集成光子封装件、光子封装件及其形成方法

文档序号:1688410 发布日期:2020-01-03 浏览:13次 >En<

阅读说明:本技术 集成光子封装件、光子封装件及其形成方法 (Integrated photonic package, and methods of forming the same ) 是由 余振华 苏安治 陈威宇 于 2019-06-20 设计创作,主要内容包括:用于形成光子封装件的方法包括:将电子管芯和光子管芯放置在载体上,其中,所述电子管芯的背面和所述光子管芯的正面面对所述载体。方法还包括将所述电子管芯和所述光子管芯封装在密封剂中;平坦化所述密封剂直到暴露所述电子管芯的电连接器和所述光子管芯的导电部件;在所述密封剂上方形成再分布线。所述再分布线将所述电子管芯电连接至所述光子管芯。光耦合器附接至所述光子管芯。附接至所述光耦合器的光纤配置为光学耦合至所述光子管芯。本发明的实施例还提供了集成光子封装件和光子封装件。(A method for forming a photonic package includes: placing an electronic die and a photonic die on a carrier, wherein a back side of the electronic die and a front side of the photonic die face the carrier. The method further includes encapsulating the electronic die and the photonic die in an encapsulant; planarizing the encapsulant until electrical connectors of the electronic die and conductive parts of the photonics die are exposed; a redistribution line is formed over the encapsulant. The redistribution line electrically connects the electronic die to the photonic die. An optical coupler is attached to the photonics die. An optical fiber attached to the optical coupler is configured to optically couple to the photonics die. Embodiments of the invention also provide integrated photonic packages and photonic packages.)

集成光子封装件、光子封装件及其形成方法

技术领域

本发明的实施例一般地涉及半导体技术领域,更具体地,涉及集成光子封装件、光子封装件及其形成方法。

背景技术

电子信令和处理是信号传输和处理的主流技术。近年来,尤其由于用于信号传输的有关光纤应用的使用,光学信令和处理已经用于日益增加的更多应用中。

发明内容

根据本发明的一方面,提供了一种用于形成光子封装件的方法,包括:将电子管芯和光子管芯放置在载体上;将所述电子管芯和所述光子管芯封装在密封剂中;平坦化所述密封剂直到暴露所述电子管芯和所述光子管芯;在所述密封剂、所述电子管芯和所述光子管芯上方形成多个再分布线,其中,所述再分布线至少电连接所述电子管芯;以及将光耦合器附接至所述光子管芯,其中,附接至所述光耦合器的光纤配置为光学耦合至所述光子管芯。

根据本发明的另一方面,提供了一种用于形成光子封装件的方法,包括:将电子管芯放置在载体上方;将光子管芯放置在所述载体上,其中,所述光子管芯的正面面对所述载体,其中,所述光子管芯包括:波导;以及牺牲材料从所述光子管芯的正面和边缘延伸到所述光子管芯中,其中,所述牺牲材料与所述光子管芯的光学部件接触;将所述电子管芯和所述光子管芯封装在密封剂中;平坦化所述密封剂,直到暴露所述电子管芯的电连接器和所述光子管芯的通孔这两者,其中,所述通孔穿透所述光子管芯的半导体衬底;在所述密封剂上方形成多个第一再分布线,其中,所述多个第一再分布线中的一个将所述电连接器电连接至所述通孔;去除所述牺牲材料;以及将边缘耦合器附接至所述光子管芯,其中,附接至所述边缘耦合器的光纤配置为光学耦合至所述波导。

根据本发明的又一方面,提供了一种光子封装件器件,包括:电子管芯,包括金属柱;光子管芯包括:半导体衬底;以及通孔,穿透所述半导体衬底;密封剂,在其中封装所述电子管芯和所述光子管芯;多个再分布线,位于所述密封剂下面,其中,所述多个再分布线中的一个将所述电子管芯的金属柱电连接至所述光子管芯的通孔;光耦合器,附接至所述光子管芯;以及光纤,附接至所述光耦合器,其中,所述光纤配置为光学耦合至所述光子管芯。

附图说明

当结合附图进行阅读时,根据以下详细的描述来更好地理解本发明的各个方面。注意,根据工业的标准实践,各个部件没有按比例绘制。实际上,为了讨论的清楚,可以任意地增加或减小各个部件的尺寸。

