内燃机的温度预测装置及温度预测方法

文档序号:1661486 发布日期:2019-12-27 浏览:41次 >En<

阅读说明:本技术 内燃机的温度预测装置及温度预测方法 (Temperature prediction device and temperature prediction method for internal combustion engine ) 是由 筱木俊雄 茶园史也 川尻和彦 友松允令 入江太津治 米泽宪一郎 于 2017-05-26 设计创作,主要内容包括:内燃机的温度预测装置及温度预测方法构成为:基于在内燃机从停止状态开始起动后到内燃机开始旋转为止的期间内的正时作为外部空气压力取得的进气压力、在内燃机开始旋转后到在燃烧室内开始燃烧为止的期间内的正时作为进气代表压力取得的进气压力以及在该正时取得的内燃机转速,预测内燃机的初始温度,使用预测出的初始温度预测燃烧开始以后的内燃机的温度。(A temperature prediction device and a temperature prediction method for an internal combustion engine are configured such that: an initial temperature of the internal combustion engine is predicted based on an intake pressure obtained as an external air pressure at a timing during a period from start of the internal combustion engine from a stopped state to start of rotation of the internal combustion engine, an intake pressure obtained as an intake representative pressure at a timing during a period from start of rotation of the internal combustion engine to start of combustion in the combustion chamber, and an engine speed obtained at the timing, and a temperature of the internal combustion engine after start of combustion is predicted using the predicted initial temperature.)

内燃机的温度预测装置及温度预测方法

技术领域

本发明涉及利用进气管内的进气压力预测内燃机的温度的温度预测装置及温度预测方法。

背景技术

以往,在车辆中搭载有称为ECU的电子控制装置。ECU主要使用微型计算机构成,控制与驾驶相关的车辆用内燃机的工作等。这种内燃机的工作控制关联有各种参数。作为与控制关联的一种参数,已知内燃机的温度信息。

在此,在采用在内燃机主体上配置专用的温度传感器且ECU使用该温度传感器的测定结果进行内燃机的控制的反馈控制的情况下,由于会产生从该温度传感器的测定时刻向ECU的响应时刻的延迟,所以难以进行适当的内燃机的控制。

因此,提出如下方法:使用内燃机起动时的内燃机主体的温度、任意时间的进气管的温度及模拟用的模型,预测该任意时间的内燃机主体的温度(例如参照专利文献1)。在专利文献1记载的现有技术中,作为用于知晓内燃机起动时的内燃机主体的温度的结构,提出了在内燃机主体的框体上配置专用的温度传感器并利用该温度传感器直接检测内燃机主体的温度的直接检测结构、以及直接检测内燃机的发动机油的温度或冷却水的温度并通过基于该检测结果的温度预测从而间接检测内燃机主体的温度的间接检测结构。

另外,提出如下方法:假定内燃机起动时的进气管内的温度与大气温度一致,基于内燃机的气缸内的压力和内燃机周围的大气温度,预测进气管的温度(例如参照专利文献2)。

在先技术文献

专利文献

专利文献1:日本特开2005-83240号公报

专利文献2:日本特开2006-132526号公报

发明内容

发明要解决的课题

然而,在为了知晓内燃机主体的温度而应用上述直接检测结构的情况下,需要准备能够承受内燃机主体的温度上升的耐热性的温度传感器。另外,需要进行在内燃机主体的表面实施该温度传感器的安装用的开孔等加工的作业、安装该温度传感器的作业等作业。另外,在为了知晓内燃机主体的温度而应用上述间接检测结构的情况下,与上述同样地,需要准备能够承受发动机油或冷却水的温度上升的耐热性的温度传感器,而且需要进行上述作业。

也就是说,在专利文献1记载的现有技术中,为了知晓内燃机主体的温度,即便在应用直接检测结构及间接检测结构中的任一个的情况下,也有可能由于布线及部件的增大而导致制造成本及作业负担的增大。其结果是,部件以及制造成本有可能居高不下。

在专利文献2记载的现有技术中,如上所述,假定内燃机起动时的进气管内的温度与大气温度一致。因此,基于内燃机起动时与内燃机停止时的时间间隔,假定范围出现偏差,温度的预测精度可能变差。因此,例如,在专利文献1记载的现有技术中,在使用通过应用专利文献2记载的现有技术而预测到的进气管的温度来预测内燃机主体的温度的情况下,内燃机主体的温度的预测精度有可能进一步变差。

本发明鉴于上述情况而作出,其目的在于得到即使不使用应对高温的专用的温度传感器也能够以比较低的成本预测内燃机的温度的内燃机的温度预测装置及温度预测方法。

用于解决课题的手段

本发明的内燃机的温度预测装置预测内燃机的温度,所述内燃机构成为通过进行从进气管向燃烧室内吸入外部空气的进气冲程,并对向在进气冲程中吸入的外部空气喷射的燃料进行点火,从而在燃烧室内引起燃烧,其中,所述温度预测装置具备:外部空气压力取得部,所述外部空气压力取得部在内燃机从停止状态开始起动后到内燃机开始旋转为止的期间内的正时,取得进气管内的进气压力作为外部空气压力;进气代表压力取得部,所述进气代表压力取得部在内燃机开始旋转后到开始燃烧为止的期间内的正时,取得进气压力作为进气代表压力;参数信息取得部,所述参数信息取得部取得内燃机的每单位时间的转速;初始温度预测部,所述初始温度预测部基于外部空气压力取得部取得的外部空气压力、进气代表压力取得部取得的进气代表压力及参数信息取得部取得的转速,预测开始起动后到开始燃烧为止的期间中的内燃机的初始温度;以及温度预测部,所述温度预测部使用初始温度预测部预测出的初始温度,预测燃烧开始以后的内燃机的温度。

