具有中间电路电容器级联以及dc侧共模和差模滤波器的逆变器

文档序号:1676968 发布日期:2019-12-31 浏览:33次 >En<

阅读说明:本技术 具有中间电路电容器级联以及dc侧共模和差模滤波器的逆变器 (Inverter with intermediate circuit capacitor cascade and DC-side common-mode and differential-mode filters ) 是由 海因茨·林登伯格 于 2018-05-15 设计创作,主要内容包括:本发明涉及一种具有中间电路电容器的逆变器(1),中间电路电容器的连接端连接到用于供电的电源线(3、4)和包括多个半桥(13)的开关装置(10),其中中间电路电容器具有预先设定的中间电路电容(C),其大小使得由开关装置(10)中的开关过程在电源线(3、4)中形成的纹波电压在预先设定的工作条件下减少到预先设定的最大纹波电压。为了减少差模干扰,本发明提出了提供并联连接的多个中间电路电容器(11、12),其中所述多个中间电路电容器(11、12)的电容(C1、C2)之和对应于中间电路电容(C)。(The invention relates to an inverter (1) having an intermediate circuit capacitor, the terminals of which are connected to supply lines (3, 4) for supplying power and to a switching device (10) comprising a plurality of half-bridges (13), wherein the intermediate circuit capacitor has a predetermined intermediate circuit capacitance (C) which is dimensioned such that a ripple voltage formed in the supply lines (3, 4) by a switching process in the switching device (10) is reduced to a predetermined maximum ripple voltage under predetermined operating conditions. In order to reduce differential mode interference, the invention proposes to provide a plurality of intermediate circuit capacitors (11, 12) connected in parallel, wherein the sum of the capacitances (C1, C2) of the plurality of intermediate circuit capacitors (11, 12) corresponds to the intermediate circuit capacitance (C).)

具有中间电路电容器级联以及DC侧共模和差模滤波器的逆 变器

技术领域

本发明涉及一种根据权利要求1的前序的逆变器。

这种逆变器通常是已知的,并且例如用于向电动或部分电动车辆中的三相电机供电。

背景技术

为了将直流电转换为交流电,逆变器具有多个半桥电路或半桥,这些半桥电路或半桥由控制器通过脉宽调制信号驱动以产生预先设定的AC电压。所谓的中间电路电容器连接到用于提供直流电的电源线,并用于向半桥供电。

由于半桥的时钟驱动,在电源线中会产生引起纹波电压的共模(common-mode,CM)干扰。为了避免由纹波电压形成的电磁干扰场,有必要将纹波电压减小至最大预先设定值。为此,以合适的方式选择中间电路电容器的中间电路电容。相应选择的中间电路电容大于向半桥供电所需的电容。

此外,在逆变器的工作过程中会产生差模(differential-mode,DM)干扰。DM干扰是半桥中使用的功率晶体管以及中间电路电容器的寄生电感中电流发生变化的结果。DM干扰随着半桥提供给电机的相电流大小而增加。迄今为止,在高要求相电流的情况下,有时无法充分地滤除DM干扰。

发明内容

本发明的目标是消除现有技术的缺点。特别地,目的在于提出一种改进的抑制DM干扰的逆变器。根据本发明的另一目标,目的在于能够以尽可能简单和有成本效益的方式来制造逆变器。

该目的通过权利要求1的特征实现。本发明的有利的改进方案可以在从属权利要求的特征中找到。

根据本发明提供的内容,为了减少差模或DM干扰,提出了提供并联连接的多个中间电路电容器,其中所述多个中间电路电容器的电容之和对应于预先设定的中间电路电容。换言之,根据现有技术提供的中间电路电容器由串联连接的多个中间电路电容器代替。在该过程中保留了原先为各个中间电路电容器预先设定的预先设定中间电路电容。通过提供多个中间电路电容器,纹波电压基本上保持不变。

根据本发明将中间电路电容器分离成多个中间电路电容器有利地大大减少了DM干扰,特别是当高相电流产生时。可以以简单且有成本效益的方式将中间电路电容器分离成多个中间电路电容器。因此,所述分离是可能的,特别是因为用于驱动开关装置的必需电容通常低于用于将纹波电压减小至预先设定最大值的另一必需电容。分离的中间电路电容器的电容之和对于调节预先设定的最大纹波电压至关重要。

预先设定的最大纹波电压以及中间电路电容的大小选择是基于客户要求的。在预先设定的最大纹波电压的情况下,中间电路电容的大小可以被确定,例如通过使用代表所讨论的逆变器电路的模型进行仿真。这种模型尤其考虑到调制类型、电机的余弦phi、半桥中功率晶体管的时钟频率以及中间电路电容。在仿真中,设置边界条件以使得产生最大纹波电压。然后设置中间电路电容,使得在这种边界条件下产生预先设定的最大纹波电压。对于用于汽车领域的逆变器,典型的中间电路电容在400至1000μF的范围内。

多个第二中间电路电容器也可以连接在第一中间电路电容器的上游。同样在这种情况下,第一和第二电容之和对应于预先设定的中间电路电容。通过提供多个第二中间电路电容器,可以更有效地减少DM干扰。

