一种用于无线光通信系统的幅相ofdm调制方法

文档序号:1802014 发布日期:2021-11-05 浏览:34次 >En<

阅读说明:本技术 一种用于无线光通信系统的幅相ofdm调制方法 (Amplitude-phase OFDM modulation method for wireless optical communication system ) 是由 廉杰 王彤 廉殿斌 高妍 于 2021-08-14 设计创作,主要内容包括:本发明公开了一种用于无线光通信系统的幅相OFDM调制方法,称为幅度相位光学OFDM(MPO-OFDM)。在这种方法中,不需要OFDM调制器的输入端的Hermitian对称数据来生成实信号。取而代之的是,常规复数值OFDM信号的幅度和相位分量来连续发送。MPO-OFDM对所发送的相位信息进行量化,并使用M阶脉冲幅度调制(M-PAM)进行编码发送。使用M-PAM,可以有效减小加性噪声对相位分量的影响。本发明在此基础上优化了控制发射信号幅度的调制系数,从而使得幅度分量的信噪比(SNR)最大化。与DCO,ACO,U-OFDM和基于极性的OFDM相比,本发明所提出的MPO-OFDM可以提供更好的误码率(BER)性能。(The invention discloses an amplitude-phase OFDM modulation method for a wireless optical communication system, which is called amplitude-phase optical OFDM (MPO-OFDM). In this approach, Hermitian symmetric data at the input of the OFDM modulator is not required to generate a real signal. Instead, the amplitude and phase components of a conventional complex-valued OFDM signal are transmitted continuously. MPO-OFDM quantizes the transmitted phase information and encodes the transmission using M-order pulse amplitude modulation (M-PAM). By using M-PAM, the influence of additive noise on the phase component can be effectively reduced. The invention optimizes the modulation coefficient for controlling the amplitude of the transmitting signal on the basis of the amplitude component, thereby maximizing the signal-to-noise ratio (SNR) of the amplitude component. Compared with DCO, ACO, U-OFDM and polarity-based OFDM, MPO-OFDM provided by the invention can provide better Bit Error Rate (BER) performance.)

一种用于无线光通信系统的幅相OFDM调制方法

技术领域

本发明属于光通信技术领域,具体涉及一种幅相OFDM调制方法。

背景技术

近年来,自由空间光通信,可见光通信和红外通信等强度调制和直接检测(IM/DD)通信系统近来引起了很多研究关注。使用发光二极管(LED)或激光二极管(LD)作为发送器,IM/DD光学系统具有优于比率-频率(RF)通信的许多优点,包括高保密性,高数据速率,低功耗和无频谱调节。然而,由于IM/DD过程中要求发送和接收的信号必须为非负实数,因此在此类通信系统中进行信号调制时需要对调制方式进行设计。

由于使用IM/DD系统时需要传输非负的实数信号,因此常规的OFDM无法直接应用于IM/DD系统。现有研究成果已经提出了一些针对无线光通信系统的OFDM改进技术,这些系统使用具有Hermitian对称性的调制信号为基础,从而直接生成实数信号。同时,为了将双极性实数OFDM信号转换为单极性,经常采用直流偏置的光学OFDM(DCO-OFDM)。在DCO-OFDM中,添加的DC偏置通常是峰值发射功率的一半。但是,由于DC偏置需要增加额外的发射功率,且由于直流信号的偏移,具有峰值功率约束的光源则会引入更多的信号截断失真。进一步,一些研究人员提出了不对称限幅的光学OFDM(ACO-OFDM),ACO-OFDM仅对奇数频率的子载波进行调制,从而达到生成单极性OFDM信号的目的,然而,这种算法的带宽利用效率较低。结合ACO-OFDM与脉冲位置调制,一些研究人员提出了一种称为分数反极性光学OFDM的技术,该技术在可见光通信应用中考虑了调光控制。单极性OFDM(U-OFDM)(也称为Flip-OFDM)是近期提出的新型OFDM调制算法,通过在两个时隙中连续发送双极性原始信号的正负部分来生成单极性信号,从而避免增加直流偏置。但是,由于使用了额外的信号时隙,当传输相同的OFDM符号速率时,U-OFDM所需的带宽是DCO-OFDM的两倍。

现有的产生单极性实数OFDM信号的算法往往需要针对具有Hermitian对称性的信号进行调制,从而降低了频谱利用率。而采用DCO-、ACO-、以及U-OFDM的算法在构造了具有Hermitian对称性的调制信号的基础上,又分别增加了直流偏置、采用更少的子载波、增加传输时隙等方式避免了发射双极性OFDM信号。从而导致系统的功率使用率与频谱利用率进一步降低。

