一种ZnO/聚吡咯改性的聚丙烯腈纳米纤维膜及其制备方法

文档序号:1656122 发布日期:2019-12-27 浏览:34次 >En<

阅读说明:本技术 一种ZnO/聚吡咯改性的聚丙烯腈纳米纤维膜及其制备方法 (ZnO/polypyrrole modified polyacrylonitrile nanofiber membrane and preparation method thereof ) 是由 何毅 张李云 李双双 范毅 李振宇 王顺慧 马兰 于 2019-10-23 设计创作,主要内容包括:本发明公开了一种ZnO/聚吡咯改性的聚丙烯腈纳米纤维膜的制备方法,步骤以下:S1、聚丙烯腈纳米纤维膜的制备;S2、聚吡咯改性聚丙烯腈纳米纤维膜,分别配制含吡咯单体的乙醇混合溶液1和FeCl3去离子水溶液2;聚丙烯腈纤维膜放入溶液1中3-5min,然后将溶液2加入溶液1中,混合液放入振荡器中震荡,取出烘干,得到聚吡咯改性的聚丙烯腈纳米纤维膜;S3、异质结ZnO/聚吡咯改性,将聚吡咯改性的聚丙烯腈纳米纤维膜放入乙酸锌溶液浸泡后,取出烘干,放入氢氧化钠溶液中浸泡5-9s,取出烘干;放入含硝酸锌和六次甲基四胺的混合溶液中,90℃下加热8-12h,取出烘干,得到异质结ZnO/聚吡咯改性的聚丙烯腈纳米纤维膜。(The invention discloses a preparation method of a ZnO/polypyrrole modified polyacrylonitrile nanofiber membrane, which comprises the following steps: s1, preparing a polyacrylonitrile nanofiber membrane; s2, preparing an ethanol mixed solution 1 containing pyrrole monomers and a FeCl3 deionized water solution 2 respectively by using a polypyrrole modified polyacrylonitrile nano-fiber membrane; putting the polyacrylonitrile fiber membrane into the solution 1 for 3-5min, then adding the solution 2 into the solution 1, putting the mixed solution into an oscillator for oscillation, taking out and drying to obtain the polypyrrole-modified polyacrylonitrile nanofiber membrane; s3, modifying heterojunction ZnO/polypyrrole, namely putting the polypyrrole-modified polyacrylonitrile nanofiber membrane into a zinc acetate solution for soaking, taking out and drying, putting the polypyrrole-modified polyacrylonitrile nanofiber membrane into a sodium hydroxide solution for soaking for 5-9S, and taking out and drying; putting the mixed solution into a mixed solution containing zinc nitrate and hexamethylenetetramine, heating the mixed solution at 90 ℃ for 8 to 12 hours, taking out the mixed solution and drying the mixed solution to obtain the heterojunction ZnO/polypyrrole modified polyacrylonitrile nano-fiber film.)

一种ZnO/聚吡咯改性的聚丙烯腈纳米纤维膜及其制备方法

技术领域

本发明属于材料技术领域,具体地说,涉及一种ZnO/聚吡咯PPy改性的稳定化聚丙烯腈的纳米纤维膜及其制备方法与应用。

背景技术

纳米纤维膜是一种由静电纺丝技术所制备的是一种由直径从微米到纳米尺寸的纤维的构成的新型分离膜。由于为纳米纤维组成的膜材料,它的高的比表面积,内部高度连通的纳米级的孔隙结构和具有可调整的孔隙结构的特点等;使得其相对于传统的水处理材料,极大的提高了其在油水分离,染料,重金属的去除过程的分离效率,减少了分离过程中的能源消耗,也避免了二次的环境污染,成为了一种新兴的污水处理材料。

聚丙烯腈,由于其原料易得,价格便宜,优良的机械性能,常常被制备出水处理膜。因此以聚丙烯腈为原料制备的纳米纤维膜,在水处理中成为一种新型的分离膜。但是由于聚合物天然性质,如聚丙烯腈纤维膜在水中易溶胀,导致其分离效率下降;其次聚合物膜常常表现对有机物抗污染能力差,同时污染后较难对其进行清洁;另外水污染常常来着原油泄漏和工业的排放,分离膜面对的废水本身就是一个复杂的体系,包括可溶性染料,重金属,不溶性的有机物;这对膜稳定性就有了更高的要求。

