一种基于苯并二噻唑的非富勒烯有机太阳能电池

文档序号:1695955 发布日期:2019-12-10 浏览:43次 >En<

阅读说明:本技术 一种基于苯并二噻唑的非富勒烯有机太阳能电池 (Non-fullerene organic solar cell based on benzodithiazole ) 是由 阳仁强 文树光 于 2018-06-04 设计创作,主要内容包括:本发明涉及一类基于苯并二噻唑(BBT)的宽带隙导电聚合物,与窄带隙的非富勒烯电子受体材料构成活性层,用于制备高效非富勒烯有机太阳能电池。利用该聚合物材料与受体材料之间光谱吸收互补的优点可以获得较高的短路电流密度;利用苯并二噻唑结构可修饰性的特点,调节最佳的给体与受体材料的能级匹配,可以降低太阳能电池器件的能量损失。通过合理调节该聚合物的分子结构,并结合不同能级的电子受体材料,可以使有机太阳能电池获得优异的光电转换效率,具有良好的商业化应用前景。(The invention relates to a wide-bandgap conducting polymer based on benzothiazole (BBT), which forms an active layer with a non-fullerene electron acceptor material with a narrow bandgap, and is used for preparing a high-efficiency non-fullerene organic solar cell. The advantage of the complementary spectral absorption between the polymer material and the receptor material is utilized to obtain higher short-circuit current density; by utilizing the characteristic of modifiability of a benzodithiazole structure, the energy level matching of the best donor and acceptor materials is adjusted, and the energy loss of the solar cell device can be reduced. By reasonably adjusting the molecular structure of the polymer and combining with electron acceptor materials with different energy levels, the organic solar cell can obtain excellent photoelectric conversion efficiency and has good commercial application prospect.)

一种基于苯并二噻唑的非富勒烯有机太阳能电池

技术领域

本发明属于有机光电技术领域,具体涉及一种含苯并二噻唑的聚合物材料及其在非富勒烯有机太阳能电池技术领域的应用。

背景技术

近年来,由于有机太阳能电池具有柔性、质轻及便于大面积制备等特点,在可穿戴电子设备等方面具有潜在应用价值,相关领域研究发展十分迅速,文献报道的能量转换效率已经达到13%以上,尤其是非富勒烯受体材料的出现,使得光电效率得到大幅提高。

有机太阳能电池是一种基于体异质节结构的三明治型电子器件,中间的活性层是实现光电转化的主要组成部分,它是由n-型电子传输材料和p-型空穴传输材料共混构成,传统的n-型材料为富勒烯类材料,由于富勒烯材料在可见光范围内的吸收较差、结构不易调节、价格昂贵,大大限制了其光伏性能的提升,因而基于给受体型的非富勒烯材料在这些方面具有明显的优势,表现出优于富勒烯材料的光电转换性能,具有很高的研究价值和应用前景。

由于窄带隙非富勒烯受体材料的出现,人们对给体材料的设计有了新的要求,通过设计宽带隙的给体材料,二者的吸收光谱可以获得有效互补,从而获得全光谱吸收的太阳能电池,光谱利用效率得到有效提高。目前主要的给体材料为基于苯并三氮唑和苯并二噻吩二酮的宽带隙聚合物,二者均表现出优异的光伏性能,然而这两种分子结构均难以进一步化学修饰改造,不利于其光电性能的调节。苯并二噻唑结构具有两个可修饰位点,便于进行结构优化,基于该结构的聚合物是一种宽带隙材料,具有较高的载流子迁移率和稳定性(Advanced Materials, 2010, 22, 4993;Macromolecules, 2011, 44, 7207.),不过由于其吸收范围窄,在富勒烯太阳能电池中光电转换效率不高(Macromolecules, 2009, 42,8615; Journal of Polymer Science Part A: Polymer Chemistry, 2016, 54, 316.),而将其用于非富勒烯太阳能电池中,可以与非富勒烯受体形成光谱互补,提高光谱的利用效率,获得高效率的有机太阳能电池。

