOC的时间变化的曲线图。

图8是表示第一规划处理的流程图。

图9是表示行驶方法确定处理的流程图。

图10是表示EV上限速度收敛在限制车速范围内的情况的图。

图11是表示高效率下限速度收敛于限制车速范围内的情况的图。

图12是表示EV上限速度和高效率下限速度收敛在限制车速范围内的情况的图。

图13是表示EV上限速度和高效率下限速度偏离限制车速范围的情况的图。

图14是表示第二规划处理的流程图。

图15是表示充放电量确定处理的流程图。

图16是示出在实施方式2的限制区间通过发电行驶进行行驶的情况下的车速的时间变化的曲线图。

图17是示出在实施方式2的限制区间通过发电行驶进行行驶的情况下的SOC的时间变化的曲线图。

图18是示出在实施方式2的限制区间通过EV行驶进行行驶的情况下的车速的时间变化的曲线图。

图19是示出在实施方式2的限制区间通过EV行驶进行行驶的情况下的SOC的时间变化的曲线图。

图20是实施方式3的汽车的框结构图。

图21是表示实施方式3的行驶方法确定处理的流程图。

图22是表示实施方式3的第二规划处理的流程图。

具体实施方式

说明实施方式1。图1所示的汽车30是二级以上的汽车。具体而言,汽车30至少包括能够自动控制加速和制动的功能。

汽车30是装设内燃机1和电动发电机(以下,称为MG)2作为动力源的混合动力汽车。内燃机1的输出轴的动力经由MG2传递至变速器3。变速器3的输出轴的动力被传递至输出轴17。MG2的旋转轴连结在将内燃机1的动力传递至变速器3的机械连接轴11的中途。

MG2通过逆变器5驱动。逆变器5通过电气连接配线12连接至主电池6。MG2经由逆变器5向主电池6供给电力和从主电池6输出电力。

发动机ECU8经由信号配线7向内燃机1发送信号来控制内燃机1的运转。MG-ECU10控制逆变器5来控制MG2。HV-ECU9与发动机ECU8和MG-ECU10之间发送和接收控制信号和数据信号。HV-ECU9通过上述发送和接收,根据汽车30的运转状态控制内燃机1以及MG2。

MG2能够将从主电池6供给的电力转换成动力后输出到机械连接轴11,并且能够将从机械连接轴11输入的动力转换成电力后对主电池6充电。以下,把MG2将动力转换为电力的情况称为发电。变速器3对从机械连接轴11输入的动力进行变速。从机械连接轴11输入至变速器3的动力,是将内燃机1的动力和MG2的动力合计而得到的动力、以及从内燃机1的动力减去发电部分的动力而得到的动力中的任一方。以下,将通过从内燃机1的动力减去发电部分的动力而得到的动力来行驶的情况称为发电行驶。

将内燃机1的动力和MG2的动力合计而得到的动力包含内燃机1的动力为零的情况和MG2的动力为零的情况。以下,将MG2的动力为零的情况、即仅通过内燃机1的动力进行行驶的情况称为通常行驶。以下,将内燃机1的动力为零的情况、即仅通过MG2的动力来行驶的情况称为EV行驶。在EV行驶的情况下,离合器15切断内燃机1与机械连接轴11之间的转矩传递。

路径信息输出器14将当前位置、弯道的曲率、根据法规的速度限制、交叉路口的信息、信号的信息、通过路径引导装置设定的引导路径的信息等输入到ACC-ECU13。另外,路径引导装置未图示。

通过ACC-ECU13通过与HV-ECU9通信,实现燃尽滑行控制(以下,称为BC控制)。所谓BC控制是反复进行燃烧控制和滑行控制的控制。

所谓燃烧控制是通过通常行驶使汽车30加速的控制。在本实施方式的燃烧控制中,控制内燃机1的运转,以实现内燃机1的运转效率成为高效率的条件。本实施方式中的高效率的条件定义为收敛于图2所示的范围H内。范围H是效率最高的坐标P2附近的范围。此外,在本实施方式的燃烧控制中,通常需要比恒定车速大的驱动力。因此,如果执行燃烧控制,通常发生加速。