发明内容

本发明的一个目的是提供一种稳定性和机械性能好,同时具有超亲水-水下超疏油性质的用于污水处理的ZnO/聚吡咯改性聚丙烯腈纳米纤维膜。

本发明的另一个目的是提供上述ZnO/聚吡咯改性聚丙烯腈纳米纤维膜的制备方法。

本发明提供的ZnO/聚吡咯改性的聚丙烯腈纳米纤维膜的制备方法,包括以下步骤:

S1、聚丙烯腈纳米纤维膜的制备:将聚丙烯腈粉末与N,N-二甲基甲酰胺溶液混合均匀制成纺丝溶液,纺丝溶液中,聚丙烯腈质量g与N,N-二甲基甲酰胺体积mL的比值是(8-12):100,通过静电纺丝装置纺成聚丙烯腈纳米纤维膜;为了得到表面光滑、直径均匀、表面形态较好的聚丙烯腈纳米纤维膜,静电纺丝的优选条件为:纺丝温度为30-38℃,纺丝电压为18-22kv,接收距离为18-22cm,环境湿度40-50%,流速为0.6-1.2mL/h。将聚丙烯腈纳米纤维膜进行梯度升温处理,在220-238℃的条件下恒温30-60min,在245-250℃的条件下恒温30-60min,在255-262℃的条件下恒温30-60min,然后取出冷却得到稳定化的聚丙烯腈纳米纤维膜。其中,聚丙烯腈粉末的分子量为150000,N,N-二甲基甲酰胺的纯度为99.9%。

S2、聚吡咯(PPy)改性聚丙烯腈纳米纤维膜,步骤如下:

S21、分别配制质量百分浓度3-5%的含吡咯单体的乙醇混合溶液1和质量百分浓度3-3.5%的FeCl3去离子水溶液2;

S22、将步骤S1制备的聚丙烯腈纤维膜放入溶液1中3-5min,然后按溶液1与溶液2体积比5:1的比例,将溶液2加入溶液1中,混合液放入振荡器中震荡4-6h,取出,洗掉未反应的吡咯单体,烘干,得到聚吡咯改性的聚丙烯腈纳米纤维膜;

S3、异质结ZnO/聚吡咯改性,步骤如下:

S31、将聚吡咯改性的聚丙烯腈纳米纤维膜放入15mg/mL乙酸锌溶液浸泡2-5min,取出在120-130℃条件下烘干10-15min,烘干后放入pH=13的氢氧化钠溶液中浸泡5-9s,取出在120-130℃条件下烘干10-15min;重复步骤S31三次;

S32、将步骤S31得到的产物用去离子水清洗,90℃烘干后放入新配制的含硝酸锌和六次甲基四胺的混合溶液中,混合溶液中硝酸锌浓度26mg/ml,六次甲基四胺浓度13mg/mL,90℃下加热8-12h,取出烘干,得到异质结ZnO/聚吡咯改性的聚丙烯腈纳米纤维膜。

通过上述方法制备的异质结ZnO/聚吡咯改性的聚丙烯腈纳米纤维膜,主要应用于污水处理中作为分离膜。

与现有技术相比,本发明的有益之处在于:

异质结ZnO/PPy对聚丙烯腈纳米纤维膜改性处理,引入的ZnO/PPy异质结不仅提高了纳米纤维膜的润湿性,使得纳米纤维膜呈现超亲水-水下超疏油的状态,另一方面带正电荷的ZnO/PPy的引入进一步提高了纳米纤维膜的比表面积,大大的提高了纳米纤维膜在污水处理中对污水中的染料及重金属离子的吸附能力。同时,引入的ZnO/PPy异质结显著提高了膜的机械强度。另外,ZnO/PPy的引入使得膜具有光催化降解的性质,使纳米纤维膜在可见光的作用下具有自清洁、自修复的性能,使得聚丙烯腈纳米纤维膜的能够更多的高效循环使用。

