一种天然气水蒸汽重整制氢的系统及其方法

文档序号:1809718 发布日期:2021-11-09 浏览:32次 >En<

阅读说明:本技术 一种天然气水蒸汽重整制氢的系统及其方法 (System and method for hydrogen production by reforming natural gas steam ) 是由 王鹏飞 夏国富 徐润 张荣俊 吴玉 孙霞 侯朝鹏 邹亮 于 2020-05-07 设计创作,主要内容包括:一种天然气水蒸汽重整制氢的系统及其方法,所述系统包括天然气压缩及预热单元、天然气脱硫单元、原料水净化单元、制水蒸汽单元、重整单元、变换单元、PSA单元。含硫天然气经过压缩和预热,在天然气脱硫单元脱除绝大部分硫元素;水经过原料水净化单元脱除离子,加热发生蒸汽;脱硫天然气和水蒸汽混合预热后,进入重整单元中反应产生重整气;重整气降温后,在变换单元的微通道变换反应器中将大部分一氧化碳转化为氢气;变换气在PSA单元中分离出高纯氢气。本发明提供的天然气水蒸汽重整制氢的系统及其方法具有能耗低,氢气纯度高的优点。(A system and a method for preparing hydrogen by reforming natural gas steam are disclosed, wherein the system comprises a natural gas compression and preheating unit, a natural gas desulfurization unit, a raw material water purification unit, a water steam preparation unit, a reforming unit, a conversion unit and a PSA unit. Compressing and preheating sulfur-containing natural gas, and removing most of sulfur elements in a natural gas desulfurization unit; water is deionized through a raw material water purification unit and heated to generate steam; after being mixed and preheated, desulfurized natural gas and steam enter a reforming unit to react to generate reformed gas; after the reformed gas is cooled, most of the carbon monoxide is converted into hydrogen in a microchannel shift reactor of a shift unit; the shifted gas separates high purity hydrogen in the PSA unit. The system and the method for preparing hydrogen by reforming the natural gas steam have the advantages of low energy consumption and high hydrogen purity.)

一种天然气水蒸汽重整制氢的系统及其方法

技术领域

本发明涉及一种天然气水蒸汽重整制氢的系统及其方法。

背景技术

氢气是一种碳排放为零的清洁能源载体,可以很方便的转化为电能,作为车用电动机动力或小型家用电源使用。天然气水蒸汽重整是成熟的工业过程,但是有着规模大的特点。一般的,一般工业上单系列的产氢气规模为100000Nm3/h,而单个加氢站的用氢量在50~1000Nm3/h,现有天然气重整工艺过程无法适应单个加氢站的用氢需求。

CN105680072B公开了一种中小规模分布式天然气水蒸汽重整制氢系统及方法,集成式天然气水蒸汽重整制氢反应器主体由原料水蒸发器、天然气预热器、燃烧腔、重整腔、重整气冷却器、燃烧烟气余热冷却器、重整气余热冷却器、燃料燃烧器等构成。

CN205151762U一种天然气重整制氢系统,包括通过管路顺序连通的加氢反应器、脱硫罐、转化炉、高温变换器及变压吸附装置,所述的加氢反应器入口与天然气原料管线连通,所述的变压吸附装置出口为可直接供应的天然气重整氢气产品管线,本系统还包括HYCO合成气分离净化装置,该HYCO合成气分离净化装置入口与HYCO合成气原料管线连通,出口分别与合成气分离净化氢气产品管线与CO产品管线连通,所述的天然气重整氢气产品管线上设有与天然气原料管线连通的加氢管线,所述的合成气分离净化氢气产品管线上设有与加氢管线连通的引氢管线。

CN105174214A公开了一种应用流化床的天然气水蒸汽重整制氢的方法及装置,包括燃烧室本体、置于燃烧室本体下方的燃烧器、装有催化剂的反应管、分别呈螺旋状缠绕在燃烧室本体外壁的天然气换热管和水换热管、呈螺旋状缠绕在燃烧室本体内壁的内换热盘管;通入天然气换热管的天然气以及通入水换热管的水,分别自下而上进入混合阀内混合,混合后再进入进料管,然后自上而下螺旋式经过内换热盘管,最后流入反应管内。