图1至图7示出了根据一些实施例的在包括顶部耦合器的光子封装件的形成过程中的中间阶段的截面图。

图8示出了根据一些实施例的光子封装件的顶视图。

图9A、9B、和9C示出了根据一些实施例的光子管芯的各个示图。

图10至图14示出了根据一些实施例的在包括边缘耦合器的光子封装件的形成过程中的中间阶段的截面图。

图15、16、17A、17B、17C、17D以及18示出了根据一些实施例的一些光子封装件的截面图。

图19至图22示出了根据一些实施例在接合之前及在接合之后的一些光子管芯的截面图。

图23示出了根据一些实施例的用于形成光子封装件的流程图。

具体实施方式

本发明提供了许多不同的用于实施所提供主题的不同特征的实施例或实例。以下描述部件和配置的具体实例以简化本发明。当然,这些仅仅是实例而不用于限制。例如,在以下的描述中,在第二部件上方或之上形成第一部件可以包括第一部件和第二部件被形成为直接接触的实施例,并且也可以包括可以在第一部件和第二部件之间形成附件部件使得第一部件和第二部分没有直接接触的实施例。此外,本发明可以在各个实例中重复参考标号和/或字母。这些重复是为了简化和清楚,其本身并不表示所讨论的各个实施例和/或结构之间的关系。

此外,为了易于描述,可以使用空间相对术语(诸如“在…下方”、“在…之下”、“下部”、“上方”、“上部”等)以描述图中所示的一个元件或部件与另一个(一些)元件或部件的关系。除图中所示的定向之外,空间相对术语意欲包括使用或操作中设备的不同定向。装置可以以其他方式定向(旋转90度或处于其他定向),本文所使用的空间相对描述符可因此进行类似的解释。

根据一些实施例提供了包括光子管芯和电子管芯的封装件及其形成方法。根据一些实施例示出了用于形成封装件的中间阶段。讨论了一些实施例的一些变型例。在各个附图以及所示的实施例中,相同的参考标号用于指定相同的元件。

图1至图7示出了根据本发明的一些实施例在封装件的形成过程中的中间阶段的截面图。在图23所示的流程图200中也示意性地示出了图1至图7中所示的工艺。

图1示出了载体20和形成在载体20上方的释放膜22。载体20可以是玻璃载体、陶瓷载体等。载体20可以具有圆形顶视图。释放膜22可以由聚合物基材料(诸如光热转换(LTHC)材料)形成,可以从在随后步骤中形成的上覆结构中一起去除该释放膜和载体20。根据本发明的一些实施例,释放膜22由环氧基热释放材料形成。释放膜22可以以可流动的方式进行分配并被固化。根据本发明的可选实施例,释放膜22是层压膜并且层压在载体20上。释放膜22的顶面是平坦的并且具有高度共平面性。根据本发明的一些实施例,管芯附接膜24形状在释放膜22上方。管芯附接膜24是粘合膜,其可以涂覆或层压在释放膜22上。

此外参考图1,电子管芯26、器件管芯28、和光子管芯30附接至管芯附接膜24。在图23所示的工艺流程中将相应工艺示出为工艺202。根据本发明的一些实施例,电子管芯26用作中央处理器,其包括用于控制光子管芯30中的多个器件的操作的控制电路。另外,电子管芯26可以包括用于处理电信号的电路,其中,从光子管芯30中的光学信号转换为该电信号。例如,电子管芯26可以包括用于控制光子管芯30中的光学调节器的驱动电路和用于放大从光子管芯30中的光电检测器所接收到的电信号的增益放大器。电子管芯26还可以与光子管芯30交换电信号。

电子管芯26可以包括半导体衬底130,其可以是硅衬底或者由诸如锗、SiGe、III-V族化合物半导体材料等的其他半导体材料所形成的衬底。衬底130的背面(其也是电子管芯26的背面)与管芯附接膜24接触。电路(诸如晶体管的集成电路器件)132可以包括位于衬底130的正面处的至少部分。互连结构134形成在衬底130的正面上,并且可以包括介电层(例如,低k介电层,未示出)和金属线与通孔(未示出)等。电连接器138通过互连结构134电连接至集成电路器件132。电连接器138可以是嵌入介电层140中的金属柱。介电层140可以由聚苯并恶唑(PBO)、聚酰亚胺、苯并环丁烯(BCB)等形成。还示出了钝化层136,其中,金属柱138可以延伸到钝化层136中。钝化层136可以由氮化硅、氧化硅或者它们的多层形成。

根据本发明的一些实施例,附加管芯28放置在管芯附接膜24上。根据一些可选实施例,除了电子管芯和光子管芯30之外,没有附加管芯28放置在管芯附接膜24上。管芯28可以是设计为用于相应封装件的功能的专用集成电路(ASIC)管芯。管芯28可以包括半导体衬底230,其可以是硅衬底或者由诸如锗、SiGe、III-V族化合物半导体材料的其他半导体材料所形成的衬底。衬底230的背面(其也是管芯28的背面)可以与管芯附接膜24接触。集成电路器件232(其可以包括晶体管)可以包括位于衬底230的正面处的至少部分。互连结构234形成在衬底230的正面上,并且可以包括多个介电层(例如,低k介电层,未示出)、多个金属线和通孔(未示出)等。电连接器238通过互连结构234电连接至集成电路器件232。电连接器238可以是嵌入介电层240中的金属柱。介电层240可以由PBO、聚酰亚胺、BCB等形成。金属柱238可以延伸到钝化层236中。钝化层236可以由氮化硅、氧化硅或它们的多层形成。