发明内容

为了克服现有技术的不足,本发明提供了一种用于无线光通信系统的幅相OFDM调制方法,称为幅度相位光学OFDM(MPO-OFDM)。在这种方法中,不需要OFDM调制器的输入端的Hermitian对称数据来生成实信号。取而代之的是,常规复数值OFDM信号的幅度和相位分量来连续发送。MPO-OFDM对所发送的相位信息进行量化,并使用M阶脉冲幅度调制(M-PAM)进行编码发送。使用M-PAM,可以有效减小加性噪声对相位分量的影响。本发明在此基础上优化了控制发射信号幅度的调制系数,从而使得幅度分量的信噪比(SNR)最大化。与DCO,ACO,U-OFDM和基于极性的OFDM相比,本发明所提出的MPO-OFDM可以提供更好的误码率(BER)性能。

本发明解决其技术问题所采用的技术方案包括如下步骤:

步骤1:信号发射机设计;

步骤1-1:假设Xi是在第i个子载波上调制的M-QAM数据;在不使用Hermitian对称性的情况下,将Xi经过快速傅里叶逆变换IFFT之后的第k个分量表示为:

其中,N表示载波数;

步骤1-2:假设是独立同分布、且满足|Xi|≤1的随机变量;将x[k]经过并行到串行转换器之后,OFDM符号的第m个时域采样表示为:

当N>64时,xs[m]的实部和虚部建模为独立的高斯分布变量,均值为零,方差为

步骤1-3:再将xs[m]经过笛卡尔到极坐标转换器之后,xs[m]的幅度和相位信息表示为|xs[m]|和∠xs[m];xs[m]的幅度和相位信息幅度和相位分量需要分别进行传输,因此它们是实数且是非负的;

步骤2:接收信号与接收机设计;

步骤2-1:在接收机处,如果忽略信道损耗,则将接收到的M-PAM相位信息的SNR近似为其中N0和Rs分别代表噪声频谱密度和发射的OFDM符号率;Pmax表示所采用光源的最大发射功率;因此,从M-PAM相位信息解调而得到的二进制数的误码率BER近似计算得到:

其中erfc(·)是互补误差函数,定义为Mp表示了使用M-PAM调制相位信息时的调制阶数;

重构相位信息后,等效加性噪声的方差近似为

其中,L表示量化相位信息时使用的二进制位数,Δp表示量化相位信息时的量化精度,j和l分别表示计算过程中的指示代数;

步骤2-2:将输入信号采样并使用极坐标到笛卡尔坐标转换器后,在一个OFDM符号中的第n个采样表示为:

其中分别表示加载到相位信息上的等效加性噪声和量化噪声;的方差为σ2 p和σ2 qu=(△p)2/12;n表示第n个采样,β表示信号的调制指数,该参数用来调整信号的幅度;wT[n]表示添加到幅度分量的噪声的第n个样本,包含两个部分,表示为wT[n]=wm[n]+wc[n],其中wm[n]和wc[n]分别表示幅度部分的加性噪声和由于峰值功率限制引起的截断噪声;wm[n]和wc[n]能建模为均值为0的高斯随机变量,wm[n]的方差为δ2 m=N0Rs

基于Bussgang定理,用α表示由于峰值功率削波而导致的功率损耗率,通过式(5)估算α:

其中函数Var(x)表示x的方差;为对发射器的非线性响应进行建模,表示为:

β|x[k]|的概率密度函数导出为:

其中σ2 x代表的方差;

因此,由于光源的发射功率有限而引起的信号截断噪声的方差计算为:

步骤2-3:r[n]信号再经过FFT之后,第q个子载波的M-QAM数据表示为:

其中Gq被看成是一个随机变量,其方差计算为:

因此,在接收端的单个子载波上的重构M-QAM信号的SNR表示为:

其中E{·}表示期望,E{|λ(l)|2}计算公式为:

其中

将式(12)代入式(11),将数据的BER近似为:

其中Md表示QAM数据的调制阶数。

本发明的有益效果如下:

本发明所提出的用于可见光通信的MPO-OFDM系统,采用分别对复数信号的相位与幅度信息分别发送的方式,避免了现有无线光OFDM系统必须使用具有Hermitian对称的调制信号,从而使得频谱利用率低的问题。

附图说明

图1为本发明MPO-OFDM系统中发射机原理框图。

图2为本发明实施例MPO-OFDM信号的图示;其中(a)为M=Q的M-PAM传输相位,(b)为M=Q/2的M-PAM传输相位,(c)为2-PAM用于传输相位。

图3为本发明MPO-OFDM系统中接收机原理框图。

图4为本发明实施例使用M-PAM编码进行相位量化的图示。

图5为本发明实施例使用不同的接收峰值功率的基于DCO-,ACO-,U-,MPO-和基于单极性的OFDM的BER性能比较。

具体实施方式

下面结合附图和实施例对本发明进一步说明。

一种用于无线光通信系统的幅相OFDM调制方法,包括如下步骤:

步骤1:信号发射机设计,如图1所示;