本发明的内燃机的温度预测方法预测内燃机的温度,所述内燃机构成为通过进行从进气管向燃烧室内吸入外部空气的进气冲程,并对向在进气冲程中吸入的外部空气喷射的燃料进行点火,从而在燃烧室内引起燃烧,其中,所述温度预测方法具备:在内燃机从停止状态开始起动后到内燃机开始旋转为止的期间内的正时,取得进气管内的进气压力作为外部空气压力的步骤;在内燃机开始旋转后到开始燃烧为止的期间内的正时,取得进气压力作为进气代表压力,并且取得内燃机的每单位时间的转速的步骤;基于取得的外部空气压力、进气代表压力及转速,预测开始起动后到开始燃烧为止的期间中的内燃机的初始温度的步骤;以及使用预测出的初始温度,预测燃烧开始以后的内燃机的温度的步骤。

发明的效果

根据本发明,能够得到即使不使用应对高温的专用的温度传感器也能够以比较低的成本预测内燃机的温度的内燃机的温度预测装置及温度预测方法。

附图说明

图1是具备本发明的实施方式1的内燃机的温度预测装置的内燃机的结构图。

图2是示出本发明的实施方式1的内燃机的进气管的压力变化的示意图。

图3是示出本发明的实施方式1的进气压力与主体温度的相关性的示意图。

图4是示出本发明的实施方式1的内燃机的温度预测装置的一系列工作的流程图。

图5是示出本发明的实施方式2的内燃机的进气管的压力变化的示意图。

图6是示出本发明的实施方式3的内燃机的进气管的压力变化的示意图。

图7是示出本发明的实施方式4的内燃机的进气管的压力变化的示意图。

图8是示出本发明的实施方式4的内燃机的温度预测装置的预测初始温度的一系列工作的流程图。

具体实施方式

以下,参照附图详细说明本申请公开的内燃机的温度预测装置及温度预测方法的实施方式。此外,在附图的说明中,对同一部分或相当部分标注同一附图标记,并省略重复的说明。

另外,以下的实施方式为一例,本发明不由这些实施方式限定。并且,应用本发明的内燃机例如是车辆用内燃机,在以下的实施方式中,例示本发明应用于车辆用内燃机的情况。

实施方式1.

参照图1说明实施方式1的内燃机的温度预测装置121。图1是具备本发明的实施方式1的内燃机的温度预测装置121的内燃机100的结构图。

内燃机100是按如下方式构成的动力机:通过进行从进气管101a向燃烧室105内吸入外部空气的进气冲程,并对向在进气冲程中吸入的外部空气喷射的燃料进行点火,从而在燃烧室105内引起燃烧。更具体而言,内燃机100是将进气冲程、压缩冲程、膨胀冲程及排气冲程这四个冲程作为一个燃烧循环而运转的四冲程汽油内燃机。

内燃机100构成为包括进气通路101、空气滤清器102、节气阀103、进气压力传感器104、燃烧室105、旁通流路106、怠速控制阀107、燃料泵108、燃料箱109、喷射器110、进气门111、火花塞112、活塞113、活塞杆114、曲轴115、排气门116、排气通路117、曲轴转角传感器118、三元催化剂119、氧传感器120及温度预测装置121。

内燃机主体100a构成为包括由气缸覆盖的活塞113、活塞杆114及曲轴115、安装于气缸盖的进气门111、排气门116及火花塞112、以及位于活塞113上部且由活塞113和气缸盖夹着的燃烧室105。

在内燃机100的进气通路101中,从上游侧起按顺序设置有空气滤清器102、节气阀103及进气压力传感器104。

进气压力传感器104检测与节气阀103的下游侧的进气通路101相当的进气管101a内的气体的进气压力。进气压力传感器104以能够通信的方式与后述的温度预测装置121连接,将其检测结果作为进气压力信息提供给温度预测装置121。

在进气通路101中,以相对于节气阀103的上游侧与下游侧连通的方式设置有旁通流路106和怠速控制阀107。

在进气管101a中,在进气压力传感器104的下游侧,设置有向进气口附近喷射供给利用燃料泵108从燃料箱109汲取的燃料的喷射器110。喷射器110以能够通信的方式与后述的温度预测装置121连接。

在内燃机主体100a的燃烧室105设置有进气用的进气门111,进气通路101经由进气门111与燃烧室105相连。另外,在燃烧室105设置有排气用的排气门116,燃烧室105经由排气门116与排气通路117相连。

在燃烧室105的上部,设置有电极突出的火花塞112。火花塞112以能够通信的方式与后述的温度预测装置121连接。在燃烧室105的下部,设置有上下往复运动的活塞113。活塞113通过活塞杆114与曲轴115连结。

在曲轴115附近,设置有检测曲轴115的旋转角度的曲轴转角传感器118。曲轴转角传感器118以能够通信的方式与后述的温度预测装置121连接,将其检测结果作为曲轴转角信息提供给温度预测装置121。

在排气通路117的下游侧,设置有净化来自燃烧室105的燃烧废气中的NOx、HC及CO的三元催化剂119。在排气通路117中,在三元催化剂119的上游侧,设置有检测废气中的氧浓度的氧传感器120。氧传感器120以能够通信的方式与后述的温度预测装置121连接,将其检测结果作为氧信息提供给温度预测装置121。

节气阀103调整节气门的开度。利用空气滤清器102除去灰尘后的空气通过进气通路101向燃烧室105供给。节气阀103通过节气门的开度调整,从而控制向燃烧室105供给的空气流量。以从驾驶侧的观点来看,节气阀103根据驾驶员操作的加速器(未图示)的操作量,进行节气门的开度调整的控制。此外,设置于旁通流路106的怠速控制阀107为了在内燃机100的怠速运转时控制内燃机100的转速而调整在旁通流路106中流动的空气流量。

