一种数字pcr芯片的制备及修饰方法

文档序号:1704075 发布日期:2019-12-13 浏览:18次 >En<

阅读说明:本技术 一种数字pcr芯片的制备及修饰方法 (preparation and modification method of digital PCR chip ) 是由 隋硕 金鑫浩 刘一博 任鲁风 张未来 俞育德 于军 于 2019-08-15 设计创作,主要内容包括:本发明提供了一种数字PCR芯片的制备及修饰方法,选择硅材料作为芯片基层;将芯片基层单一面抛光后,再将高分子材料嵌合在芯片基层的抛光面上,接着去除高分子材料表面的保护膜形成高分子材料面板;将步骤2中高分子材料面板进行烘烤后,在曝光机上通过曝光在表面形成反应微孔的密排图形列阵;将步骤3中得到的密排图形列阵在显影液中浸泡后烘干;将步骤4中烘干后的高分子材料面板划片,完成数字PCR芯片的制备;修饰方法为数字PCR芯片通过等离子体机进行等离子体处理后,接着进行数字PCR反应。解决了现有技术中数字PCR芯片加工工艺复杂、成本昂贵、芯片的通量低以及芯片使用的简易性等问题。(The invention provides a preparation and modification method of a digital PCR chip, which selects a silicon material as a chip base layer; polishing the single surface of the chip base layer, then embedding the high polymer material on the polished surface of the chip base layer, and then removing the protective film on the surface of the high polymer material to form a high polymer material panel; baking the polymer material panel in the step (2), and exposing the surface of the polymer material panel on an exposure machine to form a densely-arranged pattern array of reaction micropores; soaking the close-packed pattern array obtained in the step 3 in a developing solution and then drying; scribing the high polymer material panel dried in the step 4 to finish the preparation of the digital PCR chip; the modification method is that the digital PCR chip is subjected to plasma treatment by a plasma machine and then subjected to digital PCR reaction. The problems of complex processing technology, high cost, low chip flux, simplicity in chip use and the like of the digital PCR chip in the prior art are solved.)

一种数字PCR芯片的制备及修饰方法

技术领域

本发明属于PCR技术领域,具体涉及一种数字PCR芯片的制备及修饰方法。

背景技术

数字PCR(digital polymerase chain reaction,dPCR)一般包括两部分内容,即PCR扩增和荧光信号分析。在PCR扩增阶段,数字PCR先将样品稀释到单分子水平,再平均分配到几十至几万个单元中进行反应。与实时荧光定量PCR(real time quantitative PCR,qPCR)对每个循环进行实时荧光测定的方法不同,数字PCR是在扩增结束后对每个反应单元的荧光信号进行采集,有荧光信号记为1,无荧光信号记为0,有荧光信号的反应单元中至少包含一个拷贝的。理论上,在样品中目标DNA浓度极低的情况下,有荧光信号的反应单元数目等于目标DNA分子的拷贝数。但是,通常每反应单元中可能包含两个或两个以上的目标分子,就需要使用泊松概率分布函数(Poisson distribution)进行计算,根据反应单元总数、有荧光信号的单元数以及样品的稀释系数,就可以得到样本的最初拷贝数(浓度)。

随着微流体技术、纳米制造技术和微电子技术等的发展,微流控芯片技术的使用使数字PCR能够快速并准确地将样品流体分成若干个独立的单元,进行多步平行反应,成本低、体积小和高通量,是理想的数字PCR平台。目前已报道的数字PCR系统主要采用硅、玻璃、PDMS等构成,其中PDMS材料具有优良的生物惰性、较好的透光性,在数字芯片中得到了广泛的应用。但是在数字PCR芯片的应用中具有一定的局限性,主要是由于PDMS具有一定程度的透气性,而PCR的热循环温度较高,高温一般在94-95℃,同时在预变性过程中还需要在高温阶段维持5-10分钟,由于PCR热循环过程的高温已经接近水的沸点100℃,如果密封材料具有一定透气性势必会使水蒸气挥发造成反应液中水溶剂减少,反应液的成分浓度发生变化,当热循环温度降低时,由于反应池高温时水分的挥发形成负压,环境中的气体同样会由于PDMS的透气性进入到反应池中形成气泡,进而影响反应池的密封。同时PDMS的热导率较差(约0.18W/mK),利用其制备的PCR芯片在热循环过程中热传递效率较低,如果在不延长热循环时间的前提下必然会对PCR扩增效率造成影响。

