配置为阻止液体渗透的潜水式换能器

文档序号:1740586 发布日期:2019-11-26 浏览:39次 >En<

阅读说明:本技术 配置为阻止液体渗透的潜水式换能器 (It is configured to prevent the submersible type energy converter of Liquid Penetrant ) 是由 S.M.克特 于 2019-05-15 设计创作,主要内容包括:潜水式换能器(102)包括换能器壳体(120),其配置为浸没在水性液体内,以及压力传感器(124),其可操作为获得用于确定水性液体的压力的数据。压力传感器(124)可以设置在换能器壳体(120)内。潜水式换能器(102)还包括潜水式电缆(122),其具有电导体(134)和可操作地联接到压力传感器(124)的通气管(138)。压力传感器(124)使用通过通气管(138)检测的外部环境的大气压力来确定水性液体的压力。潜水式电缆(122)还包括电缆护套(126)和由电缆护套(126)围绕的内层(128)。内层(128)围绕电导体(134)和通气管(138)。内层(128)包括非吸湿性聚合物,其比电缆护套(126)更耐吸收水性液体。(Submersible type energy converter (102) includes transducer housing (120), is configured to be immersed in waterborne liquid and pressure sensor (124), is operable as obtaining the data for determining the pressure of waterborne liquid.Pressure sensor (124) can be set in transducer housing (120).Submersible type energy converter (102) further includes submersible type cable (122), with electric conductor (134) and is operably linked to the snorkels (138) of pressure sensor (124).Pressure sensor (124) determines the pressure of waterborne liquid using the atmospheric pressure of the external environment detected by snorkel (138).Submersible type cable (122) further includes cable cover(ing) (126) and the internal layer (128) that is surrounded by cable cover(ing) (126).Internal layer (128) surrounds electric conductor (134) and snorkel (138).Internal layer (128) includes non-absorptive polymer, than cable cover(ing) (126) more resistant to absorbing aqueous liquids.)

配置为阻止液体渗透的潜水式换能器

技术领域

本主题总体上涉及换能器,其配置为完全浸没在液体中并通过电缆连接到外部环境。

背景技术

潜水式换能器用于监测液体的状况或质量。潜水式换能器可包括保持传感器的壳体和为传感器提供通信线路和电力供给的电缆。对于潜水式压力换能器,传感器是压力传感器,并且电缆可以可选地包括用于检测外部环境的大气压力的通气管。潜水式压力换能器可用于监测含水层或深井中的地下水位、不同处理阶段的废水水位、以及运河或水池中的地表水位。可由潜水式换能器监测的其他液体包括工业化学品、天然气液体(NGL)和玉米油。

潜水式换能器通常位于液体内一段延长的时间(例如,几天、几周、几个月或几年),并且可能经历极端条件,例如极端压力和温度。由于这些原因,潜水式换能器易受流体渗透的影响,这会影响测量并导致换能器失效。被监测的液体可以通过渗透通过电缆和壳体连接的接口而渗入潜水式换能器。外部环境中的水分会在通气管内或壳体内凝结。此外,用于潜水式压力换能器的电缆护套通常是聚氨酯。聚氨酯相对于其他材料具有相对高的吸水率。

为了最小化流体通过接口的渗透,制造商已使用O形圈、焊接密封件、灌封材料、密封应变消除装置和电缆密封套。在一些换能器中,围绕传感器的壳体可以设置在单独的外壳内。干燥剂和防水凝胶和胶带也已经设置在壳体内以增加潜水式换能器的寿命。对于使用通气管的换能器,干燥剂盒、聚四氟乙烯(PTFE)疏水膜和无液体波纹管可以连接到通气管。为了最大限度地减少通过电缆护套的液体进入,制造商沿着电缆的长度使用吸水胶带和硅胶。然而,这些填料增加了制造过程的成本和复杂性。虽然上述方法可能是有效的,但流体渗透仍然是挑战,并且在许多情况下,是缩短寿命的主要原因。