喷射器110在进气门111的跟前向在进气管101a中流通的空气喷射燃料而形成混合气体。进气门111向燃烧室105供给形成的混合气体。设置于燃烧室105的火花塞112利用放电火花对供给到燃烧室105的混合气体进行点火,使混合气体燃烧。

通过混合气体的燃烧,向外部做功。具体而言,曲轴115经由活塞113及活塞杆114旋转,并从混合气体的燃烧取出旋转能量。排气门116通过打开动作将通过混合气体的燃烧而产生的废气排出到排气通路117中。

在与曲轴115一体旋转的转子的外周部,在周向上以等间隔设置有多个突起。在这些突起横穿该曲轴转角传感器118时,曲轴转角传感器118将矩形的曲轴信号作为曲轴转角信息输出。此外,在实施方式1中,作为具体例,多个突起以曲轴115的中心为基准每隔30度设置。

此外,在转子的外周部,设置有将以等间隔设置的多个突起中的一部分突起设为欠缺的状态而成的缺齿部。利用这种结构,如果曲轴115最大旋转360度,则温度预测装置121能够根据曲轴转角传感器118的检测值判别活塞113的位置。因此,温度预测装置121能够识别出活塞113到达上止点及下止点。另外,如果内燃机100为四冲程内燃机,则温度预测装置121能够根据曲轴转角传感器118的检测值和进气压力传感器104的检测值,判别内燃机主体100a的四个冲程(即进气冲程、压缩冲程、膨胀冲程及排气冲程)并识别活塞113的详细位置。

温度预测装置121通过根据活塞113的位置向喷射器110输出燃料喷射的指令,从而进行燃料喷射量、空燃比等内燃机100的控制。

如上所述,温度预测装置121与进气压力传感器104、喷射器110、火花塞112、曲轴转角传感器118及氧传感器120等以能够通信的方式连接。

温度预测装置121例如利用执行运算处理的微型计算机、存储程序数据和固定值数据等数据的ROM(Read Only Memory:只读存储器)、更新存储的数据并依次改写的RAM(Random Access Memory:随机存取存储器)、电源、输出处理电路、输入处理电路、A/D转换电路、功率器件以及通信IC等来实现。

温度预测装置121基于进气压力传感器104的检测值,预测内燃机主体100a的温度(以下,称为主体温度)。另外,温度预测装置121基于预测出的主体温度,进行来自喷射器110的燃料喷射量的控制。

接着,参照图2说明内燃机100的起动。图2是示出本发明的实施方式1的内燃机100的进气管101a的压力变化的示意图。在图2中,横轴示出表示活塞的位置的曲柄编号,纵轴示出作为进气管101a的内压的进气压力Pm。

此外,在图2中,由于考虑了在一个燃烧循环中曲轴115旋转两周的情况,所以针对在与曲轴115一体旋转的转子的外周部每隔30°设置的多个突起中的每一个,标注旋转两周的量的曲柄编号。如图2所示,在一个燃烧循环中,在曲轴115的第一周(即压缩冲程及膨胀冲程),对各突起按顺序标注0~11的编号,在曲轴115的第二周(即排气冲程及进气冲程),对各突起按顺序标注12~23的编号。

当使内燃机100停止并将内燃机100的电源设为断开(OFF)时,温度预测装置121的电源也成为OFF,向温度预测装置121的电力供给停止。在该情况下,温度预测装置121从进气压力传感器104、曲轴转角传感器118及氧传感器120到此为止取得的各信息只要不特别存储于存储器就会消失。

接着,在伴随着内燃机100的电源接通(ON)而温度预测装置121的电源成为ON时,进行向温度预测装置121的电力供给。在该情况下,温度预测装置121开始取得来自进气压力传感器104、曲轴转角传感器118及氧传感器120的各信息。内燃机100的电源刚成为ON后从进气压力传感器104取得的进气压力信息能够作为搭载内燃机100的车辆周围的大气压信息进行处理。

接着,在内燃机主体100a的起动中,起动电动机等通过使曲轴115旋转而移动活塞113。在上述这样的内燃机主体100a的起动过程中,温度预测装置121利用从曲轴转角传感器118及进气压力传感器104取得的各信息,对内燃机主体100a处于进气冲程进行检测。

由于在进气冲程中,活塞113向下止点下降,进气门111打开,排气门116关闭,所以进气管101a内的气体被导入燃烧室105内,进气管101a内的气体压力成为负压。当活塞113通过下止点时,进气门111关闭,此后,从进气冲程转移到压缩冲程。

压缩冲程是利用伴随着曲轴115的旋转而在气缸内在上下方向上移动的活塞113压缩燃烧室105内的气体的冲程。从压缩冲程转移的膨胀冲程是利用活塞113使燃烧室105内的气体膨胀的冲程。

更具体而言,在压缩冲程中,以导入燃烧室105内的空气为主成分的气体在燃烧室105内伴随着活塞113的上升而被压缩。并且,当活塞113到达上止点附近时,利用喷射器110喷射燃料并且进气门111打开,所以该燃料被导入燃烧室105内。然后,在进气门111关闭并且利用火花塞112在燃烧室105内对燃料进行点火时,引起燃烧。在此期间,在进气门111及排气门116双方关闭的状态下,成为膨胀冲程,活塞113向下止点下降。此后,当活塞113到达下止点附近时,排气门116打开,利用排气通路117排出燃烧室105内的燃烧气体。

另一方面,从利用火花塞112点火之前的进气冲程转移的、压缩冲程、膨胀冲程及排气冲程中的进气管101a的内部成为进气门111被关闭并且节气阀103被关闭的状态。在该期间,外部空气从节气阀103的间隙等流入,进气管101a的内部大致向大气压变化。此外,在从压缩冲程向膨胀冲程的转移时之前且开始燃料喷射之前,进气管101a内部通过由活塞113的上下运动和伴随于此的阀的开闭等引起的压力差,进行气体移动。