滑行控制是指通过惯性使汽车30行驶的控制。ACC-ECU13在滑行控制中使内燃机1暂停,并且通过离合器15切断内燃机1和机械连接轴11的转矩传递。滑行控制中的车速由于汽车30受到的空气阻力等的影响而逐渐减少。

进行BC控制的结果是,在内燃机1产生驱动力的状态下,仅进行图2所示的坐标P2附近的运转。即,不进行效率比较低的坐标P1附近的运转。其结果是,能够提高汽车30的燃料效率。另外,在执行燃烧控制的期间和执行滑行控制的期间之间,也可以存在车速被控制为恒定的期间。

ACC-ECU13在限制区间内行驶的情况下,限制行驶条件。具体而言,禁止加速,并且限制车速的范围。

本实施方式中的限制区间是道路弯曲的区间。行驶在限制区间中的期间被称为限制期间。如果继续进行BC控制,则会发生由燃烧控制引起的加速,因此在限制区间中,中断BC控制。

当ACC-ECU13预测到将进入限制区间时,开始图3所示的行驶控制处理。ACC-ECU13通过执行ACC-ECU13自身所存储的程序来实现行驶控制处理。

ACC-ECU13在通过路径引导装置设定了引导路径的情况下,以按照引导路径行驶为前提,实施进入限制区间的预测。即,ACC-ECU13在引导路径上,在距弯道的起点规定距离、到达弯道的起点跟前的地点的情况下,预测进入限制区间。

ACC-ECU13在未通过路径引导装置设定引导路径的情况下,以沿着道路行驶为前提,实施进入限制区间的预测。即,ACC-ECU13以不进行左转或右转为前提,在距弯道的起点规定距离、到达弯道的起点的跟前的地点的情况下,预测进入限制区间。

首先,作为S100,ACC-ECU13执行第一规划处理。在第一规划处理中,规划弯道行驶中的行驶方法,使得弯道行驶中的燃料效率尽可能高。具体而言,实施发电行驶和EV行驶中的任一者的选择和车速的确定。

接下来,作为S300,ACC-ECU13执行第二规划处理。在第二规划处理中,规划准备区间的行驶方法,使得在进入限制区间之后能够立即实施通过第一规划处理规划的行驶方法。实施该规划,以调节与行驶有关的至少一个参数。在本实施方式中,与行驶有关的至少一个参数是车速和SOC。SOC是State Of Charge的首字母缩略词,表示主电池6的充电的残余容量。

接下来,作为S500,ACC-ECU13根据第二规划处理的规划,执行用于在准备区间行驶的控制。从开始行驶控制处理的时间点到进入限制区间的期间被称为准备期间。

最后,ACC-ECU13前进至S600,根据第一规划处理的规划,执行用于在限制区间行驶的控制。当结束行驶控制处理后,ACC-ECU13再次开始BC控制。

图4~图7所示的时刻t0是S100的执行时间点以及S500的开始时间点。在图4~图7中,执行S100所需要的时间被视为零。

图4和图5所示的时刻t1eng以及图6和图7所示的时刻t1ev是S600的开始时间点。图4和图5所示的时刻t2eng以及图6和图7所示的时刻t2ev是行驶控制处理的结束时间点。

当开始第一规划处理时,如图8所示,首先作为S110,确定弯道的起点和终点作为限制区间的起点和终点。ACC-ECU13基于从路径信息输出器14输入的信息来实施S110。

接着,ACC-ECU13进入S120,确定限制区间内的上限车速VH。本实施方式中的上限车速VH基于弯道行驶中的离心力以及根据法规的限制速度来确定。弯道行驶中的离心力与v2/r成比例。v表示车速,r表示弯道的半径。因此,ACC-ECU13求出使v2/r的值成为规定值以下的速度v。规定值通过预先调查乘车的人感到的不舒适而预先确定。半径r的值基于从路径信息输出器14获取的信息来确定。ACC-ECU13将这样求出的速度v和根据法规的限制速度中较慢的一方的速度,确定作为上限车速VH。

