被动氮氧化物储存催化剂管理

文档序号:1669928 发布日期:2019-12-31 浏览:34次 >En<

阅读说明:本技术 被动氮氧化物储存催化剂管理 (Passive nitrogen oxide storage catalyst management ) 是由 C·L·怀特 M·A·史密斯 S·任 于 2019-05-28 设计创作,主要内容包括:根据本文描述的一个或多个实施例,一种用于处理来自机动车辆中的内燃机的排气的排气系统包括被动NOx吸收剂(PNA)装置和基于模型的控制器,该基于模型的控制器控制由PNA装置储存的NOx的量。控制所储存的NOx的量包括使用PNA装置的预测模型来计算PNA装置的预测NOx储存水平,并且响应于PNA装置所预测的NOx储存水平大于预定的冷启动阈值,通过改变内燃机的操作来升高排气温度。(According to one or more embodiments described herein, an exhaust system for treating exhaust gas from an internal combustion engine in a motor vehicle includes a Passive NOx Absorber (PNA) apparatus and a model-based controller that controls an amount of NOx stored by the PNA apparatus. Controlling the amount of stored NOx includes calculating a predicted NOx storage level of the PNA device using a predictive model of the PNA device, and increasing an exhaust gas temperature by changing operation of the internal combustion engine in response to the predicted NOx storage level of the PNA device being greater than a predetermined cold start threshold.)

被动氮氧化物储存催化剂管理

引言

本公开涉及用于内燃机的排气系统,并且更具体地涉及减少排气中的氮氧化物(“NOx”)。

从贫燃内燃机(诸如像柴油发动机的内燃机)排出的废气是非均相混合物,其包含气态排放物,诸如例如一氧化碳(“CO”)、未燃烧的碳氢化合物(“HC”)和包括NO和NO2的氮氧化物(“NOx”),以及构成颗粒物质(“PM”)的凝聚相材料(液体和固体))。通常设置在催化剂载体或基底上的催化剂组合物作为后处理系统的一部分提供在发动机排气系统中,以将这些排气成分中的某些或全部转换为非调节的排气组分。由于未来严格的排放法规,诸如USTier 3和欧洲EU 7排放法规,相当的关注已集中在减少尤其来自发动机冷启动的贫燃内燃机(诸如柴油发动机)排气中的氮氧化物(NOx)上。

发明内容

根据本文描述的一个或多个实施例,一种用于处理来自机动车辆中的内燃机的排气的排气系统包括被动NOx吸收剂(PNA)装置和基于模型的控制器,该基于模型的控制器控制由PNA装置储存的NOx的量。控制所储存的NOx的量包括使用PNA装置的预测模型来计算PNA装置的预测NOx储存水平,并且响应于PNA装置所预测的NOx储存水平大于预定的冷启动阈值,通过改变内燃机的操作来升高排气温度。

在一个或多个示例中,基于排气中的NOx浓度、排气流速和排气温度来计算预测的NOx储存水平。此外,改变内燃机的操作包括改变由燃料喷射量、燃料喷射正时、涡轮增压器进气和排气再循环速率组成的参数群组中的内燃机的至少一个参数。

在一个或多个示例中,升高的温度使得PNA装置释放储存的NOx,且排气系统进一步包括NOx还原装置,其将释放的NOx转化成氮气(N2)和/或水(H2O)。

控制所储存的NOx量进一步包括基于NOx还原装置的预测模型计算NOx还原装置的预测转化容量,并且响应于NOx还原装置的转化容量大于预定阈值,通过改变内燃机的操作升高排气的温度。

在一个或多个示例中,排气系统进一步包括贫燃NOx捕集器(LNT)装置,其位于PNA装置下游和NOx还原装置上游。

在一个或多个示例中,NOx还原装置包括选择性催化还原装置。

根据一个或多个实施例,车辆系统包括内燃机,被动NOx吸收剂(PNA)装置和基于模型的控制器,该基于模型的控制器控制由PNA装置储存的NOx的量。控制所储存的NOx的量包括使用PNA装置的预测模型来计算PNA装置的预测NOx储存水平,并且响应于PNA装置所预测的NOx储存水平大于预定的冷启动阈值,通过改变内燃机的操作来升高排气温度。