发明内容

本发明提供了一种以苯并二噻唑基聚合物作为电子给体材料、以共轭小分子作为电子受体材料作为活性层/吸光层的高效有机太阳能电池,苯并二噻唑结构具有进一步官能化和结构修饰的潜力,为优化器件性能提供了基础。在本发明中,给体与受体之间可以形成合理的光谱互补与能级匹配,电子/空穴可以获得良好的分离与传输,具有优异的光伏性能。

本发明所提供的基于苯并二噻唑的聚合物给体材料,其结构式为:

其中,R1、R2为氢原子、卤素原子或烷基链,其特征在于所述烷基链为具有1-22个碳原子的直链、支链或者环状烷基链,其中一个或多个碳原子被氧原子、氮原子、硫原子、硅原子、烯基、炔基、羰基、羧基、酯基、羟基、芳基、氰基、硝基、苯基取代,氢原子被卤素原子或上述官能团取代;D为芳香基团;n为聚合物的分子量。

进一步的,n为1~10000的自然数。

更具体的说,单元D为具有5-14个原子的芳环基团,为了帮助理解单元D的含义,下面列举几种常见的单体,本发明包括但不局限于以下几种单体,下面列举结构中的R、R1~R4为氢原子或烷基链,其特征在于所述烷基链为具有1~22个碳原子的直链、支链或者环状烷基链,其中一个或多个碳原子被氧原子、氮原子、硫原子、硅原子、烯基、炔基、羰基、羧基、酯基、羟基、芳基、氰基、硝基取代,氢原子被卤素原子或上述官能团取代。

所述苯并二噻唑聚合物材料由如下方法制备:

通过噻吩-2-甲醛与2,5-二氨基-1,4-苯二硫酚反应得到苯并二噻唑结构,然后通过N-溴代丁二酰亚胺溴化得到聚合单体,最后将该单体与三甲基锡化合物通过钯催化偶联反应得到最终聚合物材料。

本发明还提供了一种光活性层,由所述苯并二噻唑聚合物和n-型电子受体组成,所述苯并二噻唑聚合物与所述电子受体的质量比为1:0.1~10,如1:1;

所述n-型电子受体为窄带隙非富勒烯类化合物,其结构式为:

其中,R1、R2为氢原子、卤素原子或烷基链,其特征在于所述烷基链为具有1-22个碳原子的直链、支链或者环状烷基链,其中一个或多个碳原子被氧原子、氮原子、硫原子、硅原子、烯基、炔基、羰基、羧基、酯基、羟基、芳基、氰基、硝基、苯基取代,氢原子被卤素原子或上述官能团取代。

所述光活性层可采用溶剂甲苯、二甲苯、三甲苯、氯仿、氯苯、二氯苯和三氯苯中至少一种进行混合,所得到的混合物中,所述苯并二噻唑聚合物的浓度可为0.5mg/mL~50mg/mL,优选为4mg/mL~20mg/mL,所述n-型电子受体的浓度可为0.5mg/mL~50mg/mL,优选为3mg/mL~20mg/mL。

所述光活性层经过溶剂退火处理,溶剂可以为氯苯、甲苯、二甲苯、氯仿、二氯乙烷、四氢呋喃等,退火时间1~30 min。

所述有机太阳能电池器件,包括衬底、阳极、阳极修饰层、光活性层、阴极修饰层和阴极。

所述衬底为玻璃;所述阳极为ITO;所述阳极修饰层为PEDOT与PSS的共混膜;所述阴极修饰层为PDINO;所述阴极为Al。

所述苯并二噻唑基聚合物或所述光活性层在下述功能性器件中的应用也属于本发明的保护范围:有机太阳能电池、有机电致发光器件、有机场效应管、有机探测器和光电器件。

本发明与现有技术相比其特点和优点在于:

将苯并二噻唑类聚合物用于非富勒烯有机太阳能电池,该聚合物与小分子受体材料具有良好的光谱互补性,且具有较好的电荷传输性能以及合适的电子能级,能够作为电子给体材料与小分子受体材料匹配,光电转换效率相比富勒烯体系得到大幅提高。