在此,利用温度预测装置121预测的主体温度在控制内燃机100方面是非常重要的参数。另外,初始温度根据开始内燃机100的起动以前的内燃机100停止时的工作条件及从停止起的经过时间而不同。

此外,在此所说的初始温度是指内燃机100的电源从OFF切换为ON,内燃机100从停止状态开始起动后到在燃烧室105内开始燃烧为止的期间中的内燃机100的主体温度。

因此,着眼于在内燃机100中喷射燃料之前的进气管101a内部的气体压力,在内燃机100完全停止后,实施了假想经过不同的时间的试验。具体而言,使用单气缸的汽油内燃机作为内燃机100,设定5种初始温度(具体而言为25℃、60℃、80℃、100℃及115℃),并调查了使内燃机100起动后且到燃烧开始为止的进气压力的变动。

当内燃机100的电源从OFF切换为ON时,来自设置于内燃机100的进气压力传感器104、曲轴转角传感器118及氧传感器120的检测信号输入到温度预测装置121。此时,由于进气管101a的压力表示大气压,所以根据进气压力传感器104的检测结果可知内燃机100外部的外部空气压力(周围环境压力)。

当内燃机100的电源从OFF切换为ON时,内燃机100从停止状态起动。当开始内燃机主体100a的起动时,起动电动机等使曲轴115旋转,活塞113开始移动。在内燃机100起动后到曲轴115旋转为止的期间,进气管101a的压力大致表示大气压。

然后,在伴随着曲轴115的旋转而开始进气冲程时,进气管101a内的气体被引入燃烧室105,所以进气管101a的气体压力从大气压下降到约40kPa左右。该进气冲程中的压力变化快,对于5种初始温度,不能看出压力变化的差异。

从以上内容可知,能够将在内燃机100从停止状态起动到开始曲轴115的旋转为止的期间利用进气压力传感器104检测出的进气压力作为外部空气压力。

另一方面,在从进气冲程变为压缩冲程的下止点,初始温度与进气压力之间观察到相关性,呈现出如下倾向:初始温度越高,下止点处的进气压力变得越高。因此,将活塞113位于从进气冲程向压缩冲程转移的下止点时利用进气压力传感器104检测出的进气压力作为进气代表压力。

上述温度试验在内燃机100的配置环境下即外部空气温度和外部空气压力分别为25℃、1个大气压的环境下实施。此外,进气压力受到外部空气压力及外部空气温度的影响。另外,流入进气管101a内的气体的移动速度和从进气管101a排出并向燃烧室105移动的气体的移动速度依赖于内燃机主体100a的每单位时间的转速(以下,称为内燃机转速)。

因此,在不同的外部空气温度及不同的外部空气压力下实施验证试验,得到考虑了上述参数的实验式。在式(1)中示出其结果。图3是示出本发明的实施方式1的进气压力与主体温度的相关性的示意图。

TENG 0=a(P/P0-b)c·T0 d·Ne e(1)

其中,在式(1)中,

TENG 0表示内燃机主体的初始温度,

P0表示外部空气压力,

P表示进气代表压力,

T0表示外部空气温度,

Ne表示内燃机转速,

a、b、c、d及e表示常数。

从以上的式(1)及图3可知,发现了:使用利用进气压力传感器104检测出的进气压力,能够唯一地预测初始温度。

另外,从上述内容可知,即使在内燃机主体100a不设置用于得到初始温度的专用的传感器、布线及热电转换器等,如果知晓外部空气压力、进气代表压力、外部空气温度及内燃机转速,则也能够根据式(1)预测也与内燃机100的工作环境对应的初始温度。

在此,外部空气压力设为在内燃机100从停止状态起动到开始曲轴115的旋转为止的期间利用进气压力传感器104检测出的进气压力(以下,称为第一压力)。温度预测装置121构成为:在内燃机100从停止状态开始起动后到内燃机主体100a开始旋转为止的期间内的正时,取得进气压力作为外部空气压力。此外,取得外部空气压力的功能由温度预测装置121所具备的外部空气压力取得部承担。

进气代表压力设为在活塞113位于从进气冲程向压缩冲程转移的下止点时利用进气压力传感器104检测出的进气压力(以下,称为第二压力)。温度预测装置121构成为:在内燃机主体100a开始旋转后到在燃烧室105内开始燃烧为止的期间内的正时,取得进气压力作为进气代表压力。在实施方式1中,作为上述那样的正时的具体例,例示活塞113到达从进气冲程向压缩冲程转移的下止点的正时。此外,取得进气代表压力的功能由温度预测装置121所具备的进气代表压力取得部承担。

外部空气温度设为通过利用外部空气温度传感器直接检测的方法、利用其他传感器的检测值间接预测的方法等得到的值。温度预测装置121构成为利用这种方法取得外部空气温度。此外,取得外部空气温度的功能由温度预测装置121所具备的外部空气温度取得部承担。

基于利用曲轴转角传感器118检测出的曲轴转角信息来运算内燃机转速。此外,为了运算内燃机转速,具体而言,除了曲轴转角传感器118之外,还需要用于测算到检测出某曲轴转角为止所花费的时间的计时器。温度预测装置121构成为:在内燃机主体100a开始旋转后到在燃烧室105内开始燃烧为止的期间内的正时,利用这种方法取得内燃机转速。此外,取得内燃机转速的功能由温度预测装置121所具备的参数信息取得部承担。

温度预测装置121将上述式(1)和式(1)涉及的常数a~e存储于非易失性存储器,或者将根据式(1)和各常数确定的映射表存储于非易失性存储器。如上所述,温度预测装置121取得外部空气压力、进气代表压力、外部空气温度及内燃机转速。温度预测装置121使用取得的这些参数和存储的常数a~e,按照式(1)运算初始温度来进行预测。此外,预测初始温度的功能由温度预测装置121所具备的初始温度预测部承担。