光子管芯30也附接至管芯附接膜24。半导体衬底330的背面被暴露,其中,半导体衬底330的背面也是光子管芯30的背面。根据本发明的一些实施例,光子管芯30的正面与管芯附接膜24接触。光子管芯30具有以下功能:接收光学信号、将光学信号传输至光子管芯30内部、将光学信号传输至光子管芯30之外和/或与电子管芯26和器件管芯28进行电通信。因此,光子管芯30还负责光学信号和/或电信号的输入/输出(IO)。

根据一些实施例,在图19中示意性地示出了光子管芯30的细节。如图19所示,光子管芯30可以包括衬底330。衬底330可以是半导体衬底,其可以是硅衬底、硅锗衬底或者由其他半导体材料所形成的衬底。根据本发明的一些实施例,光子管芯30包括延伸到衬底330中的多个通孔(也被称为衬底通孔或硅通孔)32。通孔32由导电材料形成,其也可以是诸如钨、铜、钛等的金属材料。多个隔离层342环绕通孔32并且将通孔32与衬底330电隔离。

根据本发明的一些实施例,集成电路器件332形成在衬底330的顶面处。集成电路器件332可以包括有源器件,诸如晶体管和/或二极管(其可以包括光电二极管)。集成电路器件332还可以包括无源器件,诸如电容器、电阻器等。

在衬底330上方存在介电层347(其还可以表示多个介电层)。根据本发明的一些实施例,介电层347由氧化硅、氮化硅等形成。硅层348形成在介电层347上方并与该介电层接触。硅层348可以被图案化,并且用于形成内部传输光学信号的波导。因此,硅层348在下文中也被称为波导348。光栅耦合器344形成在硅层348上并且光栅耦合器344的顶部具有光栅,使得光栅耦合器344具有接收光或传输光的功能。一些光栅耦合器344用于从上方的光源或光学信号源(诸如图7所示的光纤)接收光,并且将光传输至波导348。尽管波导348示出为横跨光子管芯30,但是波导348实际上可以形成在选择的区域中。调制器(多个调制器)346也被形成,并且用于调制光学信号。应该理解,图19中的结构是示意性的,并且光子管芯30可以包括根据本发明的一些实施例还预期的各种其他器件和电路,从而可以用于处理和传输光学信号和电信号。

图19还示出了形成在光栅耦合器344上方的互连结构334。互连结构334电互连一些器件332和通孔32。互连结构334包括多个介电层354以及其中的金属线和通孔(统称为356)。介电层350由诸如氧化硅的透光材料形成。多个介电层354也被称为金属间介电(IMD)层,并且并且可以由氧化硅、氮氧化硅、氮化硅等或k值小于约3.0的低k介电材料形成。低k介电材料可以包括Black Diamond(应用材料公司的注册商标)、含碳低k介电材料、氢基硅倍半氧烷(HSQ)、硅氧烷(MSQ)等。蚀刻停止层355可以形成为分离相邻的IMD层,并且由相对于介电层具有高蚀刻选择性的材料形成。蚀刻停止层可以由碳化硅、碳氮化硅等形成。金属线和通孔356可以使用镶嵌工艺形成,并且例如,可以包括扩散阻挡层上的铜。扩散阻挡层可以由钛、氮化钛、钽、氮化钽等形成。根据一些实施例,通孔32可以延伸至互连结构334的底部导电部件的金属线356。

互连结构334可以进一步包括形成在互连结构334上方的钝化层360和362。钝化层360和362可以由透明的非低k介电材料形成。例如,钝化层360和62可以分别包括氧化硅层和氮化硅层。

接下来,参考图2,封装材料(密封剂)34封装(有时候称为模制)在管芯26、28、和30上。在图23所示的工艺流程中将相应工艺示出为工艺204。密封剂34填充介于相邻管芯26、28、和30之间的间隙。密封剂34可以包括基底材料,其可以是聚合物、环氧胶和/或树脂;和混合在基底材料中的填充剂颗粒。填充剂颗粒可以由硅石、氧化铝等制成,并且可以具有球形。填充剂颗粒还可以具有不同的尺寸/直径。密封剂34的顶面高于管芯26、28、和30的顶端。

在随后的步骤中,如图3所示,实施诸如化学机械抛光工艺(CMP)或机械研磨工艺的平坦化工艺,以降低密封剂34和管芯26、28、和30的顶面。在图23所示的工艺流程中将相应工艺示出为工艺206。作为平坦化的结果,金属柱138和238以及通孔32被暴露。由于平坦化,通孔32的顶端与金属柱138和238的顶面基本齐平(共平面)并且与密封剂34的顶面基本上共平面。