在一个或多个示例中,基于排气中的NOx浓度、排气流速和排气温度来计算预测的NOx储存水平。此外,改变内燃机的操作包括改变由燃料喷射量、燃料喷射正时、涡轮增压器进气和排气再循环速率组成的参数群组中的内燃机的至少一个参数。

在一个或多个示例中,升高的温度使得PNA装置释放储存的NOx,且排气系统进一步包括NOx还原装置,其将释放的NOx转化成氮气(N2)和/或水(H2O)。

控制所储存的NOx量进一步包括基于NOx还原装置的预测模型计算NOx还原装置的预测转化容量,并且响应于NOx还原装置的转化容量大于预定阈值,通过改变内燃机的操作升高排气的温度。

在一个或多个示例中,排气系统进一步包括贫燃NOx捕集器(LNT)装置,其位于PNA装置下游和NOx还原装置上游。

在一个或多个示例中,NOx还原装置包括选择性催化还原装置。

根据一个或多个实施例,一种用于控制由被动NOx吸收剂(PNA)装置储存的NOx量的计算机实现的方法包括通过PNA装置吸收从内燃机释放的排气中的NOx。该方法进一步包括通过控制器使用PNA装置的预测模型计算PNA装置所预测的NOx储存水平。该方法进一步包括响应于PNA装置所预测的NOx储存水平大于预定冷启动阈值,通过由控制器改变内燃机的操作来升高排气温度。

在一个或多个示例中,基于排气中的NOx浓度、排气流速和排气温度来计算预测的NOx储存水平。此外,改变内燃机的操作包括改变由燃料喷射量、燃料喷射正时、涡轮增压器进气和排气再循环速率组成的参数群组中的内燃机的至少一个参数。

在一个或多个示例中,升高的温度使得PNA装置释放储存的NOx,且排气系统进一步包括NOx还原装置,其将释放的NOx转化成氮气(N2)和/或水(H2O)。

控制所储存的NOx量进一步包括基于NOx还原装置的预测模型计算NOx还原装置的预测转化容量,并且响应于NOx还原装置的转化容量大于预定阈值,通过改变内燃机的操作升高排气的温度。

在一个或多个示例中,排气系统进一步包括贫燃NOx捕集器(LNT)装置,其位于PNA装置下游和NOx还原装置上游。

在一个或多个示例中,NOx还原装置包括选择性催化还原装置。

通过以下结合附图的详细描述,本发明的以上特征和优点以及其它特征和优点是显而易见的。

附图说明

其他特征、优点和细节仅作为示例出现在以下详细描述中,详细描述参考附图,其中:

图1是发动机和配置成处理发动机所产生的排气流的相关联排气系统的概括图示;以及

图2描绘了根据一个或多个实施例的用于管理NOx储存催化剂以控制排气系统的NOx排放物的示例方法的流程图。

具体实施方式

以下描述本质上仅仅是示例性的,并不旨在限制本公开、其应用或使用。应当理解,在所有附图中,相应的参考标记表示相同或相应的部分和特征。如本文中所用,术语模块是指处理电路,其可以包括专用集成电路(ASIC)、电子电路、执行一个或多个软件或固件程序的处理器(共享,专用或组)和存储器模块、组合逻辑电路,和/或提供所述功能的其他合适的组件。

对贫燃发动机(诸如柴油发动机)所产生的废气的处理包括各种催化装置,其具有设置在基底上的一种或多种催化剂,以用于降低废气中所调节成分的水平。例如,柴油机排气处理系统可以包括氧化催化剂,其也称为柴油机氧化催化剂(“DOC”);以及被动NOx吸收剂催化剂(“PNA”),诸如柴油机冷起动催化剂(“dCSC”),其催化储存来自发动机冷起动的NOx。PNA催化剂还可以将HC和CO氧化成CO2和水。另外,选择性催化还原(“SCR”)催化剂或贫燃NOx捕集器(LNT)催化剂可根据还原剂将NOx还原为氮气(N2)和/或水(H2O)。柴油机颗粒过滤器(“DPF”)可用于去除颗粒。在一些情况下,SCR与DPF组合成单一单元,通常称为“SCRF”。