接着,说明将预测出的初始温度作为初始值并依次预测燃烧开始以后的主体温度的方法。内燃机100开始起动后到开始燃烧为止的期间中的主体温度与利用上述方法预测出的初始温度等效。

与此相对,在燃烧室105内的燃烧开始以后,利用以下方法预测主体温度。即,根据内燃机主体100a的能量收支,运算时间Δt后的主体温度来进行预测。

在此,当将时刻t的主体温度设为TENG(t),将从时刻t起经过Δt后的时刻t+Δt的主体温度设为TENG(t+Δt),且设为TENG(t+Δt)-TENG(t)=ΔTENG时,ΔTENG/Δt能够如式(2)那样表示。另外,从内燃机主体100a输出的能量的总和QOUT能够如式(3)那样表示。此外,在式(3)中,右边第2项表示散热量,右边第1项表示其他输出能量。

M·CP·ΔTENG/Δt=QIN-QOUT(2)

QOUT=Σ(Qj)+β(TENG(t)-T0) (3)

其中,在式(2)及式(3)中,

M表示内燃机主体100a的重量(kg),

CP表示内燃机主体100a的比热(J/(kg·k)),

QIN表示输入到内燃机主体100a的能量的总和(J/s),

QOUT表示从内燃机主体100a输出的能量的总和(J/s),

Qj表示来自内燃机主体100a的个别要素j的输出能量,

T0表示外部空气温度(K),

t表示时间(s),

β表示常数(W/K)。

此外,对QIN而言,QIN的一部分或全部成为向内燃机100供给的燃料流量的能量。

温度预测装置121将上述式(2)及式(3)、式(2)涉及的常数M、CP以及式(3)涉及的常数β存储于非易失性存储器。温度预测装置121运算上述QIN、QOUT及Qj,进而取得外部空气温度。温度预测装置121通过使用运算得到的QIN、QOUT及Qj、取得的外部空气温度、以及存储的M、CP及β对式(2)及式(3)进行求解,从而运算ΔTENG,并使用该ΔTENG,预测主体温度TENG(t+Δt)。

此外,上述时间Δt例如表示内燃机100的燃料喷射正时的时间间隔。另外,在上述运算中,使用初始状态下的温度即外部空气温度。温度预测装置121通过应用利用外部空气温度传感器直接检测的方法、利用其他传感器的检测值间接预测的方法等,从而取得该外部空气温度。

这样,温度预测装置121使用预测出的初始温度,根据内燃机主体100a的能量收支,预测燃烧室105内的燃烧开始以后的主体温度。此外,预测燃烧开始以后的主体温度的功能由温度预测装置121所具备的温度预测部承担。

接着,参照图4说明本实施方式1的温度预测装置121的一系列工作。图4是示出本发明的实施方式1的内燃机的温度预测装置121的一系列工作的流程图。

在步骤S101中,在将内燃机主体100a的电源从OFF切换为ON时,处理进入步骤S102。

在步骤S102中,温度预测装置121取得为了预测初始温度TENG 0所需的各种参数,处理进入步骤S103。具体而言,温度预测装置121从进气压力传感器104取得第一压力及第二压力分别作为外部空气压力及进气代表压力,并利用上述方法取得外部空气温度及内燃机转速。另外,温度预测装置121从非易失性存储器取得式(1)和式(1)涉及的常数a~e。

在步骤S103中,温度预测装置121使用在步骤S102中取得的各种参数和常数a~e,按照式(1)预测初始温度TENG 0,处理进入步骤S104。

在步骤S104中,温度预测装置121将在步骤S103中预测出的初始温度TENG 0设定为主体温度TENG(t),处理进入步骤S105。

在步骤S105中,温度预测装置121取得为了运算QIN、QOUT及Qj所需的各种参数,处理进入步骤S106。

在步骤S106中,温度预测装置121使用在步骤S105中取得的各种参数,运算QIN、QOUT及Qj,处理进入步骤S107。

在步骤S107中,温度预测装置121使用在步骤S106中运算得到的QIN、QOUT及Qj、以及常数M、CP及β,按照式(2)及式(3)预测主体温度TENG(t+Δt)。此后,处理进入步骤S108,为了预测时间进一步经过后的主体温度,返回到步骤S104。

在步骤S108中,温度预测装置121基于在步骤S107中预测出的主体温度TENG(t+Δt),控制来自喷射器110的燃料喷射量。

当处理从步骤S107返回到步骤S104时,温度预测装置121将在步骤S107中预测出的主体温度TENG(t+Δt)设定为主体温度TENG(t),再次进行步骤S104以后的处理。这样,温度预测装置121通过使用在步骤S103中预测出的初始温度TENG 0,反复进行步骤S104以后的处理,从而随着时间的经过依次预测主体温度并且控制燃料喷射量。

这样,温度预测装置121基于预测出的主体温度,控制喷射燃料时的燃料喷射。此外,控制燃料喷射的功能由温度预测装置121所具备的燃料喷射控制部承担。

以上,根据本实施方式1,构成为:基于在内燃机从停止状态开始起动后到内燃机开始旋转为止的期间内的正时作为外部空气压力取得的进气压力、在内燃机开始旋转后到在燃烧室内开始燃烧为止的期间内的正时作为进气代表压力取得的进气压力、以及在该正时取得的内燃机转速,预测内燃机主体的初始温度,并使用预测出的初始温度预测燃烧开始以后的内燃机主体的主体温度。

以往,构成为:在内燃机主体附设温度传感器,根据内燃机主体的温度状态控制燃烧条件(例如用于设定空气流量的节气门开度调整等)。与此相对,在本实施方式1中,由于如上所述构成,所以即使在内燃机主体不附设温度传感器,也能够预测燃烧开始后的内燃机主体的温度。