接着,ACC-ECU13进入S130,确定限制区间内的下限车速VL。下限车速VL被确定作为不会干扰汽车30的周边车辆的行驶的速度和根据法规的最低速度中较快的速度。基于周边车辆的车速和汽车30的行驶记录,来确定不会干扰周边车辆的行驶的速度。ACC-ECU13通过基于装设在汽车30上的传感器、相机的测量或者通过与周边车辆的通信,来获取周边车辆的车速。以下,将这样确定的上限车速VH和下限车速VL的速度范围称为限制车速范围。

接着,ACC-ECU13进入S200,执行图9所示的行驶方法确定处理。首先,作为S210,ACC-ECU13确定内燃机1能够以高效率运转的车速内的最低车速(以下,称为高效率下限车速Veng)。在本实施方式中,S210中的高效率的运转与燃烧控制相同,是指收敛于图2的范围H内的运转。在其他方式中,也可以在S210中使用与燃烧控制不同的条件。

由于在本实施方式中的限制区间内禁止加速,因此在限制区间内使内燃机1运转的情况下,实施发电行驶。但是,由于即使实施发电行驶也存在产生加速的情况,因此在确定高效率下限车速Veng时,范围H内的运转条件中的、即使实施发电行驶也产生加速的运转条件被排除。然后,在剩余的运转条件中,推出成为最低车速的情况,将该车速确定为高效率下限车速Veng。在S210中,可以进一步考虑空气阻力、路面阻力、舵角、限制区间为坡道的情况下的倾斜、内燃机1的开启/关闭阈值等。

接着,ACC-ECU13进入S220,确定EV行驶的上限车速VH(以下,称为EV上限车速Vev)。EV上限车速Vev基于MG2的最大输出值和主电池6的最大输出值中的较低一方的输出值来确定。MG2和主电池6的最大输出值可以视为固定值,也可以视为变动值。在将MG2的最大输出值视为变动值的情况下,例如,也可以基于MG2的温度来确定MG2的最大输出值。在将主电池6的最大输出值视为变动值的情况下,例如,可以基于主电池6的温度或SOC来确定主电池6的最大输出值。

接着,ACC-ECU13进入S230,判定高效率下限车速Veng和EV上限车速Vev中的哪个收敛于限制车速范围内。如图10所示,在仅EV上限车速Vev收敛的情况下,ACC-ECU13进入S250,选择下限车速VL以上、EV上限车速Vev以下的范围作为限制区间进入时的车速。由于限制区间进入时在S250的执行时间点是未来,因此即使以唯一的值确定限制区间进入时的车速,也存在无法实现的可能性。因此,在S250中,以范围确定车速。S250的执行包含选择EV行驶作为限制区间内的行驶方法。

如图11所示,在仅高效率下限车速Veng收敛的情况下,ACC-ECU13进入S260,选择高效率下限车速Veng以上、上限车速VH以下的范围,作为限制区间进入时的车速。S260的执行包含选择发电行驶作为限制区间内的行驶方法。

如图12所示,在两方都收敛的情况下,ACC-ECU13进入S240,判定EV上限车速Vev和高效率下限车速Veng中的哪个更接近当前车速。在接近当前车速的是EV上限车速Vev的情况下,进入S250。在接近当前车速的是高效率下限车速Veng的情况下,进入S260。

如图13所示,在两方从限制车速范围偏离的情况下,进入S270,选择上限车速VH附近的范围,作为限制区间进入时的车速。所谓上限车速VH附近是上限为上限车速VH,下限为从上限车速VH减去规定值而获得的车速的范围。S270的执行包含选择发电行驶作为限制区间内的行驶方法。

另外,EV行驶的下限车速大致为零km/h。因此,在本实施方式中,没有假定EV行驶的下限车速大于上限车速VH。另一方面,在弯道行驶的情况下,使内燃机1能够高效运转的车速中最高车速产生的离心力几乎都过大。因此,在本实施方式中,没有假定使内燃机1能够高效运转的车速中的最高车速低于下限车速VL。行驶方法确定处理确定了以这些作为前提的处理内容。