要解决的问题是提供一种阻止流体渗透的潜水式换能器。

发明内容

在本发明的一个实施例中,提供了一种潜水式换能器,其包括配置为浸没在水性液体内的换能器壳体和可操作为获得用于确定水性液体的压力的数据的压力传感器。压力传感器可以设置在换能器壳体内。潜水式换能器还包括潜水式电缆,其具有电导体和可操地联接到压力传感器的通气管。压力传感器使用通过通气管检测到的外部环境的大气压力来确定水性液体的压力。潜水式电缆还包括电缆护套和由电缆护套围绕的内层。内层围绕电导体和通气管。内层包括非吸湿性聚合物,其比电缆护套更耐吸收水性液体。

附图说明

现在将参照附图以举例的方式描述本发明,在附图中:

图1是根据实施例的潜水式换能器的示意图。

图2是可与图1的潜水式换能器一起使用的电缆的截面图。

图3是根据实施例的可用于形成共挤出层的模头的截面图。

图4是可以由图1的潜水式换能器使用的换能器壳体和设置在换能器壳体内的参数传感器的放大示意图。

具体实施方式

本文阐述的实施例包括潜水式换能器和具有该潜水式换能器的监测系统。潜水式换能器配置为完全浸没在液体中以获得与液体有关的信息。根据应用,潜水式换能器可以保持浸没在液体中几分钟、几小时、几天、几周、几个月或几年。潜水式换能器可位于0至350米的深度。特定实施例可能在甚至更大的深度处操作,例如高达3000米。

在一些实施例中,潜水式换能器是压力换能器,其获得与测量直接相关或可用于计算液体压力的测量值。作为确定压力的替代或附加,潜水式换能器可以获得与测量直接相关或可用于计算液体的温度和/或液体的电导率和/或另一参数的测量值。

在特定实施例中,潜水式压力换能器是用于确定液体的液位的通气计量换能器。这种换能器包括用于确定大气压力的通气管。大气压力可以用作确定水位的参考点。

实施例包括换能器壳体和至少一个传感器,该传感器位于壳体内并被保护远离周围液体。对于感兴趣的参数是压力的实施例,潜水式换能器通常包括隔膜。传感器通过潜水式电缆连接到外部环境。

与换能器壳体一样,潜水式电缆设计为长时间浸没在液体中。如本文所述,实施例具有电缆护套和由电缆护套围绕的内层。内层可以围绕纵向元件(例如,绝缘导体、通气管、排扰线和填料)。可选地,实施例可包括其他层,例如围绕电导体的屏蔽层或不同性质所需的其他聚合物层。

如本文所使用的,术语“层”包括例如均质组分和非均质组分。均质层可以例如基本上由聚氨酯和一种或多种可选的试剂组成。非均质层可以例如基本上由具有分散在其中的一种或多种纤维或颗粒的聚合物材料组成。

如本文所用,层可以“围绕”另一层或纵向元件而不接触另一层或纵向元件。例如,外层可以直接围绕内层,但外层也围绕由内层围绕的纵向元件。当层“直接围绕”另一元件或一组元件(例如,导体)时,在它们之间不存在其他中间元件。直接围绕另一层的层可以与另一层紧密接合。

某些实施例可用于静水环境水监测。目前使用的潜水式压力换能器通常使用聚氨酯电缆护套。随着时间的推移,聚氨酯电缆护套可能变得饱和并且允许水分缓慢地迁移到换能器壳体中。如果水分迁移到与通气管流体连通的参考腔中,则测量结果可能不正确。一些电缆护套还包括用于形成外部无光饰面(matte finish)的材料,以便于小孔安装,这通常进一步增加吸水性。

实施例可以阻止液体渗透,从而使潜水式换能器的寿命操作或寿命延长数周、数月或数年。尽管以下描述特别涉及为水的液体,但液体可以是其他类型的液体(例如,工业化学品、天然气液体、玉米油等),并且潜水式电缆和换能器壳体可以基于被监测的液体的类型进行修改。

例如,电缆护套可以配置为具有某些指定的属性,并且内层可以配置为具有其他指定的属性。在一些实施例中,电缆护套可以与现有的电缆应用和附件兼容,并且与制造潜水式换能器时使用的中间过程兼容。作为一个具体示例,电缆护套可包括具有外部无光饰面的聚氨酯。这种电缆护套可以与现有的包覆模制工艺和电缆密封套兼容。

内层可包括选择为阻止指定液体的吸收的材料。例如,内层可包含抵抗水吸收的非吸湿性聚合物。然而,应该理解的是,可以选择聚合物以阻止其他指定液体的吸收,其他指定液体可以包括或不包括水。