图4至图6示出了多个再分布线(RDL)和相应的多个介电层的形成。在图23所示的工艺流程中将相应工艺示出为工艺208。步骤208的简要讨论如下。参见图4,形成介电层36。根据本发明的一些实施例,介电层36由诸如PBO、聚酰亚胺等的聚合物形成。根据本发明的可选实施例,介电层36由诸如氮化硅、氧化硅等的无机材料形成。

接下来,进一步参考图4,多个RDL 38形成为延伸至介电层36中并且连接至金属柱138和238以及通孔32。多个RDL 38还可以互连金属柱138和238以及通孔32。多个RDL 38包括位于介电层36上方的多条金属迹线(多条金属线)和延伸至介电层36中的通孔。多个RDL38的通孔可以与通孔32以及金属柱138和238接触。根据本发明的一些实施例,多个RDL 38的形成包括图案化介电层36以形成开口,通过该开口暴露金属柱138/238以及通孔32。多个RDL 38的形成进一步包括形成毯式(也称为均厚)金属晶种层;在毯式金属晶种层上方形成并图案化镀敷掩模;执行镀敷工艺以形成多个RDL 38;去除镀敷掩模;以及蚀刻毯式金属晶种层的未被多个RDL 38覆盖的部分。多个RDL 38可以由包括铝、铜、钨和/或它们的合金的金属或金属合金形成。

参考图5,根据本发明的一些实施例,介电层40形成在图4所示的结构上方,随后形成延伸到介电层40中的多个RDL 42以与多个RDL 38接触。可以使用选自与用于形成介电层36的相同组中的候选材料来形成介电层40。多个RDL 42也可以由包括铝、铜、钨和/或它们的合金的金属或金属合金形成,并且用于形成多个RDL 42的方法可以类似于形成多个RDL38的方法。应该理解,尽管在所示的实施例中,形成了两层多个RDL(38和42),但是多个RDL可以具有任何数量的层,例如,一层或多于两层。组合的多个RDL可以电互连通孔32以及器件管芯26、28、和30。接下来,介电层44形成在多个RDL 42上。介电层44的材料可以选自与用于形成介电层36的相同组的候选材料。

图6示出了根据一些实施例的电连接器46的形成。在图23所示的工艺流程中将相应工艺示出为工艺210。电连接器46的形成可以包括:在介电层44中形成开口,以暴露多个RDL 42;将焊球放置在UBM的暴露部分上;然后使焊球回流。凸块下金属(UBM,未示出)可以形成在焊料区域和多个RDL 42之间。根据本发明的可选实施例,电连接器46的形成包括实施镀敷步骤以在多个RDL 42的暴露的金属焊盘上方形成焊料区域;然后使焊料区域回流。电连接器46还可以包括:也可以通过镀敷形成的金属柱、或者金属柱与焊料覆盖件的组合。在通篇描述中,位于管芯附接膜24上面的这些结构统称为重建晶圆50。重建晶圆50包括多个管芯组,其中,每组都包括根据一些实施例的器件管芯26、28、和30。

接下来,重建晶圆50与载体20分离。在图23所示的工艺流程中将相应工艺示出为工艺212。为了分离重建晶圆50,重建晶圆50首先放置在附接至框架(未示出)的胶带(未示出)上。根据本发明的一些实施例,电连接器46与胶带接触。接下来,光投射到释放膜22上,并且光穿透透明载体20。根据本发明的一些示例性实施例,光是扫描穿过整个释放膜22的激光。在曝光期间,释放膜22响应于通过曝光所引入的热量而分解,从而允许载体20与下面的结构分离。然后,例如通过等离子清洁步骤去除释放膜22的残留物。因此,重建晶圆50与载体20分离(从载体20卸下)。

然后在清洁工艺或背面研磨工艺中去除管芯附接膜24。

根据本发明的一些实施例,然后沿着划线48切割重建晶圆50,使得形成彼此相等的多个封装件50’。在图23中所示的工艺流程中将相应的工艺示出为工艺214。在随后的工艺中,如图7所示,封装件50’接合至封装组件52,该封装组件可以是中介层、封装衬底、印刷电路板等。在图23中所示的工艺流程中将相应工艺示出为工艺216。

图7还示出了(光)耦合器54和光源56附接至封装件50’,使得形成封装件400。在图23中所示的工艺流程中将相应工艺示出为工艺218。耦合器54用于光子管芯30的光学信号的输入/输出。耦合器54用于将光纤58固定在光子管芯30上。图20示出了与在图7中一样的光子管芯30、耦合器54和光源56的一些部分的简化图。例如,可以通过粘合膜60将耦合器54和光源56附接至光子管芯30。光纤58可以对准并且光学耦合至相应的光栅耦合器344。光纤58中传送的光61投射在光栅耦合器344上和/或通过光纤58接收从光栅耦合器344发出的光。

另外,光源56附接至光子管芯30并且与相应的光栅耦合器344对准,其中,光源可以是照射器。光源56配置为将光62(其可以是激光)投射至光栅耦合器344,其中,光62投射在一个或多个下面的光栅耦合器344上。