现有技术目前采用全部硅基制作,价格贵、加工周期长、操作复杂、加工工艺繁琐等等缺点,这些缺点的主要原因在于之前专利内容所述所采用的材料为硅基加工芯片,硅基芯片本身价格昂贵,而且由于芯片本身材料的问题加工工艺及成本问题会造成量产及实际使用等方面的困难。现有发明CN105039153B一种硅基阵列微反应池数字PCR芯片及其制备方法。该芯片主要包括上盖和芯片,其中在芯片上有蜂窝状排列的微孔,上盖固定于芯片槽上。具体步骤为选择一单面抛光的硅片,清洗,在硅片抛光面上旋涂一层均匀的光刻胶,通过曝光形成圆形的图形阵列,在圆形的图形阵列掩膜下干法刻蚀硅,形成微孔结构,去胶划片,完成芯片制备。但是该发明在芯片的制备过程中需要对芯片表面和微孔内部进行二次修饰。现有专利CN104745461A公开了一种用于测序的基因芯片及其制备方法,具体步骤为:取单面抛光的基片;以二甲基亚砜水浴,然后以甲醇与水的混合液水浴,以水冲洗,吹片烘干;在芯片抛光面上涂光刻胶,通过曝光在表面形成反应池图形;刻蚀芯片,形成反应池;以二甲基亚砜水浴,以硫酸双氧水混合液浸泡,以水冲洗,完成芯片的制备。

发明内容

本发明为解决现有技术中数字PCR芯片加工工艺复杂、成本昂贵、芯片的通量低以及芯片使用的简易性等问题,提供了一种数字PCR芯片的制备及修饰方法,具体技术方案如下:

一种数字PCR芯片的制备方法,具体步骤如下:

步骤1:选择硅材料作为芯片基层;

步骤2:将芯片基层单一面抛光后,再将高分子材料嵌合在芯片基层的抛光面上,接着去除高分子材料表面的保护膜形成高分子材料面板;

步骤3:将步骤2中高分子材料面板进行烘烤后,在曝光机上通过曝光在表面形成反应微孔的密排图形列阵;

步骤4:将步骤3中得到的密排图形列阵在显影液中浸泡后烘干;

步骤5:将步骤4中烘干后的高分子材料面板划片,完成数字PCR芯片制备。

优选地,所述步骤2中高分子材料的厚度范围为15-25μm。

优选地,所述步骤3中反应微孔为正六边形或正方形。

具体地,所述步骤2中高分子材料为感光厚环氧树脂片,该感光厚环氧树脂片由包含阳离子固化改性环氧树脂的光阻构成。

具体地,所述环氧树脂的光阻中含有无锑的光酸生成剂,并在一个严格控制的无溶剂的过程中制备。

优选地,所述步骤2中嵌合过程是在65℃下使用压膜机进行嵌合。

优选地,所述步骤3中烘烤温度为95℃,烘烤时间为10min。

优选地,所述步骤4中浸泡时间为10min。

具体地,数字PCR芯片的修饰方法为:将步骤5中制得的芯片通过等离子体机进行等离子体处理后,接着进行数字PCR反应。

具体地,数字PCR芯片的另一种修饰方法为:

S1、将步骤5中制得的芯片通过等离子体机进行等离子体处理后得到芯片A,

S2、将步骤S1中的芯片A置于牛血清白蛋白中进行浸泡,然后进行烘干处理后直接使用。

优选地,所述步骤S2中牛血清白蛋白的浓度范围是10mg/mL,所述步骤S2中浸泡时间范围为15-30min。

本发明具有以下有益效果:

1、采用高分子材料嵌合在硅基芯片上,在高分子材料上进行密排孔加工,减少了加工流程、降低了加工成本;本申请中使用的高分子材料本身的性质可以降低数字PCR芯片的加工难易程度及加工成本,在保证加工成功率的前提下能够适用于商业化大规模生产;

2、选取了15-25μm厚的高分子材料作为反应微孔的发生材料,保证了反应微孔的深宽比,从而大幅度提升反应试剂的进孔效率,保证了数字PCR反应发生的效率;

3、通过芯片的修饰处理也能够大幅度提升反应试剂的进孔效率及反应发生的效率。

附图说明

图1为数字PCR芯片尺寸示意图;

图2为数字PCR芯片正六边形图形阵列示意图;

图3为数字PCR芯片正六边形图形阵列右上角尺寸示意图;

图4为数字PCR芯片正六边形图形阵列左下角尺寸示意图;

图5为数字PCR芯片正方形图形阵列示意图;

图6为数字PCR芯片正方形图形阵列右上角尺寸示意图;

图7为数字PCR芯片正方形图形阵列左下角尺寸示意图;

图8为数字PCR芯片制备方法的流程示意图。

具体实施方式

实施例1

一种数字PCR芯片的制备方法,具体步骤如下:

步骤1:选择硅材料作为芯片基层;

步骤2:将芯片基层单一面抛光后,再将高分子材料在65℃下使用压膜机嵌合在芯片基层的抛光面上,接着去除高分子材料表面的保护膜形成高分子材料面板;高分子材料的厚度为25μm;高分子材料为感光厚环氧树脂片,该感光厚环氧树脂片由包含阳离子固化改性环氧树脂的光阻构成;所述环氧树脂的光阻中含有无锑的光酸生成剂,并在一个严格控制的无溶剂的过程中制备;