液体吸收可以使用一种或多种已建立的和/或工业上接受的水吸收的技术标准来确定,例如国际标准化组织(ISO)62:2008和ASTM D570-98(2010)e1。如果标准中的任何一个要求,则可以基于潜水式换能器预期在操作中经历的条件来选择参数。这些参数可包括外部环境的湿度、液体或环境的温度,浸没的持续时间等。测试参数不必匹配现实条件(例如,浸没持续时间)。相反,选择测试参数以获得用于推断潜水式换能器在正常使用过程中如何操作的数据。

当比较吸水率或液体吸收百分比(例如,以确定一个百分比是否是另一个百分比的至少10倍)时,百分比可以使用国际标准化组织(ISO)62:2008,ASTM D570-98(2010)e1来确定,或其他测试来确定,只要两层进行相同的测试。例如,测试可以包括以共同的深度、共同的温度和相同的持续时间将内层和外层浸没在指定的液体内。持续时间可以是一小时、两小时、六小时、12小时、24小时、48小时、一周或更长时间。例如,内层和外层可以放置在同一个水池的底部持续一周。然后可以测试这两层以确定相应的液体吸收百分比。然后可以比较这两个值以确定例如一个值是否大于另一个值的10倍(10X)。

举例来说,当层的样品浸没在23℃的蒸馏水中两周(14天)时,可以根据ASTMD570-98(2010)e1获得吸水率。作为另一个示例,当层的样品浸没在23℃的蒸馏水中六十(60)天时,可以根据ASTM D570-98(2010)e1获得吸水率。作为另一个示例,当层的样品浸没在23℃的蒸馏水中直至饱和时,可以根据ASTM D570-98(2010)e1获得吸水率。用作测试样品的层具有与潜水式电缆中的层(例如,内层和外层)相同的组分。样品可以是例如具有指定厚度(例如,在0.2mm和1.0mm之间)的圆盘。

在一些实施例中,内层的聚合物是非吸湿性的,并且具有至多0.1%的液体吸收百分比。在某些实施例中,非吸湿性聚合物具有至多0.05%的液体吸收百分比。在特定实施例中,非吸湿性聚合物具有至多0.03%的液体吸收百分比。在更特定的实施例中,非吸湿性聚合物具有至多0.01%的液体吸收百分比。

在一些实施例中,电缆护套的聚合物具有至少1.0%的液体吸收百分比。在某些实施例中,电缆护套具有至少0.5%的液体吸收百分比。在特定实施例中,电缆护套具有至少0.1%的液体吸收百分比。

在一些实施例中,电缆护套的液体吸收百分比是内层的聚合物的液体吸收百分比的至少十倍(10X)。在某些实施例中,电缆护套的液体吸收百分比是内层的聚合物的液体吸收百分比的至少二十五倍(25X)。在一些实施例中,电缆护套的液体吸收百分比是内层的聚合物的液体吸收百分比的至少五十倍(50X)。

内层的聚合物的非限制性实例包括聚乙烯(PE)、聚乙烯超高分子量(PE-UHMW)、高密度聚乙烯(HDPE)、低密度聚乙烯(LDPE)、线性低密度聚乙烯(LLDPE)、交联聚乙烯(XLPE)、柔性聚氯乙烯(PVC)、聚丙烯、聚甲醛均聚物、乙烯乙酸乙烯酯或聚四氟乙烯。在特定实施例中,内层可以基本上由上面列出的一种或多种聚合物组成。在更特定的实施例中,内层可以由上面列出的一种或多种聚合物组成。

用于电缆护套的聚合物的非限制性示例包括聚氨酯、聚酰胺(PA)、丙烯腈丁二烯苯乙烯、聚甲基丙烯酸甲酯(丙烯酸)、氟化乙烯丙烯、聚对苯二甲酸丁二醇酯、聚碳酸酯、乙酸丁酸纤维素、或乙酸丙酸纤维素、聚对苯二甲酸乙二醇酯、聚苯醚、苯乙烯丙烯腈、聚砜或聚醚酰亚胺。在特定实施例中,电缆护套可基本上由上面列出的一种或多种聚合物组成。在更特定的实施例中,电缆护套可由上面列出的一种或多种聚合物组成。