根据本发明的一些实施例,光学粘合剂60是清洁的(并且因此时透明的)粘合剂,用于将耦合器54和光源56固定在光子管芯30上。光学粘合剂60可以分配在耦合器54和光源56上方并环绕耦合器54和光源56。图8示出了封装件400的顶视图,其中,该封装件包括管芯28、电子管芯26和光子管芯30。

根据本发明的一些实施例,如图7所示,光子管芯30的背面面向与电子管芯26和器件管芯28的顶面相同的方向。光子管芯30通过通孔32以及多个RDL 38和42电连接至电子管芯26和器件管芯28。此外,在光子管芯30的正面(面对上面)可能不存在任何电连接器,并且在与介电层36接触的光子管芯30中可能不存在任何导电部件。根据本发明的一些实施例,光子管芯30的所有电连接都制造为向下通过通孔32。

图9A、图9B、和图9C示出了根据一些实施例的光子管芯30的截面图和顶视图。参考图9A,开口64形成在光子管芯30中,并且牺牲材料63填充开口64。牺牲材料63可以从光子管芯30的顶面和边缘延伸到光子管芯30中。开口64可以包括块状部分64A和连接至块状部分64A的端部的一个或多个沟槽64B。例如,图9C示出了当具有矩形顶视图形状时的块状部分64A并且多个沟槽64B连接至块状部分64A(为了详细说明,还参考图21)。相应地,牺牲材料63还具有块状部分63A和填充沟槽64B的部分63B。牺牲材料63可以由聚合物或可以在随后的工艺中容易去除而不会损害光子管芯30的其他部分的任何其他材料形成。例如,牺牲材料63可以由萘烷基材料、乙酸正丁酯基材料等形成。根据一些实施例,当光子管芯30仍位于相应的晶圆中并且在晶圆被锯切分离为多个光子管芯30之前,在晶圆层级处形成开口64。开口64的形成可以包括激光烧蚀、蚀刻、机械切割等。牺牲材料63填充在多个光子管芯30的多个开口64中并且可以实施平坦化工艺以使牺牲材料63的顶面与多个光子管芯30的顶面齐平。

图9B示出了沟槽64B的截面图,其中,由如图9A和图9C所示的包含线9B-9B的平面来获得该截面图。在截面图中,沟槽64B可以是V形或U形(顶部宽度大于底部宽度)。沟槽64B的尺寸和形成被设计为使得光纤58的至少部分或整体可以放置在该沟槽中。

图21示意性地示出光子管芯30的一些细节。沟槽64B具有面对波导(多个波导)66的端部,该波导由硅、氮氧化硅等形成。诸如调制器346的光学部件可以连接至波导66的端部。

图10至图14示出了根据本发明的一些实施例的在包括边缘耦合器的封装件的形成过程中的中间阶段的截面图。除了使用边缘耦合器之外,这些实施例类似于图1至图7所示的实施例。除非另有明确说明,否则在这些实施例中,部件的材料和形成方法与在图1至图7中所示的多个实施例中的相同部件基本相同,其中,通过相同参考标号来表示这些相同部件。因此,可以在图1至图7所示的实施例的讨论中发现关于在图10至图14(并且还在图15至图18中)所示的部件的形成工艺和方法的具体细节。

参考图10,提供载体20,并且释放膜22和管芯附接膜24形成/附接在载体20上。然后,电子管芯26、器件管芯28、和光子管芯30放置在管芯附接膜24上。电子管芯26和器件管芯28的背面以及光子管芯30的顶面面对管芯附接膜24,并可以与管芯附接膜24接触。密封剂34然后封装在管芯26、28、和30上。

图11示出了用于去除封装材料的多余部分和管芯26、28、和30的一些部分的平坦化工艺,使得金属柱138/238以及通孔32被暴露。接下来,如图12所示,形成多个RDL 38和42和多个介电层36、40、44、以及电连接器46。已经参考图4至图6所示的实施例讨论了工艺细节,并且本文中不再重复。因此,形成重建晶圆50。

在随后工艺中,重建晶圆50与载体20分离,并且例如在化学清洁工艺或机械研磨工艺中,去除管芯附接膜24的剩余部分。接下来,例如,使用可以溶解牺牲材料63的溶剂或者可以蚀刻牺牲材料63而没有损害光子管芯30的(湿)化学蚀刻剂来去除牺牲材料63。例如,当牺牲材料63由萘烷基材料形成时,单萜烃可以用于通过蚀刻或溶解来去除牺牲材料63。在图13示出了生成的结构,其中,开口64被暴露。