通过如上所述构成,从而可以不需要应对内燃机主体的高温的专用的温度传感器,其结果是,可以不需要伴随着温度传感器的安装的、对内燃机主体的加工,且不需要布线。因此,能够以比较低的成本预测内燃机主体的温度。

此外,虽然在实施方式1中没有提及,但可以将设置于排气通路117的氧传感器120的检测值利用于内燃机100的空燃比控制等,另外,也可以用作空燃比的限制值。

此外,在实施方式1中,示出内燃机主体100a的工作的一例,但并不限定于此,可以与内燃机主体100a的特性相匹配地改变排气门116或进气门111的开闭正时及顺序。

例如,可以按如下方式使之工作:在从排气冲程向进气冲程转移的时间点,进气门111和排气门116同时打开。另外,可以在活塞113到达上止点或下止点之前进行进气门111或排气门116的开闭工作。另外,关于阀的开闭正时,大多按照与曲轴115的旋转匹配的凸轮轴来决定。然而,例如,也可以是,关于改变阀的开闭正时的所谓可变阀机构的控制,温度预测装置121根据预测出的初始温度,在内燃机100成为预先设定的温度为止的期间,控制阀的开闭正时。

此外,在实施方式1中提及的内燃机转速可以设为根据设置于曲轴115的相邻的突起间算出的时间上局部的转速。

此外,在实施方式1中,说明了温度预测装置121执行内燃机100的温度预测和基于温度预测的工作控制的结构,但并不限定于该结构。即,例如,可以设为如下结构:与温度预测装置121独立地设置ECU,该ECU基于温度预测来执行工作控制。

实施方式2.

在本发明的实施方式2中,说明进气代表压力的取得处理与之前的实施方式1不同的温度预测装置121。此外,在本实施方式2中,省略与之前的实施方式1相同的点的说明,以与之前的实施方式1不同的点为中心进行说明。

在本实施方式2中,内燃机100的基本结构与之前的实施方式1相同,另一方面,装入温度预测装置121的控制程序,具体而言,由温度预测装置121执行的进气代表压力的取得处理与之前的实施方式1不同。

图5是示出本发明的实施方式2的内燃机100的进气管101a的压力变化的示意图。

与之前的实施方式1同样地,伴随着内燃机主体100a的起动,起动电动机等使曲轴115旋转。此时,温度预测装置121利用来自进气压力传感器104及曲轴转角传感器118的各信息,检测内燃机主体100a从进气冲程向压缩冲程转移的下止点。温度预测装置121在检测出下止点后,在曲轴转角传感器118检测出曲柄编号例如为二号的突起的正时从进气压力传感器104取得进气压力,将该进气压力作为进气代表压力。

在此,在之前的实施方式1中,温度预测装置121构成为:在活塞113的位置到达下止点的正时,从进气压力传感器104取得进气压力,将该进气压力作为进气代表压力。但是,在实际的内燃机主体100a中,由于活塞113的位置到达下止点的正时是从进气冲程向压缩冲程转移的正时,所以可认为进气门111处于开闭工作中的情况较多。在该情况下,由于进气管101a与燃烧室105的气体移动量根据燃烧室105与进气门111的间隙确定,所以容易产生进气压力的偏差。

因此,在本实施方式2中,在活塞113的位置超过下止点且进气门111关闭后到在上止点附近排气门116打开为止的压缩冲程及膨胀冲程中,将利用进气压力传感器104检测出的进气压力作为进气代表压力。

即,温度预测装置121不是如之前的实施方式1那样在活塞113的位置到达下止点的时间点,而是在活塞113到达从进气冲程向压缩冲程转移的下止点的时间点之后到活塞113经过从压缩冲程向膨胀冲程转移的上止点并到达接下来的下止点为止的期间内的正时,取得进气压力作为进气代表压力。由此,能够将成为不受阀的开闭影响的比较稳定的值的进气压力作为进气代表压力。

此外,在膨胀冲程中,由于进气压力逐渐接近外部空气压力,所以由主体温度或外部空气温度的不同导致的进气压力的差异较小。因此,当考虑精度时,优选将在进气门111关闭后的压缩冲程的正时利用进气压力传感器104检测出的进气压力作为进气代表压力。

以上,根据本实施方式2,相对于之前的实施方式1的结构,构成为:在活塞到达从进气冲程向压缩冲程转移的下止点后到活塞经过从压缩冲程向膨胀冲程转移的上止点并到达接下来的下止点为止的期间内的正时,取得进气压力作为进气代表压力。即使在按这种方式构成的情况下,也能够得到与之前的实施方式1相同的效果。

此外,在实施方式2中,说明了将在某特定的正时利用进气压力传感器104检测出的一个进气压力作为进气代表压力的情况,但并不限定于此。

即,也可以将在连续的多个正时利用进气压力传感器104检测出的多个进气压力的平均值作为进气代表压力。在该情况下,即使在噪声进入进气压力传感器104的检测值的情况下,也具有能够缓和该噪声的效果。

实施方式3.