有利地,第一电容占预先设定的中间电路电容的95%至70%,第二电容占预先设定的中间电路电容的5%至30%。

根据本发明的另一有利的改进方案,与开关装置连接的第一中间电路电容器的第一电容大于在输入端处连接在第一中间电路电容器上游的第二中间电路电容器的第二电容。第一中间电路电容器的第一电容被选择为如此高以使得可以一直向开关装置提供足够的电流。第二电容是预先设定的中间电路电容和第一电容之差的结果。归因于提出的提供第一和第二中间电路电容器,形成了减少DM干扰的LC元件。在这种情况下,电感L由第一和第二中间电路电容器之间的连接线形成。

根据本发明的另一有利的改进方案,特别是用于减小CM干扰的滤波电路连接到用于向中间电路电容器供电的电源线,其中该滤波电路包括一个或多个滤波级,这些滤波级一个接一个连接。X电容器有利地连接在滤波级中的电源线之间。此外,每个电源线都通过Y电容器接地。地是由逆变器的外壳或外壳的壳体电位形成的。

根据另一种改进方案,滤波级包括围绕电源线的环形磁芯电感器,并且还分别包括围绕每个电源线接合的滤波电感器。环形磁芯电感器和滤波电感器可以组合在设计适当的组件中。

附图说明

下面将参照附图更详细地说明本发明的示例性实施例,其中:

图1示出逆变器的示意性第一电路布置,

图2示出第二逆变器的示意性电路布置,以及

图3示出与频率相关的干扰电平。

具体实施方式

在图1和图2中,附图标记1表示提供例如200至400V电压的电池。电池1向大体上由附图标记2表示的逆变器供电。第一电源线由附图标记3表示,第二电源线由附图标记4表示。滤波电路大体上由附图标记5表示,并且包括连接到电源线3、4的两个滤波级。每个滤波级具有X电容器6,其连接在电源线3、4之间,还具有Y电容器7,其连接在电源线3、4中的每个和外壳的地G之间。围绕电源线3、4的环形磁芯电感器由附图标记8示意性地表示。附图标记9表示围绕电源线3、4中的每个的滤波电感器。这里,滤波电路5具有两个相同的滤波级。所述滤波电路特别用于减少CM干扰。

逆变器元件10连接在滤波电路5的下游。逆变器元件10在输入端处包括第一中间电路电容器11以及与该第一中间电路电容器并联连接的第二中间电路电容器12。半桥13连接在第一中间电路电容器11的下游,每个半桥13均包括两个功率晶体管14。所述功率晶体管可以是所谓的IGBT(绝缘栅双极型晶体管)。提供由附图标记15表示的控制器,用于驱动半桥13。由控制器15生成脉宽调制信号。

由半桥13生成的相位u、v和w大致形成用于驱动三相电机M的正弦交流电。如果三相电机M作为发电机工作,则所述发电机生成的三相电流通过半桥13转换成直流电并存储在电池1中。

在该电路布置中,将第一中间电路电容器11的第一电容C1和第二中间电路电容器12的第二电容C2相加,以形成预先设定的中间电路电容C。

在第一中间电路电容器11的上游并联连接的第二中间电路电容器12形成LC元件。在这种情况下,电感L由设置在第一中间电路电容器11和第二中间电路电容器12之间的连接线16形成。LC元件减少了在逆变器元件10的工作期间发生的DM干扰。

尽管根据本发明将中间电路电容器分离成第一中间电路电容器11和第二中间电路电容器12,但是总体上保持了预先设定的中间电路电容C。

中间电路电容C由第一电容C1和第二电容C2之和给出。在这种情况下,第一电容C1可以占预先设定的中间电路电容C的95%至70%,第二电容C2可以占预先设定的中间电路电容C的5%至30%。

图2示出另一逆变器的示意性电路布置,其与图1所示的电路布置的不同之处仅在于,两个第二中间电路电容器12并联连接在第一中间电路电容器11的上游。由两个第二中间电路电容器12形成的两个LC元件甚至可以更有效地减少DM干扰。这里,第一中间电路电容器的第一电容C1和第二中间电路电容器12的第二电容C2之和也再次对应于预先设定的中间电路电容C,该预先设定的中间电路电容C是由预先设定的边界或工作条件下的预先设定的最大纹波电压得到的。

在本示例性实施例中,第一电容C1可以在300至600μF的范围内。每个第二电容C2可以在30至150μF的范围内。

图3示出了作为频率的函数的电源线3、4上的干扰电平。图3中的曲线A示出了仅提供一个中间电路电容器的常规逆变器中的干扰电平。单个中间电路电容器的中间电路电容C为500μF。曲线B示出了对于如下逆变器的干扰电平:其中第二中间电路电容器12并联连接在第一中间电路电容器11的上游。第一中间电路电容器11的第一电容C1为400μF,第二中间电路电容器12的第二电容C2为100μF。在这种情况下(跟曲线A的情况一样),总体上产生了500μF的中间电路电容。同样,从图3可以清楚地看出,曲线B表示的电压电平明显低于曲线A表示的干扰电平。

附图标记列表:

1 电池

2 逆变器

3 第一电源线

4 第二电源线

5 滤波电路

6 X电容器

7 Y电容器

8 环形磁芯电感器

9 滤波电感器

10 逆变器元件

11 第一中间电路电容器

12 第二中间电路电容器

13 半桥

14 功率晶体管

15 控制器

16 连接线

C 中间电路电容

C1 第一电容

C2 第二电容

G 地

M 三相电机

u,v,w 相位

9页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:带旋转角度检测器的电动机、电动机的旋转角度检测器及探测旋转角度检测器的故障的方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!