接下来,重建晶圆50被切割为将其中的封装件50’彼此分离。一些划线48可以穿过光子管芯30的边缘,使得从光子管芯30的侧面暴露开口64。

图14示出了边缘耦合器68附接至光子管芯30以形成封装件400。边缘耦合器68可以包括用于将光纤58箝位和固定在其间的插芯和插芯盖。每条光纤58可以放置在如图9B所示的一个沟槽64B(至少部分)中。如图14所示,光纤58的端部面对波导66,使得光可以从光纤58传输至波导66中,和/或光纤58接收从波导66传输的光。图14还示出了光源56附接至光子管芯30。图22示出了光子管芯30和边缘耦合器68的简化示图。此外,粘合剂70可以用于将边缘耦合器68固定至光子管芯30。

图15至图18示出了根据本发明的一些实施例的封装件400。图15示出了使用顶部耦合器54的一些实施例。根据本发明的一些实施例,光子管芯30不包括半导体衬底330中的通孔。通过通孔72(可选地被称为金属桩)将光子管芯30的电路电连接至电子管芯26和管芯28,其中,该通孔穿透密封剂34。通孔72的形成可以包括:在放置管芯26、28、和30(图1或图10)之前,将金属晶种层沉积在管芯附接膜24上方;在金属晶种层上形成诸如光刻胶的图案化镀敷掩模;在图案化光刻胶的多个开口中镀敷多个通孔/金属桩72;去除镀敷掩模;以及蚀刻金属晶种层的先前被镀敷掩模沿覆盖的多部分。

如图15所示,光子管芯30包括位于表面处的电连接器366。电连接器366可以是由铜、镍、钛、它们的合金和/或它们的多层所形成的金属柱或金属焊盘。介电层368也形成在光子管芯30的表面处,并且填充相邻电连接器366之间的间隙。介电层368可以由诸如PBO、聚酰亚胺等的聚合物形成。

如图15所示,介电层74形成在管芯26、28、和30上方,多个RDL 76形成为延伸进入介电层74中。多个RDL 76通过通孔72以及多个RDL 38和42将光子管芯30互连至电子管芯26和管芯28。介电层78形成为覆盖多个RDL 76和介电层74。多个RDL 76的材料和形成工艺可以类似于多个RDL 38和42的材料和形成工艺。多个介电层74和78的材料和形成工艺可以类似于多个介电层36、40、和/或44的材料和形成工艺。光源56和耦合器54附接至介电层78的顶部。

图16示出了根据本发明的一些实施例的封装件400。除了图16中的光子管芯30不包括穿透衬底330的通孔并且通过多个RDL 76和通孔72电连接至光子管芯30之外,图16中的封装件400类似于图14中的封装件400。使用边缘耦合器68。可以在图15中所示的实施例中找到通孔72和多个RDL 76的细节。

图17A示出了根据一些实施例的封装件400。除了电子管芯26位于光子管芯30上方并接合至该光子管芯而不是被封装在密封剂34中之外,这些实施例类似于图15中的实施例。根据本发明的一些实施例,除了用于处理与光学信号相关的电信号的功能之外,电子管芯26还用作将光子管芯30耦合至器件管芯28的桥。因此,电信号路径80示意性地示出为使用电子管芯26作为桥电连接在光子管芯30和管芯28之间。另外,尽管一些电路径80’物理穿过电子管芯26的内部,但是可以与电子管芯26中的所有电路(诸如晶体管、二极管、电阻器、电容器、电感器等)电断开。这些电路径80’单独用于互连管芯28和30,并且不用于将管芯28和30连接至管芯26。除了互连管芯28和30之外,其他电路径80也可以电连接至电子管芯26中的内部电路(诸如晶体管、二极管、电阻器、电容器、电感器等)。电子管芯26可以通过焊料区域82接合至光子管芯30和通孔72。底部填充物84可以分配在电子管芯26和光子管芯30之间。光源56和顶部耦合器54附接至光子管芯30。

图17B示出了根据一些实施例的封装件400,除了存在两个电子管芯和26和两个器件管芯28,其中,两个器件管芯28位于光子管芯30的相对侧上之外,该实施例类似于图17A中所示的实施例。

图17C示出了根据一些实施例的封装件400。封装件400包括封装在密封剂34中的电子管芯26和通孔72。光子管芯30位于通孔72上方并且接合至通孔72并且通过通孔72以及多个RDL 38和42电耦合至电子管芯26。图17C示出了边缘耦合器68附接至光子管芯30的侧面。

图17D示出了根据一些实施例的封装件400。封装件400包括封装在密封剂34中的电子管芯26和通孔72。光子管芯30位于通孔72上方并附接至通孔72,并且通过通孔72以及多个RDL 38和42电耦合至电子管芯26。图17D示出了耦合器54和光源56附接至光子管芯30顶部。

图18示出了根据本发明的一些实施例的封装件400。除了使用边缘耦合器68而不是顶部耦合器之外,这些实施例类似于图17A所示的实施例。因此没有讨论具体细节,并且可以在参考图17A和图14的讨论中找到这些具体细节。