在本发明的实施方式3中,说明进气代表压力的取得处理与之前的实施方式1、2不同的温度预测装置121。此外,在本实施方式3中,省略与之前的实施方式1、2相同的点的说明,以与之前的实施方式1、2不同的点为中心进行说明。

在本实施方式3中,内燃机100的基本结构与之前的实施方式1、2相同,另一方面,装入温度预测装置121的控制程序,具体而言,由温度预测装置121执行的进气代表压力的取得处理与之前的实施方式1、2不同。

图6是示出本发明的实施方式3的内燃机100的进气管101a的压力变化的示意图。

与之前的实施方式1同样地,伴随着内燃机主体100a的起动,起动电动机等使曲轴115旋转。此时,温度预测装置121利用来自进气压力传感器104及曲轴转角传感器118的各信息,检测内燃机主体100a从进气冲程向压缩冲程转移的下止点。温度预测装置121在检测出下止点后,在曲轴转角传感器118分别检测出曲柄编号例如为二号和五号的突起的正时,分别从进气压力传感器104取得第一进气压力及第二进气压力,将这两个进气压力的差压作为进气代表压力。

即,温度预测装置121在活塞113到达从进气冲程向压缩冲程转移的下止点后到活塞113经过从压缩冲程向膨胀冲程转移的上止点并到达接下来的下止点为止的期间内的时间上不同的两个正时,分别取得第一进气压力及第二进气压力。温度预测装置121取得按这种方式取得的第一进气压力与第二进气压力的差压作为进气代表压力。

该差压能够置换为流入进气管101a的外部空气的流量,并伴随着时间项。在此,在这两次正时的时间差为短时间的情况下,流入进气管101a的外部空气难以受到主体温度的影响,相反,在这两次正时的时间差为长时间的情况下,该外部空气容易受到主体温度的影响。因此,必须在热流体力学上考虑依赖于这些正时的时间差的、从内燃机向流入外部空气的加温的影响,但具有如下优点:对于流入外部空气,能够在伴随着时间项的维度进行整理,其结果是,能够进行精度更高的主体温度的预测。

以上,根据本实施方式3,相对于之前的实施方式1的结构,构成为:在活塞到达从进气冲程向压缩冲程转移的下止点后到活塞经过从压缩冲程向膨胀冲程转移的上止点并到达接下来的下止点为止的期间内的不同正时,分别取得第一进气压力及第二进气压力,将取得的第一进气压力与第二进气压力的差压作为进气代表压力而取得。即使在按这种方式构成的情况下,也能够得到与之前的实施方式1相同的效果。

此外,在实施方式3中,将从进气压力传感器104分别取得第一进气压力及第二进气压力的正时作为在下止点以后曲轴转角传感器118分别检测出曲柄编号为二号和五号的突起的正时,但并不限定于此。

即,取得这两个进气压力的正时是在从进气冲程向压缩冲程转移的下止点以后,从压缩冲程到膨胀冲程及排气冲程完成为止的期间的正时即可。但是,优选的是,取得第一次进气压力(即第一进气压力)的正时是内燃机主体100a的影响显著地出现的正时,即从进气冲程向压缩冲程转移的下止点以后且尽可能接近该下止点的正时。

实施方式4.

在本发明的实施方式4中,说明利用与之前的实施方式1~3不同的方法预测初始温度的温度预测装置121。此外,在本实施方式4中,省略与之前的实施方式1~3相同的点的说明,以与之前的实施方式1~3不同的点为中心进行说明。

在本实施方式4中,内燃机100的基本结构与之前的实施方式1~3相同,另一方面,装入温度预测装置121的控制程序,具体而言,由温度预测装置121执行的预测初始温度的工作与之前的实施方式1~3不同。

图7是示出本发明的实施方式4的内燃机100的进气管101a的压力变化的示意图。

在图7中,假想在内燃机100为停止状态时活塞113在进气冲程的中途停止的事例。与之前的实施方式1同样地,伴随着内燃机主体100a的起动,起动电动机等使曲轴115旋转。此时,温度预测装置121利用来自进气压力传感器104及曲轴转角传感器118的各信息,检测内燃机主体100a的起动后内燃机主体100a从进气冲程向压缩冲程转移的第一次的第一下止点。在温度预测装置121检测出第一下止点后,内燃机主体100a从压缩冲程经过第一上止点向膨胀冲程转移,从该膨胀冲程经过第二下止点向排气冲程转移,从该排气冲程经过第二上止点向进气冲程转移。

内燃机主体100a从上述进气冲程经过第三下止点向压缩冲程转移后,温度预测装置121在曲轴转角传感器118检测出曲柄编号例如为二号的突起的正时从进气压力传感器104取得进气压力,将该进气压力作为进气代表压力。

在此,在从活塞113在进气冲程的中途停止的状态起动内燃机100的情况下,即使在该起动后活塞113移动到下止点,与在进气冲程中完全进气的情况相比,容积也变小,进气压力也变高。

因此,在本实施方式4中,温度预测装置121在利用来自进气压力传感器104及曲轴转角传感器118的各信息检测出从进气冲程向压缩冲程转移的下止点后,在曲轴转角传感器118检测出曲柄编号例如为二号的突起的正时,从进气压力传感器104取得进气压力。在取得的该进气压力比预先设定的设定压力值高的情况下,温度预测装置121以曲轴115的旋转继续的方式进行控制。

接着,温度预测装置121不使喷射器110及火花塞112工作,在第三下止点以后的第二个压缩冲程中取得利用进气压力传感器104检测出的进气压力,将该进气压力作为进气代表压力。

即,温度预测装置121构成为:在活塞113到达从进气冲程向压缩冲程转移的下止点后到活塞113经过从压缩冲程向膨胀冲程转移的上止点并到达接下来的下止点为止的期间内的正时,取得进气压力作为进气代表压力,在取得的进气代表压力比设定压力值高的情况下,在接下来的期间内的正时,再次取得进气压力作为进气代表压力。

这种结构例如在如上所述处于活塞113在进气冲程的中途停止的状态的情况、产生进气压力传感器104的检测值的读入错误等不能取得正确的检测值等情况下是有效的。由此,实现进气代表压力的可靠性的提高。

接着,参照图8说明本发明的实施方式4的温度预测装置121的预测初始温度的一系列工作。图8是示出本发明的实施方式4的内燃机的温度预测装置121的预测初始温度的一系列工作的流程图。