当选择车速范围时,如图1所示,ACC-ECU13结束第一规划处理,并且执行第二规划处理。当开始第二规划处理时,如图14所示,作为S400,ACC-ECU13执行充放电量确定处理。

如图15所示,,首先作为S410,ACC-ECU13计算变化量ΔSOCend。变化量ΔSOCend是SOC根据限制区间的行驶而增减何种程度的预测值。变化量ΔSOCend有成为正值的情况和成为负值的情况。成为正值的情况是通过执行S250或S270,选择了发电行驶的情况。成为负值的情况是通过S260的执行,选择了EV行驶的情况。

变化量ΔSOCend的计算基于内燃机1的特性、MG2的特性、限制区间的距离、限制区间的倾斜等来实施。在本实施方式中,为了改善燃料效率,如图4、图6所示,从限制期间的中途开始滑行控制。由于开始滑行控制时SOC不变化,因此在变化量ΔSOCend的计算中,也考虑在限制期间中的哪个时刻开始滑行控制。

开始滑行控制的时刻在满足规定条件的范围内设定为尽可能早的时刻。所谓规定条件是能够不低于下限车速VL地通过滑行行驶结束限制区间的行驶的条件。

接着,作为S420,ACC-ECU13将变化量ΔSOCend与当前值SOCini相加得到的值(以下,称为假想结束SOC)分别与下限SOCmin以及上限SOCmax进行比较。当前值SOCini是时刻t0的SOC的值。下限SOCmin是作为SOC的下限值而预先确定的值。上限SOCmax是作为SOC的上限值而预先确定的值。

在假想结束SOC收敛于下限SOCmin以上、上限SOCmax以下的范围的情况下,ACC-ECU13进入S450,将目标SOCtgt设定为与当前值SOCini相等的值。目标SOCtgt是时刻t1eng或者时刻t1ev中的SOC的目标值。S450的执行包含选择通常行驶作为准备区间的行驶方法,以不改变SOC。

另一方面,在假想结束SOC小于下限SOCmin的情况下,ACC-ECU13进入S430,通过式(1)确定目标SOCtgt。

SOCtgt=SOCmin-ΔSOCend+α...(1)

α是正值的常数。α被导入式(1),使得时刻t2ev中的SOC不过于接近下限SOCmin。另外,在进入步骤S430的情况下,由于变化量ΔSOCend是负值,因此式(2)与式(1)的值相同。

SOCtgt=SOCmin+|ΔSOCend|+α...(2)

另一方面,在假想结束SOC大于上限SOCmax的情况下,进入S430,ACC-ECU13通过式(3)确定目标SOCtgt。另外,在进入S440的情况下,变化量ΔSOCend为正值。

SOCtgt=SOCmax-ΔSOCend-α...(3)

在执行了S430、S440、S450中的任何一个之后,ACC-ECU13进入图14所示的S490,并且规划准备区间的行驶条件。即,由于在之前的步骤中,时刻t1eng或t1ev的车速和SOC的目标值被确定,因此确定实现这些目标值的具体的行驶方法。

图4、图5例示了确定在限制期间通过发电行驶进行行驶,并且假想结束SOC比上限SOCmax大的情况。在此情况下,在准备期间,一边通过使MG2产生驱动力来适当地减少SOC,一边调节车速,使得时刻t1eng的车速成为高效率下限车速Veng以上、上限车速VH以下。

图6和图7例示了确定在限制期间内通过EV行驶进行行驶,并且假想结束SOC小于下限SOCmin的情况。在此情况下,在准备期间,通过适当地执行再生制动或发电行驶,在增大SOC的同时调节车速,使得时刻t1ev的车速成为EV上限车速Vev以上、下限车速VL以下。