本发明的其它优点、目标和特征将部分通过下面的说明体现,部分还将通过对本发明的研究和实践而为本领域的技术人员所理解。

附图说明

图1为实施例1中各步骤下制备的膜的SEM图像,(a)聚丙烯腈纳米纤维膜;(b)稳定化的聚丙烯腈纳米纤维膜;(c),(c’)聚丙烯腈/聚吡咯;(d),(d’)聚丙烯腈-聚吡咯/氧化锌膜。

图2为实施例1中各步骤下制备的膜的红外光谱图。

图3为实施例1中各步骤下制备的膜的X射线衍射图。

图4为实施例1中ZnO/PPy改性稳定化聚丙烯腈的纳米纤维膜亲水性的示意图。

图5为实施例1中ZnO/PPy改性稳定化聚丙烯腈的纳米纤维膜水下油接触角

图6为实施例1中ZnO/PPy改性稳定化聚丙烯腈的纳米纤维膜水下动态抗污染性。

图7为实施例1中PPy/ZnO改性稳定化聚丙烯腈的纳米纤维膜应力-应变曲线图。图8为实施例1中PPy/ZnO改性稳定化聚丙烯腈的纳米纤维膜的机械性能测试图。

图9是实施例1的PPy/ZnO改性膜遇水的实验照片图。

图10是油水分离过程的机理图。

图11是为实施例1中各步骤下制备的膜的油侵入膜孔的压力(OIP)图。

图12是不同种类油的OIP值。

图13是实施例1的PPy/ZnO改性膜分离膜在不同压力下的分离流量和去除率。

图14实施例1的ZnO/PPy改性膜对不同油的无表面活性剂乳状液的分离流量和滤液中TOC含量图。

图15为实施例1的ZnO/PPy改性膜对不同油有表面活性剂乳状液的分离流量和滤液中TOC含量图。

图16为实施例1的ZnO/PPy改性膜分离前柴油乳状液和分离后滤液的光学显微镜图像。

图17为实施例1的ZnO/PPy改性膜在油水分离中采用水洗和光诱导清洁不同方式清洁膜通量的变化。

具体实施方式

以下结合附图对本发明的优选实施例进行说明,应当理解,此处所描述的优选实施例仅用于说明和解释本发明,并不用于限定本发明。

实施例1

一种ZnO/聚吡咯改性的聚丙烯腈纳米纤维膜的制备方法,包括以下步骤:

S1、聚丙烯腈纳米纤维膜的制备:将12g聚丙烯腈粉末与100mL的N,N-二甲基甲酰胺溶液混合均匀制成纺丝溶液,通过静电纺丝装置纺成聚丙烯腈纳米纤维膜(简称PAN);静电纺丝的条件为:纺丝温度为30-38℃,纺丝电压为18-22kv,接收距离为18-22cm,环境湿度40-50%,流速为0.6-1.2mL/h。将聚丙烯腈纳米纤维膜进行梯度升温处理,在220℃的条件下恒温60min,在250℃的条件下恒温30min,在255℃的条件下恒温60min,然后取出冷却得到稳定化的聚丙烯腈纳米纤维膜(简称SPAN)。

S2、聚吡咯(PPy)改性聚丙烯腈纳米纤维膜:分别配制质量百分浓度3%的含吡咯单体的乙醇混合溶液1和质量百分浓度3%的FeCl3去离子水溶液2;将步骤S1制备的聚丙烯腈纤维膜放入溶液1中5min,然后按溶液1与溶液2体积比5:1的比例,将溶液2加入溶液1中,混合液放入振荡器中震荡6h,取出,洗掉未反应的吡咯单体,烘干,得到聚吡咯改性的聚丙烯腈纳米纤维膜(简称PAN-PPy)。

S3、异质结ZnO/PPy改性步骤:(1)将PPy改性后的聚丙烯腈纳米纤维膜放入15mg/mL乙酸锌溶液浸泡5min,取出在120℃条件下烘干15min,烘干后放入pH=13的氢氧化钠溶液中浸泡5s,取出在120℃条件下烘干15min;(2)重复步骤(1)三次;(3)将步骤(2)得到的产物用去离子水清洗,90℃烘干后放入新配制的含硝酸锌和六次甲基四胺的混合溶液中,混合溶液中硝酸锌浓度26mg/ml,六次甲基四胺浓度13mg/mL,90℃下加热12h,取出烘干,得到异质结ZnO/聚吡咯改性的聚丙烯腈纳米纤维膜(简称PAN-PPy/ZnO)。