在步骤S201中,在将内燃机100的电源从OFF切换为ON时,处理进入步骤S202。

在步骤S202中,伴随着在步骤S201中内燃机100的电源成为ON,进气压力传感器104、曲轴转角传感器118等传感器工作,处理进入步骤S203。

在步骤S203中,温度预测装置121取得利用进气压力传感器104检测出的第一压力作为外部空气压力,处理进入步骤S204。

在步骤S204中,温度预测装置121利用在之前的实施方式1中说明的方法取得外部空气温度,处理进入步骤S205。

在步骤S205中,温度预测装置121以起动电动机等使曲轴115旋转的方式进行控制,处理进入步骤S206。

在步骤S206中,温度预测装置121从非易失性存储器取得预测初始温度所需的式(1)和式(1)涉及的常数a~e,处理进入步骤S207。

在步骤S207中,温度预测装置121检测出从进气冲程向压缩冲程转移的下止点(第一下止点)后,在该压缩冲程中从进气压力传感器104取得进气压力,处理进入步骤S208。

在步骤S208中,温度预测装置121判定在步骤S207中取得的进气压力是否比设定压力值高。当在步骤S207中取得的进气压力比设定压力值高的情况下,处理返回到步骤S207。

当处理返回到步骤S207时,温度预测装置121检测出接下来的从进气冲程向压缩冲程转移的下止点(第三下止点)后,在该压缩冲程中再次从进气压力传感器104取得进气压力,处理进入步骤S208。

另一方面,当在步骤S207中取得的进气压力为设定压力值以下的情况下,处理进入步骤S209。

在步骤S209中,温度预测装置121利用在之前的实施方式1中说明的方法取得内燃机转速,处理进入步骤S210。

在步骤S210中,温度预测装置121将在步骤S207中取得的设定压力值以下的进气压力作为进气代表压力。接着,温度预测装置121使用该进气代表压力、在步骤S203及步骤S204中取得的外部空气压力及外部空气温度、在步骤S206中取得的常数a~e以及在步骤S209中取得的内燃机转速,按照式(1)预测初始温度。此后,处理进入步骤S211。

在步骤S211中,由于温度预测装置121能够在步骤S210中预测初始温度,因此,温度预测装置121以在特定的正时使喷射器110及火花塞112工作的方式进行控制。

这样,温度预测装置121构成为:基于预测出的初始温度,控制第一次喷射燃料时的燃料喷射。此外,控制初始温度预测后的第一次燃料喷射的功能由温度预测装置121所具备的初次燃料喷射控制部承担。

以上,根据本实施方式4,构成为:在活塞到达从进气冲程向压缩冲程转移的下止点后到活塞经过从压缩冲程向膨胀冲程转移的上止点并到达接下来的下止点为止的期间内的正时,取得进气压力作为进气代表压力,在取得的进气代表压力比设定压力值高的情况下,在接下来的期间内的正时,再次取得进气压力作为进气代表压力。即使在按这种方式构成的情况下,也能够得到与之前的实施方式1相同的效果。

实施方式5.

在本发明的实施方式5中,说明开始燃烧室105内的燃烧以后的主体温度的预测方法与之前的实施方式1不同的温度预测装置121。此外,在本实施方式5中,省略与之前的实施方式1~4相同的点的说明,以与之前的实施方式1~4不同的点为中心进行说明。

在本实施方式5中,内燃机100的基本结构与之前的实施方式1~4相同,另一方面,装入温度预测装置121的控制程序,具体而言,由温度预测装置121执行的燃烧开始以后的主体温度的预测工作与之前的实施方式1~4不同。另外,实施方式5中的温度预测装置121利用之前的实施方式1~4中的任一个的方法预测初始温度。

由温度预测装置121执行的燃烧开始以后的主体温度的预测工作如下所述。即,在进气通过节气阀103、进气管101a、进气门111及燃烧室105的处理中,通过使用质量守恒定律、状态方程式及节流方程式等热流体力学地进行模型化,从而求出每单位时间的进气温度。另外,进气温度与主体温度具有相关关系,通过用实验式进行置换,从而能够使用进气温度预测主体温度。

因此,温度预测装置121通过利用上述方法取得进气温度,使用预测出的初始温度和取得的进气温度,并利用上述相关关系,从而预测主体温度。

以上,根据本实施方式5,构成为:使用预测出的初始温度和取得的进气温度,根据内燃机的主体温度与进气温度的相关关系,预测内燃机的主体温度。即使在按这种方式构成的情况下,也能够得到与之前的实施方式1~4相同的效果。

此外,在上述各实施方式中,说明了将本发明应用于预测内燃机主体的温度的情况,但并不限定于此,也能够将本发明应用于预测表示与内燃机主体大致相同的温度变动的要素的温度。例如,除了内燃机主体的温度以外,例如能够将本发明应用于预测内燃机的发动机油的温度、内燃机的冷却水的温度等。

此外,上述外部空气压力取得部、进气代表压力取得部、参数信息取得部、初始温度预测部及温度预测部既可以用ECU等一个控制部以软件方式实现,也可以作为独立的硬件准备。

另外,本发明并不限定于如上所述说明且记述的特定详细情况及代表性实施方式,能够由本领域技术人员容易地导出的变形例及效果也包含于发明。因此,能够在不脱离权利要求的范围及其等同物定义的总括性发明的范围的情况下进行各种变更。

附图标记的说明

100内燃机,100a内燃机主体,101进气通路,101a进气管,102空气滤清器,103节气阀,104进气压力传感器,105燃烧室,106旁通流路,107怠速控制阀,108燃料泵,109燃料箱,110喷射器,111进气门,112火花塞,113活塞,114活塞杆,115曲轴,116排气门,117排气通路,118曲轴转角传感器,119三元催化剂,120氧传感器,121温度预测装置。

25页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:学习装置及学习方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!