可选地,实施例可以在电缆和换能器壳体连接的地方使用电缆-密封套密封件,其围绕并压缩电缆和换能器壳体。电缆-密封套密封件可包括例如索环和夹紧在电缆上的夹头。电缆-密封套密封件可以比包覆模制的应变消除部件便宜。在一些实施例中,内层(例如,聚乙烯)可以提供更牢固和同心的电缆,从而能够在电缆-密封套密封件和电缆之间实现更好的密封。一些实施例可包括乙烯四氟乙烯(ETFE)作为内层或作为电缆护套。电缆-密封套密封件可能更适合ETFE电缆护套。

图1是根据实施例的潜水式换能器102的示意图。潜水式换能器102形成监测系统100的一部分,监测系统100可包括系统终端104、并且可选地包括计算系统106、无线发射器108和电源110。系统终端104可以包括例如外壳105和多个电端子107。计算系统106可以获得并处理通过系统终端104从潜水式换能器102传送的测量值。计算系统106可以通过无线发射器108(例如,天线)来无线地传送基于测量值的信息。在特定实施例中,测量值与指定液体112的压力相关,并且该信息涉及指定液体112的液位或体积。然而,在其他实施例中,测量值和信息可以与其他参数相关。

指定液体112可以是任何需要监测的液体。在所示的实施例中,指定液体112是地下水、废水或地表水,并储存在水池或含水层内,或在河流或湖泊中流动。然而,在其他实施例中,指定液体112可以是另一种类型的液体和/或可以以另一种方式被包含。

如图所示,潜水式换能器102包括换能器壳体120和可操作地连接到换能器壳体120的潜水式电缆122。潜水式换能器102还包括存放在换能器壳体120内的传感器124。传感器124检测可用于确定感兴趣的参数的数据。在特定实施例中,传感器124是将能量从一种形式转换为另一种形式的装置。例如,传感器124可以是测量压力变化的压力传感器。传感器124可包括机械转换元件(未示出)或力求和装置(未示出),其联接到有源或无源电转换元件(未示出)。电转换元件将机械能转换成电能,机械转换元件将气体或液体能转换成机械能。压力传感器可以是,例如,应变计换能器、压电换能器、电容换能器、电感或磁阻式换能器、或电位换能器。

潜水式电缆122在端子端部130和连接端部部分132之间延伸。潜水式电缆122包括电缆护套126和由电缆护套126围绕的内层128。如图1所示,潜水式电缆122具有多个电导体134-137和通气管138,它们被内层128和电缆护套126围绕。电导体134-137和通气管138在端子端部130处离开潜水式电缆122。在所示的实施例中,每个电导体是绝缘导线,其具有由绝缘层围绕的导线导体。预期其他类型的导线可以是,例如双绞线、平行对(例如,双轴)等。

电导体134-137可操作地连接到换能器壳体120内的传感器124,并且通气管138与参考腔流体连通。通气管138具有通道139(如图2中所示),其流体地连接传感器124与外部环境的环境空气,使得大气压力可用于确定指定液体112内的压力。

可选地,潜水式换能器102包括应变消除部分140,其覆盖换能器壳体120的一部分和电缆护套126的一部分。如本文所述,电缆护套126可包括与提供应变消除部分140的工艺兼容的材料。例如,应变消除部分140可以在包覆模制工艺期间制成。

图2是潜水式电缆122的截面图。如图所示,电缆护套126围绕内层128。内层128围绕电导体134-137和通气管138。在所示的实施例中,内层128还围绕排扰线150和多个加强元件151-158。

通气管138限定通道139。在所示的实施例中,通道139与潜水式电缆122的中心轴线190重合。潜水式电缆122的纵向元件可以围绕通气管138分布。例如,电导体134-137、排扰线150和加强元件151-158围绕通气管138周向分布,并且抵靠通气管138的外表面定位。可选地,纵向元件可以围绕通气管138螺旋缠绕。

潜水式电缆122还可包括屏蔽层160,其围绕纵向元件134-137和150-158以及通气管138。屏蔽层160可以包括屏蔽电导体134-137免受电串扰的导电材料。屏蔽层160可以是例如导电带,在带的一侧或两侧上具有导电层(例如,箔)。屏蔽层160可以围绕中心轴线190螺旋缠绕。