另外,贫燃NOx捕集器(LNT)[也称为NOx储存催化剂(NSC)]也有助于减少排气中的NOx。在正常操作期间,贫燃发动机产生具有“贫燃”成分的废气排放。LNT能够储存或捕集存在于“贫燃”废气排放中的氮氧化物(NOx)。LNT通过NOx与LNT的NOx储存组件之间的化学反应以形成无机硝酸盐来储存或捕集存在于废气排放物中的NOx。通过LNT能够储存的NOx的量受到存在的NOx储存组件的量的限制。最后,释放来自LNT的NOx储存组件的所储存的NOx;理想地是当下游SCR装置已经达到有效操作温度时。从LNT释放储存的NOx通常通过在富燃条件下操作贫燃发动机以产生具有“富燃”组成的废气排放来实现。通常,当空燃比小于预定比时,例如14.7∶1时,产生富燃料状态。该预定比率被认为是空气燃料混合物的完美混合或理论空气燃料比。在这些条件下,NOx储存组件的无机硝酸盐分解以重整NOx。在富排气条件下从LNT释放储存的NOx的步骤被称为净化或再生LNT。LNT的技术挑战在于它们倾向于在低温下表现出较差的NOx储存效率。

在一个或多个示例中,PNA用于控制来自发动机冷启动的排出的NOx排放物。PNA涉及催化增强的低温NOx储存;一旦下游SCR或SCRF转换器达到有效还原NOx所需的操作温度,则储存的NOx随后热释放。例如,PNA能够一般通过化学吸附在低排气温度(从室温到-200℃)下储存或吸附NOx,且在较高温度下释放NOx。典型的柴油机排气管理系统依赖于温度和NOx浓度感测两者来优化给定排气处理装置的性能。这样的系统通常测量PNA(或dCSC)上游和下游的温度,以及测量PNA(或dCSC)上游和SCR(或SCRF)下游的排气流中的NOx浓度。

PNA催化剂的技术挑战在于PNA催化剂只能在排气温度达到释放阈值时热释放储存的NOx。这会导致PNA催化剂在驱动循环结束时基本上充满,即具有低于特定阈值的NOx储存容量,因此不能在下一次冷启动事件期间进一步储存NOx。本文所述的技术解决方案通过积极管理PNA催化剂的NOx储存量来解决这样的技术挑战。

图1和2是根据本文描述的技术解决方案的排气系统的概括表示。在每幅图中,左手侧表示排气处理装置的入口端,右手侧表示排气处理装置的出口端。

图1示出了根据一个或多个实施例的车辆系统100。车辆系统100包括内燃机5和排气系统15。排气系统15包括NOx吸收剂催化剂装置10、HC喷射器20、NOx还原装置30、还原剂喷射器50和排放物控制装置40。内燃机5可以是柴油发动机或任何其它类型的发动机。NOx吸收剂催化剂装置10可以是PNA。NOx还原装置30可以是LNT或任何其它这样的设备。HC喷射器20在排气16通过NOx吸收剂催化剂装置10之后将碳氢化合物引入排气16中。排放物控制装置40可以是选择性催化还原(SCR)装置或任何其它这样的设备。还原剂喷射器50是喷射还原剂(诸如尿素,NH3等)的还原剂喷射器。应当注意,在一个或多个示例中,排气系统15可以包括更少或附加的组件。例如,在一个或多个示例中,排气系统包括PNA 10+SCR 40+DPF、PNA 10+SCRF40和PNA 10+DPF+SCR 40,以及其他这样的组合。

通过内燃机5产生的排气16与NOx吸收剂催化剂装置10接触。NOx吸收剂催化剂装置10之后的排气16与NOx还原装置30接触。喷射器20可以在排气16通过NOx吸收剂催化剂装置10之后将碳氢化合物引入排气16中。来自NOx还原装置30的排气16与排放物控制装置40接触。还原剂喷射器50在排气16通过NOx还原装置30之后将含氮还原剂引入排气16中。