步骤3:将步骤2中高分子材料面板在95℃进行烘烤10min后,在曝光机上通过曝光在表面形成反应微孔的密排图形列阵;反应微孔为正六边形;

步骤4:将步骤3中得到的密排图形列阵在显影液中浸泡10min后烘干;

步骤5:将步骤4中烘干后的高分子材料面板划片,完成数字PCR芯片制备。

数字PCR芯片的修饰方法为:将步骤5中制得的芯片通过等离子体机进行等离子体处理后,接着进行数字PCR反应。

采用上述方法制得的芯片,如图1所示,所述硬质硅胶层与芯片边缘的距离h1和h2为0.172mm,所述正六边形图形阵列与所述硬质硅胶层上下边缘的距离h3为0.2mm,所述正六边形图形阵列与所述硬质硅胶层右边缘的距离h4为0.5mm,如图3和图4所示,所述上下沟槽宽度a2和a3为0.0205mm,所述左右沟槽宽度a4和a1为0.01565mm。以上尺寸的设置是基于芯片整体尺寸与芯片上反应微孔数量设置,过小的尺寸虽然会增加反应微孔数量,但是小尺寸对于PCR反应效率有抑制,在保证反应效率的前提下尽量降低微孔尺寸可增加单一芯片反应微孔的数量。

采用刮液的方式注液,能够一次性在两万多个阵列微反应池中有效注液。微孔排列为正六边形状,目的是在有限芯片面积上尽可能多的分布微孔,微孔阵列***设计一定宽度的方框沟槽,可以防止在刮液操作过程中液体溢出芯片表面,节约生物试剂,还能减少热循环过程中微孔反应试剂挥发,保证PCR正常扩增效率。

实施例2

与实施例1相比,该实施例中高分子材料厚度为20μm,所述正六边形图形阵列中,正六边形对边之间的距离D为0.03mm,正六边形间隙d为0.013mm;所述上下沟槽宽度a2和a3为0.02775mm,所述左右沟槽宽度a4和a1为0.0248mm。该实施例中的数字PCR的修饰方法为:

S1、将步骤5中制得的芯片通过等离子体机进行等离子体处理后得到芯片A,

S2、将步骤S1中的芯片A置于牛血清白蛋白中进行浸泡,然后进行烘干处理后直接使用。

所述步骤S2中牛血清白蛋白的浓度范围是10mg/mL。

实施例3

与实施例1相比,该实施例中高分子材料厚度为15μm,所述正六边形图形阵列中,正六边形对边之间的距离D为0.022mm,正六边形间隙d为0.013mm;所述上下沟槽宽度a2和a3为0.02825mm,所述左右沟槽宽度a4和a1为0.02015mm。

实施例4

与实施例1相比,该实施例中反应微孔的形状为正方形,如图5所示,所述正方图形阵列中,正方形边长B为0.0335mm,正方形间隙b为0.065mm,如图6和图7所示,所述上下沟槽宽度a2和a3为0.01125mm,所述左右沟槽宽度a4和a1为0.02125mm。

对比例1

与实施例1相比,该对比例中步骤2中高分子材料选用厚度为50μm的感光厚环氧树脂片。

对比例2

与实施例1相比,该对比例中步骤2中高分子材料选用厚度为45μm的感光厚环氧树脂片。

对比例3

与实施例3相比,该对比例中未进行修饰,即不进行等离子体处理。

对比例4

与实施例4相比,该对比例中未进行修饰,即不进行等离子体处理。

实验例

观察实施例1-4和对比例1-4制成的芯片经过处理后,填加上自发荧光的试剂通过显微镜观测,然后通过高温及PCR反应条件进行测试后检测孔内荧光强度的变化,得到如下数据:

各实施例与对比例中总的反应腔室数量为1000,由上表可知,实施例1-4和对比例1-2中,反应腔室的数量根据高分子材料的厚度不同有轻微差别,材料的厚度不同造成了每个微孔的深宽比不同,不同深宽比微孔经过亲水处理后样品试剂的进孔效率也有很大的不同,因此说明深宽比对于样品进孔效率有很大的影响。实施例3-4与对比例3-4中在相同尺寸比例的微孔中经过亲水处理和未经过亲水处理的微孔反应试剂的进孔效率之间也有很大的差异,说明通过亲水处理后亲片微孔会极大的提高样本试剂的进孔效率。

上述详细说明是针对本发明其中之一可行实施例的具体说明,该实施例并非用以限制本发明的专利范围,凡未脱离本发明所为的等效实施或变更,均应包含于本发明技术方案的范围内。

12页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种一体化核酸检测器件及应用

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!