实施例2

一种ZnO/聚吡咯改性的聚丙烯腈纳米纤维膜的制备方法,包括以下步骤:

S1、聚丙烯腈纳米纤维膜的制备:将8g聚丙烯腈粉末与100mL的N,N-二甲基甲酰胺溶液混合均匀制成纺丝溶液,通过静电纺丝装置纺成聚丙烯腈纳米纤维膜;静电纺丝的条件为:纺丝温度为30-38℃,纺丝电压为18-22kv,接收距离为18-22cm,环境湿度40-50%,流速为0.6-1.2mL/h。将聚丙烯腈纳米纤维膜进行梯度升温处理,在238℃的条件下恒温30min,在245℃的条件下恒温60min,在262℃的条件下恒温30min,然后取出冷却得到稳定化的聚丙烯腈纳米纤维膜。

S2、聚吡咯(PPy)改性聚丙烯腈纳米纤维膜:分别配制质量百分浓度5%的含吡咯单体的乙醇混合溶液1和质量百分浓度3.5%的FeCl3去离子水溶液2;将步骤S1制备的聚丙烯腈纤维膜放入溶液1中3min,然后按溶液1与溶液2体积比5:1的比例,将溶液2加入溶液1中,混合液放入振荡器中震荡4h,取出,洗掉未反应的吡咯单体,烘干,得到聚吡咯改性的聚丙烯腈纳米纤维膜;

S3、异质结ZnO/PPy改性:(1)将PPy改性后的聚丙烯腈纳米纤维膜放入15mg/mL乙酸锌溶液浸泡2min,取出在130℃条件下烘干10min,烘干后放入pH=13的氢氧化钠溶液中浸泡5s,取出在130℃条件下烘干10min;(2)重复步骤S31三次;(3)将步骤(2)得到的产物用去离子水清洗,90℃烘干后放入新配制的含硝酸锌和六次甲基四胺的混合溶液中,混合溶液中硝酸锌浓度26mg/ml,六次甲基四胺浓度13mg/mL,90℃下加热8h,取出烘干,得到异质结ZnO/聚吡咯改性的聚丙烯腈纳米纤维膜。

性能测试分析:

图1为实施例1中各步骤下制备的膜的SEM图像。其中(a)是聚丙烯腈纳米纤维膜;(b)稳定化的聚丙烯腈纳米纤维膜;(c)和(c’)是聚吡咯改性的聚丙烯腈纳米纤维膜;(d)和(d’)是ZnO/PPy改性的聚丙烯腈纳米纤维膜。从图(a)和(b)可以看出,纤维发生高温烧蚀,相邻的纤维发生交联,这提高了膜的强度。从图(c)和(c’)可以看出,放大的纤维表面明显看出聚吡咯的存在,同时纤维直接交联更加紧密,膜的机械强度进一步提高。从图(d)和(d’)可以看出,聚吡咯/氧化锌异质结构改性的聚丙烯腈纤维膜上,棒状的ZnO均匀的生长在纤维表面。

图2为本发明实施例1中各步骤下制备的纤维膜的红外光谱图。与PAN膜相比,SPAN中出现了新的特征吸收峰1648cm-1,1591cm-1和1488cm-1分别对应是基团C=O,C=N和C=C的吸附峰,并且在2242cm-1处出现–C≡N基团的吸附峰减弱,表明线性聚合物结构转变为稳定的氧化梯形聚合物结构。PPy改性后,分别在1550cm-1、1171cm-1、965cm-1、902cm-1出现一系列新的吸附峰,分别对应吡咯环,C–N,C–H和-CH-振动吸收峰,由此表明SPAN纳米纤维表面形成了PPy层。将ZnO纳米棒固定在PPy层表面后,在501cm-1出现Zn-O特征吸收峰,3362cm-1处出现OH型特征吸附峰,证明了成功制备出SPAN-PPy/ZnO膜。