综上,现有技术中天然气水蒸汽重整制氢系统存在小型化困难、能耗高、装置占地大等问题。

发明内容

本发明的目的是提供一种天然气水蒸汽重整制氢的系统及其方法,以解决现有技术中存在的无法在较小的空间和体积内实现高效的制氢效率的问题。

本发明提供的天然气水蒸汽重整制氢的系统,包括:天然气压缩及预热单元、天然气脱硫单元、原料水净化单元、制水蒸汽单元、重整单元、变换单元、PSA单元,

所述天然气压缩及预热单元是将天然气进行升压和预热的单元;

所述天然气脱硫单元是将天然气中含硫化合物脱除,得到脱硫天然气的单元,天然气压缩及预热单元的出口与天然气脱硫单元的入口连通;

所述原料水净化单元是将原料水进行净化,得到去离子水的单元;

制水蒸汽单元是将去离子水加热发生蒸汽得到去离子水蒸汽的单元,原料水净化单元的出口与制水蒸汽单元的入口连通;

重整单元内是将脱硫天然气和去离子水蒸汽发生重整反应产生重整气的单元,天然气脱硫单元的出口、制水蒸汽单元的出口与重整单元的入口连通;

变换单元是将重整气中一氧化碳转化为氢气得到变换气的单元,变换单元内设置至少一个微通道变换反应器,微通道变换反应器内装填变换催化剂,重整单元的出口与变换单元的入口连通;

PSA单元是将变换气分离得到解吸气和产品气的单元,产品气为氢气,变换单元的出口与PSA单元的入口连通,PSA单元设置解吸气出口和产品气出口。

在本发明中,采用的原料天然气包括但不限于采油采气井口天然气、长输管道天然气、民用管道天然气、CNG、LNG等各种来源和形态的以甲烷为主要成分的天然气。天然气压缩单元的进口压力在0.01~1.5MPa之间。天然气预热单元中选自电加热、导热油炉加热、蒸汽加热或者与其他物料换热中的一种或多种方式;优选地,使用重整单元废烟气、重整单元的产物或者变换单元的产物与常温原料天然气换热。

在本发明其中一种优选的实施方式中,天然气压缩及预热单元的出口压力为1.0~6.0MPa,出口温度为200~380℃。

在本发明其中一种优选的实施方式中,所述天然气脱硫单元设置加氢脱硫反应区和吸附脱硫反应区,加氢脱硫反应区内装填加氢脱硫催化剂,吸附脱硫反应区内装填吸附脱硫剂;加氢脱硫反应区和吸附脱硫反应区分别设置在两个不同的反应器内,或者集成在一个反应器内。

进一步优选,所述加氢脱硫催化剂包括载体和金属活性组分,所述金属活性组分选自VIB族和/或VIII族金属中的一种或多种,优选为选自Co、Mo、Ni和W中的一种或多种;载体为选自耐热无机氧化物、分子筛中的一种或多种,所述金属活性组分与载体的质量比在0.01~0.5:1之间;优选耐热无机氧化物选自氧化铝、氧化硅、氧化锆、氧化镁、氧化钍、氧化铍、氧化硼和氧化镉中的一种或几种。

进一步优选,所述吸附脱硫剂为选自Fe2O3、ZnO、MgO、CaO和Na2O中的一种或多种的金属氧化物,优选为ZnO和/或Fe2O3

在本发明中,优选脱硫天然气中总硫的摩尔分数不大于1.5×10-8

在本发明其中一种优选的实施方式中,所述原料水净化单元中用离子交换、反渗透和电脱盐中一种或多种方式去除水中离子,所得去离子水的电导率小于1.0μS/cm。所述原料水包括但不限于城乡自来水、地下水和工业循环水等。

在本发明其中一种优选的实施方式中,制水蒸汽单元中采用电加热、导热油炉加热、蒸汽加热和/或与其他物料换热中的一种或多种方式。优选地,使用重整单元废烟气、重整单元的产物、或者变换单元的产物进行换热。制水蒸汽单元所得去离子水蒸汽的温度在150~250℃之间,压力在0.5~4.0MPa之间。

在本发明其中一种优选的实施方式中,所述重整单元内设置列管式重整反应器,列管的直径为8~200mm,列管的数量为1~48根,列管内装填重整催化剂;重整催化剂的金属活性组分为选自VIB族和/或VIII族金属中的一种或多种,优选为Ni。进一步优选重整催化剂的载体为氧化铝、镁铝尖晶石、铝酸钙、其它金属氧化物中的一种或多种;金属活性组分与载体的质量比在0.1~1:1之间。