车辆系统100还包括控制系统60。控制系统60包括控制器62和一个或多个传感器64。控制器62可以是电子控制单元(ECU)或任何其它类型的处理电路,其包括用于执行一个或多个计算机程序指令的一个或多个处理器、存储器等。一个或多个传感器64包括温度传感器、流速传感器、压力传感器、NOx传感器,或测量排气16和/或车辆系统100中的其他组件的一个或多个参数的任何其他类型的传感器。应注意,描绘传感器64的方框是示例性的,且传感器64可位于车辆系统100中的各种位置处,诸如位于装置的入口处、装置的出口处,装置内部等位置。

控制器62监测来自一个或多个传感器64的测量值。基于这些测量值,控制器62将控制指令发送到车辆系统100的一个或多个组件,诸如HC喷射器20、还原剂喷射器50、内燃机5等。例如,控制器62利用车辆通信网络(诸如控制器局域网络(CAN))以有线或无线方式与车辆系统100的一个或多个组件耦合。控制器62向内燃机5发送控制指令以引起发动机5的操作变化,进而改变内燃机5、排气系统15和/或排气16的温度。例如,控制器62调节燃料喷射正时、喷射的空气-燃料混合物的量、怠速、排气再循环(EGR)速率、涡轮增压器进气口,以及其它这样的发动机5的操作参数。

控制器62使用NOx吸收剂催化剂装置10的预定NOx储存模型和排放物控制装置40的预定化学模型调节发动机5的操作以改变排气系统15的操作温度。例如,等式(1)-(5)提供了在为SCR装置的情形下,由排放物控制装置40还原NOx的示例性化学反应。

6NO+4NH3→5N2+6H2O (1)

4NO+4NH3+O2→4N2+6H2O (2)

6NO2+8NH3→7N2+12H2O (3)

2NO2+4NH3+O2→3N2+6H2O (4)

NO+NO2+2NH3→2N2+3H2O (5)

应当理解,等式(1)-(5)是示例性的,并不意味着将排放物控制装置40限定为特定的NOx还原机构,并不排除其它装置的操作。排放物控制装置40可构造成执行上述NOx还原反应的任意一种、上述NOx还原反应的组合,以及其他NOx还原反应。

通过监测一个或多个传感器测量值并使用排放物控制装置40的模型,控制器62可以预测通过排放物控制装置40(例如通过将NOx转化成H2O或其他组分)而减少的NOx的量。控制器62可以基于预测模型预测排放物控制装置40的NOx转化容量。NOx转化可取决于操作参数,诸如排气16的流速、排气16的温度、还原剂喷射器50的还原剂喷射速率、存储在排放物控制装置40中NH3的量,以及排气16中NOx的量。控制器可以使用传感器64确定一个或多个操作参数。

另外,控制器62基于存储在NOx吸收剂催化剂装置10中NOx的量来确定排气16中NOx的量。NOx吸收剂催化剂装置10中的NOx量基于NOx吸收剂催化剂装置10的预定模型。在一个或多个示例中,预定模型用于使用操作参数来预测存储在NOx吸收剂催化剂装置10中的NOx的量,该等操作参数包括排气流速、排气温度、输入到NOx吸收催化剂装置10的NOx,以及NOx吸收剂催化剂装置10的最大存储容量。

图2描绘了根据一个或多个实施例用于管理NOx吸收剂催化剂装置10(PNA)以控制排气系统15的NOx排放物的示范性方法200的流程图。方法200包括在210处,控制器62读取来自传感器64的传感器测量值。该方法还包括在220处,使用预测模型和传感器测量值来计算NOx吸收剂催化剂装置10的预测的NOx存储水平。NOx吸收剂催化剂装置10的储存水平表示所吸收的NOx的量。

在230处,将存储水平与冷启动阈值进行比较。冷启动阈值是可以校准的预定值。冷启动阈值是期望的NOx存储量,其允许来自排气16的另外的NOx在冷启动温度下被NOx吸收剂催化剂装置10吸收。如本文所述,所存储的NOx随后在排气16的较高温度下被释放,该较高温度点燃或激活排放物还原装置40(例如SCR)以还原所释放的NOx。如果NOx吸收剂催化剂装置10的预测储存水平小于(或等于)冷启动阈值,则在210处,控制器62原样继续内燃机5的操作而无需任何调节,并继续监测传感器测量值。