在时刻t1eng或时刻t1ev,进入限制区间,因此,作为S600,ACC-ECU13执行实现在之前步骤中确定的行驶方法的控制。

在确定为在限制区间通过发电行驶进行行驶的情况下,如图4、图5所示,通过发电行驶来维持限制区间进入时的车速Va,并且在上述的时刻开始滑行控制。

在确定为在限制区间通过EV行驶进行行驶的情况下,则如图6、图7所示,通过EV行驶维持限制区间进入时的车速Vb,并且在上述时刻开始滑行控制。当结束限制区间的行驶时,结束行驶控制处理,再次开始BC控制。

根据以上说明的实施方式1,能够以较高的可能性实现限制区间内的优选的行驶。优选的行驶是指满足燃料效率良好、遵照法规的车速以及不产生感觉不舒适的离心力的行驶。在限制区间中以较高的可能性实现优选行驶是因为,在到达准备区间的时间点,通过第一规划处理使用至少一个参数值规划限制区间的行驶方法,根据该规划,通过第二规划处理预先规划准备区间的行驶方法,使得在先于限制区间的准备区间中将其参数值调节成适合通过第一规划处理规划的行驶方法的准备值,通过第二规划处理规划的准备区间的行驶方法通过S500实现。

说明实施方式2。实施方式2的说明以与实施方式1的不同点为主要对象。关于没有特别说明的方面,与实施方式1相同。

在实施方式2中,在限制期间内,除了加速之外,还禁止减速。因此,如图16至图19所示,在限制期间内,车速维持恒定。因此,在实施方式2中,提高了弯道的行驶稳定性。

在实施方式2中,与实施方式1相比,如图17、图19所示,变化量ΔSOCend的绝对值变大。反过来说,实施方式1与实施方式2相比,由于变化量ΔSOCend的绝对值小,因此准备期间中的SOC的管理容易。

说明实施方式3。实施方式3的说明以与实施方式1的不同点为主要对象。关于没有特别说明的方面,与实施方式1相同。

如图20所示,实施方式3的汽车33不包括MG以及与MG有关的装置。因此,如图21所示,第一规划处理中包含的行驶方法确定处理成为确定车速范围的处理。在图21中,与图9中所示的步骤编号实质上相同的步骤被标注相同的步骤编号。

如图22所示,实施方式3的第二规划处理仅成为准备区间的行驶方法的规划。在实施方式3的第二规划处理中,作为与行驶有关的至少一个参数,调节车速。

ACC-ECU13对应于行驶控制装置,S100对应于第一规划部,S300对应于第二规划部,S500对应于控制部。

本发明不限于本说明书的实施方式、实施例、变形例,在不脱离其主旨的范围内能够以各种构造实现。例如,为了解决上述技术问题的一部分或全部,或者为了实现上述效果的一部分或全部,与发明内容一栏所记载的各方式中的技术特征对应的实施方式、实施例、变形例中的技术特征能够适当地进行替换、组合。如果该技术特征在本说明书中没有作为必须的技术特征进行说明,则可以适当删除。例如,可以例示如下。

默认的行驶控制也可以不是BC控制,只要是至少存在自动执行加速的情况的控制即可。例如,也可以是将与前方车辆的车间距离保持为恒定的控制。

限制区间只要是最好禁止加速的区间即可,也可以不是弯道。例如,可以列举视野不佳的区间、幼儿园前的区间、积雪的区间等。例如,可以基于装设在汽车上的相机的图像信息来确定积雪区间,或者可以基于天气信息或道路信息中的未来路径的积雪量来确定积雪区间。

在限制区间中进行发电行驶的过程中,也可以实施应该在高效率的运转条件或稳定的运转条件下进行的控制。例如,可以考虑触媒再生控制、过滤器再生控制等。触媒再生控制是用于除去吸附或附着于触媒的物质的控制。过滤器再生控制是,在带PM过滤器的内燃机中,用于使捕集到的PM在高温下氧化的控制。

在上述实施方式中,通过软件实现的功能及处理的一部分或全部也可以通过硬件实现。此外,通过硬件实现的功能及处理的一部分或全部也可以通过软件实现。作为硬件,例如,可使得用集成电路、分立电路、或者组合了这些电路的电路模块等各种电路。

29页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:用于控制分配车辆的储能装置的功率的设备和方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!