附图说明

图1为聚合物PBB-T与受体化合物ITIC-F的薄膜光谱吸收曲线。

图2为聚合物PBB-T的热失重曲线。

图3为聚合物PBB-T与受体化合物ITIC-F的电化学循环伏安曲线。

图4为聚合物PBB-T光伏器件的J-V曲线。

图5为聚合物PBB-T光伏器件的外量子效率(EQE)曲线。

具体实施方式

为了更好地说明本发明的内容,下面通过具体的实施例来进一步阐明本发明的技术方案,具体包括材料合成和表征,器件制备和性能研究等。

实施例1:聚合物PBB-T的合成。

2,6-二(4-(2-丁基辛基)噻吩-2-)苯并[1,2-d:4,5-d']二噻唑 (1)的合成:

向装有磁子的圆底烧瓶中加入4-(2-丁基辛基)噻吩-2-甲醛(735 mg,2.63 mmol)、2,5-二氨基-1,4-苯二硫酚和N,N-二甲酰亚胺,反应液120oC加热搅拌16h,冷至室温,过滤得到暗黄色沉淀,然后将其柱层析纯化得到产物1(451 mg, 50%)。1H NMR (600 MHz, CDCl3)δ (ppm): 8.42 (s, 2H), 7.48 (d, J = 3.9 Hz, 2H), 7.11 (d, J = 3.90 Hz, 2H),2.59 (d, J = 6.84 Hz, 4H), 1.88-1.84 (m, 2H), 1.43-1.25 (m, 32H), 0.91-0.86(m, 12H)。

2,6-二(5-溴-4-(2-丁基辛基)噻吩-2-)苯并[1,2-d:4,5-d']二噻唑(2)的合成:

将2,6-二(4-(2-丁基辛基)噻吩-2-)苯并[1,2-d:4,5-d']二噻唑(451 mg, 0.65mmol)和N-溴代丁二酰亚胺(266 mg, 1.49 mmol)溶于冰醋酸(10 mL)和氯仿(15 mL)中,室温搅拌4h,溶剂减压除去,剩余物柱层析纯化得到溴化产物2(353 mg, 64%)。1H NMR (600MHz, CDCl3) δ (ppm): 8.38 (s, 2H), 7.30 (s, 2H), 2.54 (d, J = 7.20 Hz, 4H),1.71 (m, 2H), 1.31-1.25 (m, 32H), 0.91-0.87(m, 12H). 13C NMR (150 MHz, CDCl3)δ (ppm):161.40, 151.67, 142.85, 136.29, 134.15, 130.03, 115.35, 114.95,38.54, 34.26, 33.33, 33.02, 31.90, 29.72, 28.76, 26.51, 23.05, 22.70, 14.16,14.14。

聚合物PBB-T的合成:

将单体2(85.0 mg, 0.1 mmol)、单体3(90.4 mg, 0.1 mmol)、Pd2(dba)3(1.8 mg)和三(邻甲苯基)膦(3.6 mg)溶于10 mL甲苯中,反应瓶用氩气置换三次,缓慢升温至115 oC,搅拌24h,冷至室温,将反应液倒入100 mL甲醇中,抽滤,将聚合物在索氏提取器中依次用甲醇、丙酮、二氯甲烷洗掉催化剂和小分子量化合物,最后用氯仿提取,将氯仿提取液浓缩,用甲醇沉淀后抽滤,真空干燥,得到红色固体110 mg,产率86%。GPC: M n = 107 kDa; M w = 270kDa; PDI = 2.52.