在所示的实施例中,屏蔽层160围绕电导体134-137和通气管138并将其聚集在一起。屏蔽层160还围绕纵向元件150-158。因此,电导体134-137、通气管138和纵向元件150-158可以由相同的屏蔽层160围绕并保持在一起。当通过屏蔽层160聚集在一起时,电导体134-137、通气管138和纵向元件150-158可以被表征为被捆束或者是电缆束170。如图所示,屏蔽层160遵循捆束的纵向元件134-137和150-158的轮廓。内层128在由相邻的纵向元件形成的间隙之间部分地延伸。在屏蔽层160和通气管138之间可以存在空的空间162。

图3是共挤出系统200的示意图。共挤出系统200包括模具202和多个料斗204、206。料斗204、206配置为接收固体聚合物材料(丸粒),其被送入筒(未示出)内的螺杆中。螺杆机械地剪切并产生摩擦,从而熔化聚合物材料。例如,料斗204包括用于形成内层128(图1)的材料,且料斗206包括用于形成电缆护套126(图1)的材料。模具202包括通路214、216,其引导熔化的材料以在不同阶段流动到电缆上。在所示的实施例中,电缆束170通过模具202的通道220进给。流过通路214的熔化材料涂覆电缆束170。在电缆至少部分地冷却或凝固之后,来自通路216的熔化材料涂覆被涂覆的电缆束。

共挤出工艺的时间、热量和压力用于不同层的紧密接合。由此,并且参考图2,内层128可以形成共挤出层172的第一子层,并且电缆护套126可以形成共挤出层172的第二子层。第一子层和第二子层组合以形成共挤出层172。第一子层和第二子层是共挤出层172的不同部分。例如,第一子层和第二子层可以通过例如垂直于中心轴线190切割潜水式电缆122来识别。然而,第一子层和第二子层是共挤出层172的不可分离部分,使得第一子层和第二子层形成围绕电缆束170的单个层。在不永久损坏共挤出层172的情况下,第一子层和第二子层不能分开。因此,在一些实施例中,第一子层126和第二子层128形成共挤出层172,其中第一子层126和第二子层128是共挤出层172的不同但不可分离的部分。

电缆护套126具有平均厚度,内层128具有平均厚度。在一些实施例中,电缆护套126的平均厚度小于内层128的平均厚度。例如,电缆护套126可具有0.18毫米(mm)至0.30mm的平均厚度。在更特定的实施例中,电缆护套126可具有0.20mm至0.24mm的平均厚度。内层128可以具有0.60mm至0.80mm的平均厚度。在更特定的实施例中,电缆护套126可具有0.66mm至0.74mm的平均厚度。“平均厚度”可以通过检查具有指定长度的潜水式电缆的一个或多个代表性段(例如,沿着潜水式电缆均匀分布的十(10)个三厘米段)来确定。

尽管以上描述涉及共挤出的两个子层,但是可以预期实施例可以包括形成共挤出层的三个或更多个子层。第三子层可以使用例如第三料斗和第三通路紧密地接合到第二子层。在这样的实施例中,第一、第二和第三子层可以是共挤出层的不可分离部分,使得第一、第二和第三子层形成围绕电缆束的单个层。第三子层可以为潜水式电缆提供其他特性。

图4是换能器壳体120和设置在换能器壳体120内的传感器124的放大示意图。在所示的实施例中,传感器124包括隔膜230,隔膜230在传感器124内划分腔232。传感器124包括与通气管138和端口238流体连通的端口236。端口238与经受指定液体112的压力的空间流体连通。在操作期间,隔膜230基于大气压力和液体压力之间的差异而弯曲。

在所示的实施例中,传感器124包括压阻元件240。压阻元件240可以以惠斯通电桥配置连接。随着压力差变化,隔膜230弯曲,从而改变压阻元件240的相对位置和/或应变,并产生变化的差分电压输出。可以将差分电压传送到计算系统106(图1)。替代地,可以在将信息传送到计算系统106之前在传感器124内预处理信号。

还示出了,换能器壳体120联接到端盖242,端盖242覆盖换能器壳体120的开口。端盖242可以增强换能器壳体120的结构完整性并保护传感器124。应变消除部分140围绕端盖242。应变消除部分140可以是具有与电缆护套126相同或相似材料的包覆模制件。在所示的实施例中,应变消除部分140包括聚氨酯。

13页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种电动扭矩扳手校准装置及校准方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!