如果NOx吸收剂催化剂装置10的预测存储水平大于(或等于)冷启动阈值,则方法200包括在240处基于预测的排气16中的NOx量来评估排放物控制装置40的NOx转化容量。可以基于NOx吸收剂催化剂装置10的预测存储水平和传感器测量值来预测排气16中的NOx量。使用排放物控制装置40的预测模型和由传感器64所测量/预测的参数来确定所预测的排放物控制装置40的NOx转化容量。控制器62利用排气中NOx的预测量和冷启动温度下的一个或多个参数,根据预测模型确定排放物控制装置40的预测的NOx释放水平。

随着NOx吸收剂催化剂装置10中的储存水平增加,到达排放物控制装置40的NOx的量增加。因为尤其是在冷启动(较低)温度下,排放物控制装置40不能还原所有的NOx,因此控制器检查排放物控制装置40的预测NOx释放水平是否低于预定的NOx释放阈值。NOx释放阈值表示遵照NOx的释放阈值(诸如基于当地法规、标准等)排放物控制装置40能够排放的NOx的量。

在一个或多个示例中,释放阈值和预测NOx释放值之间的差为排放物控制装置40的转换容量。可替代地或另外地,排放物控制装置40的转化容量是释放阈值和预测的NOx释放值之间差的函数。转化容量表示排放物控制装置40能够额外转化的同时仍能保持排气系统15依从NOx释放阈值的NOx的量。

方法200还包括在250处将排放物控制装置40预测的NOx转化容量与预定阈值进行比较。阈值是能够校准的预定值。如果没有超过与排放物控制装置40的转换容量相关联的预定阈值,则在210处,控制器62可以原样继续内燃机5的操作,而无需任何调节。方法200包括在250处继续监测在这种情形下排气系统15的传感器测量值和依从性,并且在210处重复该方法。

可替代地,如果预测的NOx转化容量大于(或等于)阈值转化容量,则该方法包括在260处,确定会引起NOx吸收剂催化剂装置10释放另外的NOx以满足排放物控制装置40的转化容量的排气温度。控制器62基于排放物还原装置40的预测模型并且通过将排放物控制装置40的转换容量用作用于反向计算排气温度的输入值来确定排气温度。可替代地或另外地,控制器42基于所计算的转化容量使用查找表来确定温度,该查找表提供转化容量值和对应的排气温度值。

方法200包括在270处,调节内燃机5的操作以将排气16的温度升高到所确定的温度。调节发动机操作可以包括改变燃料喷射速率、空气-燃料混合物、怠速以及其他这样的内燃机5的操作参数。这样操作的改变导致内燃机5的燃烧温度升高,进而导致排气16的温度升高。随着燃烧温度升高,NOx吸收剂催化剂装置10释放储存的NOx,其被排放物控制装置40转化和还原。

因此,本文所述的技术解决方案便于以可重复的方式管理被动NOx吸收剂催化剂装置10。本文描述的技术解决方案监测NOx吸收剂催化剂装置10的NOx储存水平,并且当排放物控制装置40具有转化所释放的NOx的容量时,通过主动升高排气温度来维持可用的储存容量。因此,本文所述的技术解决方案通过使排气温度升高来确保NOx吸收剂催化剂装置10具有可用于吸收在下一次发动机冷起动期间可能释放的任何NOx的存储容量。

这里描述的技术解决方案有助于改进诸如车辆中使用的内燃机所用的排放物控制系统。例如,技术解决方案提供了一种控制策略,该控制策略优化由排放物控制装置40和NOx吸收剂催化剂装置10组成的排气处理系统的整体性能,以将排气管中的NOx排放物保持在预定范围内,并且通过改变发动机操作以保持NOx吸收剂催化剂装置10的储存水平和/或储存容量水平。因此,这里描述的技术解决方案优化了排气系统15的性能。

虽然已经参考示例性实施例描述了以上公开,但是本领域技术人员将理解的是,在不脱离其范围的情况下,可以进行各种改变并且可以用等同物代替其元件。此外,在不脱离本发明的实质范围的情况下,可以进行许多修改以使特定情况或材料适应本公开的教导。因此,本公开不限于所公开的特定实施例,而是将包括落入其范围内的所有实施例。

11页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:三元催化器及车辆

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!