实施例2:小分子受体化合物ITIC-F的合成。

向100 mL圆底烧瓶中加入化合物4(161 mg, 0.15 mmol)、5(127 mg, 0.60mmol)、氯仿(45 mL)和吡啶(1 mL),加热回流16h,冷至室温,将反应液倒入100 mL甲醇,过滤,沉淀用硅胶柱层析纯化得到墨绿色固体170 mg,产率73%。1H NMR (600 MHz, CDCl3) δ(ppm): 8.85 (s, 2H), 8.71-8.69 (m, 0.6H), 8.37-8.36 (m, 1.4H), 8.23-8.21 (m,2H), 7.92-7.91 (m, 1.4H), 7.64 (s, 2H), 7.55-7.54 (m, 0.6H), 7.42-7.39 (m,2H), 7.22-7.20 (d, J = 8.16 Hz, 8H), 7.15-7.13 (d, J = 8.16 Hz, 8H), 2.56 (t, J = 7.80 Hz, 8H), 1.62-1.57 (m, 8H), 1.35-1.28 (m, 24H), 0.87-0.84 (m, 12H)。

图1为聚合物PBB-T和化合物ITIC-F薄膜的紫外可见光谱吸收曲线。从图中可以看出,聚合物PBB-T的薄膜吸收光谱有两个明显的吸收峰,应归属于分子内电荷转移峰及其肩缝,说明分子间形成了较强的堆积;根据光谱的起始吸收波长可以计算出PBB-T和ITIC-F的光学带隙分别为2.10 eV和1.55 eV,二者具有良好的光谱互补,有利于增强太阳能电池的吸光能力。

图2为聚合物PBB-T的热失重曲线,从图中可以看出,PBB-T的热分解温度为352oC,说明该化合物具有良好的热稳定性,可以满足器件制备的要求。

图3为聚合物PBB-T和化合物ITIC-F的电化学循环伏安曲线,从中我们可以计算出PBB-T的最高填充轨道(HOMO)/最低空轨道(LUMO)能级分别为-5.40/-3.30eV,ITIC-F的HOMO/LUMO能级为-5.69/-3.93 eV,二者的HOMO和LUMO能级均有一定的能级差,可以满足给受体之间激子分离的条件。

实施例3:有机太阳能电池器件制备和性能表征。

ITO玻璃(氧化铟锡导电玻璃)首先经过ITO清洗剂、超纯水、丙酮、异丙醇等多步超声波清洗,再用氧等离子体处理5min,后在ITO玻璃上旋涂30 nm的聚(3,4-亚乙二氧基噻吩):聚(苯乙烯磺酸)(PEDOT:PSS)并在150℃的空气中处理30min,然后再将聚合物PBB-T与ITIC-F配制成不同比例、PBB-T的浓度为7 mg/ml的溶液,旋涂制备100nm厚的活性层,然后在活性层上旋涂界面材料PDINO,最后在活性层上面蒸镀铝(100nm)作为阴极电极。所制备的有机光伏器件在1个模拟太阳光照射下(100 mW/cm2)进行性能测试。测试所得太阳能电池的性能见图4,图5和表1所示。

图4为聚合物PBB-T与ITIC-F以1:1.2的比例共混制备的有机光伏器件在1个模拟太阳光下测得的J-V曲线。从图中可以看出,溶剂退火(SVA)相比直接旋涂(as cast)可以显著提升器件性能,短路电流密度和填充因子均得到提高,最终能量转换效率由11.32%提高到13.28%,原因可能是溶剂退火改善了薄膜中分子的有序堆积,提高载流子迁移率,从而提高器件的光伏性能。

图5为聚合物PBB-T与ITIC-F以1:1.2的比例共混制备的有机光伏器件在1个模拟太阳光下测得的外量子效率(EQE)曲线,由此看出器件的光电相应范围很宽,另外通过对其光谱积分,计算所得短路电流值与实测值吻合,表明实验准确合理。

表1 聚合物光伏器件光电转换效率

本专利将苯并二噻唑基聚合物用于非富勒烯有机太阳能电池,二者形成了良好的光谱互补,能级较为匹配,通过溶剂退火处理,光电转换效率得到有效提高,光电转换效率达到13.28%,由于苯并二噻唑结构具有潜在的可修饰性,基于该材料的太阳能电池可能具有更好的光电转换效率。

11页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:电致发光器件及其制备方法和应用

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!