图3为实施例1中各步骤下制备的纤维膜的X射线衍射图。与原始PAN膜相比,SPAN在2θ=16.8°处具有尖锐特征峰,该变化归因于在热氧化过程中在一定的牵引力下PAN纳米纤维的取向增加。SPAN-PPy/ZnO中出现了一系列新的特征衍射峰:31.4°(110)、34°(002)、35.9°(102)、47.2°(110)、56.2°(103)、62.6°(103)、66°(200)、67.6°(112)、68.8°(201)和76.8°(202),由此表明在制备的膜表面上形成了ZnO纳米棒。

本发明实施例1中PPy/ZnO改性稳定化聚丙烯腈的纳米纤维膜亲水性的示意图见图4。可以看出,水可以在膜表面完全铺展开,实验证明,4微升水在0.64s完全在膜表面铺展开,说明其达到了空气中超亲水性。

图5为本发明实施例1中PPy/ZnO改性稳定化聚丙烯腈的纳米纤维膜水下油接触角。可以看出,不同的油的水下接触角,其接触角均大于150°,说明其水下超疏油性质。

图6为本发明实施例1中PPy/ZnO改性稳定化聚丙烯腈的纳米纤维膜水下动态抗污染性。水下动态油附着的测试与水下油滑动角测试,证明了膜在水下优异的抗油附着能力。

图7为本发明实施例1中PPy/ZnO改性稳定化聚丙烯腈的纳米纤维膜应力-应变曲线图。图8为本发明实施例1中PPy/ZnO改性稳定化聚丙烯腈的纳米纤维膜的机械性能测试图。图中可以看出,改性膜的机械强度相对于原始的PAN纤维膜,具有较大的提高,另外纤维膜的杨氏模量的逐渐增加显示出改性膜的较强的机械强度。改性膜机械性能的提高使得膜的孔径在使用过程中不易变形,保证了膜在长时间处理废液的分离效率。

图9是实施例1的PPy/ZnO改性膜遇水的实验照片图,可以看出,改性膜遇水不溶胀,克服了传统聚丙烯腈膜遇水溶胀的根本问题。保证了改性膜在污水处理的长期有效性。同时该膜仍然保留着原始膜的柔韧性。

油水分离过程的简单机理如图10所示。其中,ΔP=2γow·cosθo/d,γow是油水界面张力,OIP代表油的侵入膜孔的压力,ΔP代表毛管压力。当油水分离时,由于油和水的不同表面张力和不同油水接触角,所以根据公式,被水润湿的毛管压力会阻碍油的侵入,另外根据公式当操作压力逐渐加大,膜的分离流量是逐渐增加的。当操作压力低于OIP时,膜在保留最大流量时,仍然可以得到较高的分离效率。因此实验中测量了实施例1的改性膜的OIP,得到不同油的OIP>120KPa,具体见图11和图12。可以得到在油水分离时,可以增加操作压力到100KPa,以得到最大分离流量。图13是改性膜作为分离膜在不同压力下的分离流量。

图14为实施例1中PPy/ZnO改性稳定化聚丙烯腈的纳米纤维膜对不同油的油水混合物乳状液的分离流量和滤液中TOC含量图。图15为本发明实施例1中PPy/ZnO改性稳定化聚丙烯腈的纳米纤维膜分离对含有表面活性剂的乳状液的分离流量和相应滤液的TOC含量图。这两个图体现了PPy/ZnO改性膜具有优异油水分离能力。

图16为实施例1中PPy/ZnO改性稳定化聚丙烯腈的纳米纤维膜分离前柴油乳状液和分离后滤液的光学显微镜图像。对比可以看出,经过改性膜的分离,柴油乳状液中的油被分离除去,得到的滤液中没有了油滴。

图17为实施例1中PPy/ZnO改性稳定化聚丙烯腈的纳米纤维膜在油水分离后采用水洗和光诱导清洁不同方式清洁膜通量的变化。在死端装置下分离柴油乳状液,部分油滴污染膜导致分离流量的降低,图中表示污染膜用水清洗和用光诱导自清洁的分离流量恢复情况的对比。

综上所述,本发明提供的一种ZnO/聚吡咯改性的聚丙烯腈纳米纤维膜及其制备方法。该制备方法简单,成本低,制得的改性膜具有优异的稳定性能及吸附性能,主要用于污水处理,处理效果好,可重复多次使用,利于工业化大规模生产。

以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,当可利用上述揭示的技术内容作出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

21页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种基于聚乙烯醇喷丝压制纸张及其制备方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!