在以上所述的实施例中,根据本发明的一些实施例讨论了一些工艺和部件。还可以包括其他工艺和部件。例如,可以包括测试结果以有助于3D封装或3DIC器件的验证测试。例如,测试结构可以包括形成在再分布层或衬底上的测试焊盘,从而允许使用探针和/或探针卡等测试3D封装或3DIC器件。可以在中间结构以及最终结构上执行验证测试。附加地,可以结合含有已知良好管芯的中间验证的测试方法使用本文中所公开的结构和方法,以增加产量和降低成本。

光学信令和处理通常与电信令和处理结构结合,以提供经过充分训练的应用。例如,光纤可以用于长距离信号传输,而电信号可以用于短距离信号传输以及处理和控制。因此,集成光学部件和电部件的器件形成为用于光学信号和电信号之间的转换,以及光学信号和电信号的处理。因此封装件可以包括:包括光学器件的光学(光子)管芯(被称为P管芯)和包括电子器件的电子管芯(被称为E管芯)。

在传统的封装件中,E管芯位于P管芯上方并接合至P管芯。P管芯可以包括还附接至P管芯的光源和光纤连接器。因此,P管芯的尺寸足够大以容纳E管芯,光源和光纤连接器。P管芯通过引线接合进一步接合至下面的封装件衬底。然而,P管芯内的部件不需要这种大区域。此外,通常使用绝缘体上硅(SOI)衬底来形成P管芯,该SOI衬底比块状硅衬底昂贵的多。因此,用于制造传统封装件的成本高。

本发明的实施例具有一些有利特征。通过将光子管芯封装在密封剂中并且使用通孔(或者位于光子管芯中或者位于密封剂中)连接至光子管芯,光子管芯没有通过电子管芯和诸如ASIC管芯的其他管芯重叠的部分。因此,可以减小光子管芯的尺寸。由于使用SOI晶圆形成光子管芯,所以减小多个光子管芯的尺寸导致制造成本的显著降低。

根据本发明的一些实施例,方法包括:将电子管芯和光子管芯放置在载体上,其中,所述电子管芯的背面和所述光子管芯的正面面对所述载体;将所述电子管芯和所述光子管芯封装在密封剂中;平坦化所述密封剂直到暴露所述电子管芯和所述光子管芯;在所述密封剂上方形成再分布线,其中,所述再分布线将所述电子管芯电连接至所述光子管芯;以及将光耦合器附接至所述光子管芯,其中,附接至所述光耦合器的光纤配置为光学耦合至所述光子管芯。在实施例中,方法进一步包括:去除所述光子管芯的牺牲材料,以暴露从所述光子管芯的正面和边缘延伸至所述光子管芯中的开口,其中,所述光子管芯的波导暴露于所述开口,并且所述光耦合器包括具有延伸至所述开口中的部分的边缘耦合器,并且所述光纤具有延伸至所述光子管芯的沟槽中的部分,其中,所述沟槽是所述开口的部分。在一些实施例中,方法进一步包括:在将所述光子管芯放置在所述载体上之前:在所述光子管芯中形成所述开口;以及在所述开口中填充所述牺牲材料。在一些实施例中,所述光耦合器和所述再分布线位于所述光子管芯的衬底的相对侧上。在一些实施例中,所述光子管芯包括半导体衬底,所述光子器件的导电部件包括延伸到所述半导体衬底中的通孔并且通过平坦化暴露所述电子管芯的电连接器和所述通孔这两者。在实施例中,所述光子管芯的导电部件包括金属焊盘,并且所述方法进一步包括:形成金属桩,其中,所述密封剂封装并接触其中的所述金属桩;以及形成附加再分布线,其中,所述光子管芯的金属焊盘通过所述附加再分布线、所述金属桩、和所述再分布线电连接至所述电子管芯的电连接器。在实施例中,方法还包括将光源附接在所述光子管芯上,其中,所述光源配置为发出进入所述光子管芯中的光。

在实施例中,方法进一步包括:去除所述光子管芯的牺牲材料,以暴露从所述光子管芯的正面和边缘延伸至所述光子管芯中的开口,其中,所述光子管芯的波导暴露于所述开口,并且所述光耦合器包括具有延伸至所述开口中的部分的边缘耦合器,并且所述光纤具有延伸至所述光子管芯的沟槽中的部分,其中,所述沟槽是所述开口的部分。

在实施例中,方法进一步包括:在将所述光子管芯放置在所述载体上之前:在所述光子管芯中形成所述开口;以及在所述开口中填充所述牺牲材料。

在实施例中,所述光耦合器和所述再分布线位于所述光子管芯的半导体衬底的相对侧上。

在实施例中,所述光子管芯包括半导体衬底和延伸到所述半导体衬底中的通孔,并且通过平坦化暴露所述电子管芯的电连接器和所述通孔这两者。

在实施例中,所述光子管芯包括金属焊盘,并且所述方法进一步包括:形成金属桩,其中,所述密封剂封装并接触其中的所述金属桩;以及形成附加再分布线,其中,所述光子管芯的金属焊盘通过所述附加再分布线、所述金属桩、和所述再分布线电连接至所述电子管芯的电连接器。