步骤1-1:假设Xi是在第i个子载波上调制的M-QAM数据;在不使用Hermitian对称性的情况下,将Xi经过快速傅里叶逆变换IFFT之后的第k个分量表示为:

其中,N表示载波数;

步骤1-2:假设是独立同分布、且满足|Xi|≤1的随机变量;将x[k]经过并行到串行转换器之后,OFDM符号的第m个时域采样表示为:

这里是复数值,当N>64时,xs[m]的实部和虚部建模为独立的高斯分布变量,均值为零,方差为

步骤1-3:再将xs[m]经过笛卡尔到极坐标转换器之后,xs[m]的幅度和相位信息表示为|xs[m]|和∠xs[m];xs[m]的幅度和相位信息幅度和相位分量需要分别进行传输,因此它们是实数且是非负的;

图2展示出了使用不同的星座图大小M-PAM来表示相位的示例。在图中,第一帧传输了幅度分量|xs[m]|,m=0,1,…,N-1。当其值幅度超过峰值功率Pmax时,会被截断,其他信号帧用于传输相位信息。由于相位信息可以被建模为0到2π之间的随机数,因此相位信息不会受到光源发射功率限制而导致的截断失真。考虑带宽要求和噪声对相位的影响,可以最佳地选择用于传输相位的M-PAM的调制阶数。

步骤2:接收信号与接收机设计;

步骤2-1:在接收机处,如果忽略信道损耗,则将接收到的M-PAM相位信息的SNR近似为其中N0和Rs分别代表噪声频谱密度和发射的OFDM符号率;Pmax表示所采用光源的最大发射功率;因此,从M-PAM相位信息解调而得到的二进制数的误码率BER近似计算得到:

其中erfc(·)是互补误差函数,定义为Mp表示了使用M-PAM调制相位信息时的调制阶数;

重构相位信息后,等效加性噪声的方差近似为

其中,L表示量化相位信息时使用的二进制位数,Δp表示量化相位信息时的量化精度,j和l分别表示计算过程中的指示代数;

步骤2-2:将输入信号采样并使用极坐标到笛卡尔坐标转换器后,在一个OFDM符号中的第n个采样表示为:

其中分别表示加载到相位信息上的等效加性噪声和量化噪声;的方差为σ2 p和σ2 qu=(△p)2/12;n表示第n个采样,β表示信号的调制指数,该参数用来调整信号的幅度;wT[n]表示添加到幅度分量的噪声的第n个样本,包含两个部分,表示为wT[n]=wm[n]+wc[n],其中wm[n]和wc[n]分别表示幅度部分的加性噪声和由于峰值功率限制引起的截断噪声;wm[n]和wc[n]能建模为均值为0的高斯随机变量,wm[n]的方差为δ2 m=N0Rs

基于Bussgang定理,用α表示由于峰值功率削波而导致的功率损耗率,通过式(5)估算α:

其中函数Var(x)表示x的方差;为对发射器的非线性响应进行建模,表示为:

β|x[k]|的概率密度函数导出为:

其中σ2 x代表的方差;

因此,由于光源的发射功率有限而引起的信号截断噪声削波噪声的方差计算为:

步骤2-3:r[n]信号再经过FFT之后,第q个子载波的M-QAM数据表示为:

其中Gq被看成是一个随机变量,其方差计算为:

因此,在接收端的单个子载波上的重构M-QAM信号的SNR表示为:

其中E{·}表示期望,E{|λ(l)|2}计算公式为:

其中

将式(12)代入式(11),将数据的BER近似为:

其中Md表示QAM数据的调制阶数。

具体实施例:

本发明所提出的MPO-OFDM发射机的框图如图3所示,图中调制系数β用来控制|xs[m]|的幅度。由于超出功率极限的大信号会被截断,从而引入截断误差,而信号幅度过小又无法提供租足够的信噪比,因此可以控制β以平衡削波失真和信号功率。在本发明中,将控制β从而优化SNR。通过使用M-PAM,对相位信息∠xs[m]进行量化,编码和传输。M-PAM的量化级别和调制阶数分别是在MPO-OFDM中要优化的两个设计参数。

图4显示了对MPO-OFDM的相位信息进行量化和编码的算法流程。在该图中,使用量化级Q对相位信息进行量化,并编码为L位二进制数,其对应关系为Q=2L。因此,量化分辨率为M-PAM用于在量化后发送量化后的L位相位信息。

图5对比了现有OFDM调制算法与本发明提出的MPO-OFDM在不同的峰值光功率下的的BER性能比较。在该结果中,均对调制系数β进行了优化。总体上看,本发明提出的MPO-OFDM可以提供比其他测试技术更优的BER性能。对于相同的比特率,采用8-PAM编码相位信息的MPO-OFDM与其他OFDM调制技术相比具有超过2dB的功率优势。当BER性能相似时,MPO-OFDM可以实现更高的传输比特率。

13页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:基于TDOA的目标模拟信号光子链路传输延时测量装置

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!