在实施例中,当放置所述电子管芯和所述光子管芯时,所述电子管芯的背面和所述光子管芯的正面面对所述载体。

根据本发明的一些实施例,方法包括:将电子管芯放置在载体上方;将光子管芯放置在所述载体上,其中,所述光子管芯的正面面对所述载体,其中,所述光子管芯包括:波导;以及牺牲材料从所述光子管芯的正面和边缘延伸到所述光子管芯中,其中,所述牺牲材料与所述光子管芯的光学部件接触;将所述电子管芯和所述光子管芯封装在密封剂中;平坦化所述密封剂,直到暴露所述电子管芯的电连接器和所述光子管芯的通孔这两者,其中,所述通孔穿透所述光子管芯的半导体衬底;在所述密封剂上方形成多个第一再分布线,其中,所述多个第一再分布线中的一个将所述电连接器电连接至所述通孔;去除所述牺牲材料;以及将边缘耦合器附接至所述光子管芯,其中,附接至所述边缘耦合器的光纤配置为光学耦合至所述波导。在实施例中,方法进一步包括:使所述密封剂、所述电子管芯和所述光子管芯与所述载体分离,其中,在分离之后去除所述牺牲材料。在实施例中,方法进一步包括:对所述密封剂实施切割,其中,通过所述切割暴露所述牺牲材料的边缘。在实施例中,所述电子管芯的背面面对所述载体。在实施例中,所述牺牲材料包括聚合物,并且去除所述牺牲材料包括使用溶剂溶解所述牺牲材料。在实施例中,所述牺牲材料包括聚合物,并且去除所述牺牲材料包括湿蚀刻。在实施例中,方法进一步包括:将专用集成电路(ASIC)管芯放置在所述载体上方,其中,所述ASIC管芯的背面面对所述载体,并且在平坦化中,暴露所述ASIC管芯的附加电连接器。在实施例中,在附接所述边缘耦合器时,没有到达所述光子管芯的正面的电连接器,并且所述正面和所述背面是所述光子器件的相对表面。

在实施例中,方法进一步包括:使所述密封剂、所述电子管芯和所述光子管芯与所述载体分离,其中,在分离之后去除所述牺牲材料。

在实施例中,方法进一步包括:对所述密封剂实施切割,其中,通过所述切割暴露所述牺牲材料的边缘。

在实施例中,所述电子管芯的背面面对所述载体。

在实施例中,所述牺牲材料包括聚合物,并且去除所述牺牲材料包括使用溶剂溶解所述牺牲材料。

在实施例中,所述牺牲材料包括聚合物,并且去除所述牺牲材料包括湿蚀刻。

在实施例中,方法进一步包括:将专用集成电路(ASIC)管芯放置在所述载体上方,其中,所述专用集成电路管芯的背面面对所述载体,并且在平坦化步骤中,暴露所述专用集成电路管芯的附加电连接器。

在实施例中,在附接所述边缘耦合器时,没有到达所述光子管芯的正面的电连接器。

根据本发明的一些实施例,器件包括:电子管芯,包括金属柱;光子管芯包括:半导体衬底;以及通孔,穿透所述半导体衬底;密封剂,在其中封装所述电子管芯和所述光子管芯;多个再分布线,位于所述密封剂下面,其中,所述多个再分布线中的一个将所述电子管芯的金属柱电连接至所述光子管芯的通孔;光耦合器,附接至所述光子管芯;以及光纤,附接至所述光耦合器,其中,所述光纤配置为光学耦合至所述光子管芯。在实施例中,所述光耦合器附接至所述光子管芯的正面,并且所述光子管芯在所述正面处没有电连接器。在实施例中,所述光子管芯和所述电子管芯面对相反方向。在实施例中,所述光耦合器是包括延伸到所述光子管芯中的部分的边缘耦合器。在实施例中,所述光耦合器直接位于所述光子管芯上方。

在实施例中,所述光耦合器附接至所述光子管芯的正面,并且所述光子管芯在所述正面处没有电连接器。

在实施例中,所述光子管芯和所述电子管芯面对相反方向。

在实施例中,所述光耦合器是包括延伸到所述光子管芯中的部分的边缘耦合器。

在实施例中,所述光耦合器直接位于所述光子管芯上方。

上面论述了多个实施例的特征使得本领域技术人员能够更好地理解本发明的各个方面。本领域技术人员应该理解,他们可以容易地以本公开为基础设计或修改用于执行与本文所述实施例相同的目的和/或实现相同优点的其他工艺和结构。本领域技术人员还应该意识到,这些等效结构不背离本发明的精神和范围,并且可以在不背离本发明的精神和范围的情况下做出各种变化、替换和改变。

40页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:降低芯片塑性变形的扇出型封装结构及封装方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类