在本发明其中一种优选的实施方式中,所述重整单元内设置燃烧炉,所述燃烧炉为选自方箱炉、圆桶炉、梯台炉、顶烧炉或侧烧炉中的一种;所述燃烧炉设置燃料气入口。

在本发明其中一种优选的实施方式中,所述重整单元内脱硫天然气和去离子水蒸汽的预热方式为辐射加热、电加热、导热油炉加热、蒸汽加热和/或与其他物料换热中的一种或多种方式;优选地,在重整炉内置换热器,换热器入口与脱硫天然气管线连通,换热器入口与去离子水蒸汽管线连通,换热器出口与列管式重整反应器的入口连通;本发明优选使用重整炉的燃气高温火焰辐射对脱硫天然气和去离子水蒸汽进行加热,加热后,脱硫天然气和去离子水蒸汽的温度在350~750℃之间。

优选地,燃料气入口与原料天然气管线连通,解吸气出口与燃料气入口连通。

在本发明其中一种优选的实施方式中,所述重整单元出口重整气的冷却为水介质换热、导热油换热、与反应物料换热等;优选地,重整单元出口重整气与制水蒸汽单元的去离子水进行换热,同时使制水蒸汽单元的去离子水升温产生水蒸汽。重整单元出口重整气的温度在750~950℃之间,冷却后重整气的温度在200~380℃之间。

在本发明其中一种优选的实施方式中,所述微通道变换反应器内设置反应通道,所述反应通道长度为10~1000mm;所述的反应通道的最小边长为0.05~5mm,优选为0.1~3mm;所述最小边长是指单一通道横截面上内壁之间的最小的高度或宽度。

进一步优选,当微通道变换反应器的反应通道截面为圆形时,通道直径在0.3~5mm之间;当微通道变换反应器的反应通道截面为椭圆形时,椭圆的长轴在0.3~5mm之间,短轴在0.1~3mm之间;当微通道变换反应器的反应通道截面为矩形时,矩形的长边在0.3~5mm之间,短边在0.1~3mm之间。

在本发明其中一种优选的实施方式中,所述微通道变换反应器在反应器内部和/或外部具有移热介质通道;所述移热介质通道的长度在10~1000mm之间,所述的移热介质通道的最小边长为0.05~5mm;所述最小边长是指单一通道横截面上内壁之间的最小的高度或宽度。优选移热介质通道内的移热介质为原料天然气或原料水。

进一步优选,当微通道变换反应器的移热介质通道截面为圆形时,通道直径在0.3~5mm之间;当微通道变换反应器的移热介质通道截面为椭圆形时,椭圆的长轴在0.3~5mm之间,短轴在0.1~3mm之间;当微通道变换反应器的移热介质通道截面为矩形时,矩形的长边在0.3~5mm之间,短边在0.1~3mm之间。

在本发明其中一种优选的实施方式中,所述变换催化剂的颗粒直径为20~500μm;所述变换催化剂包括载体和金属活性组分,载体为选自耐热无机氧化物、分子筛中的一种或多种;所述金属活性组分与载体的质量比在0.1~10:1之间。

进一步优选,变换催化剂中金属活性组分为选自CoO、MoO、Fe2O3、Cr2O3和K2O中一种或多种的混合物;所述耐热无机氧化物选自氧化铝、氧化硅、氧化锆、氧化钛、氧化镁、氧化钍、氧化铍、氧化硼和氧化镉中中的一种或几种。

进一步优选,变换催化剂为树莓型微球空腔催化剂,树莓型微球空腔催化剂为表面具有一个大孔的中空微球,所述中空微球内部具有一个中空结构,所述大孔与所述中空结构贯通形成一端开口的空腔;微球的粒径为60~500μm,中空结构的直径为10~200μm,优选为20~150μm;大孔的孔径为5~100μm。

进一步优选,树莓型微球空腔催化剂的壳层厚度为1~100μm;树莓型微球空腔催化剂的球形度为0.50~0.99。

在本发明中并不限定树莓型微球空腔催化剂的制备方法,任何能得到上述结构的制备方法都适用。

本发明在其中一种优选的实施方式中,所述树莓型微球空腔催化剂可由下述制备方法制备得到:

将硝酸盐、胶溶剂、造孔剂、氧化物和/或其前驱体依次加入到分散剂中并搅拌,得到分散浆液;

对所述分散浆液进行老化处理;以及

将老化后的所述分散浆液送入干燥装置中,在进风温度为400~1200℃,优选为450~700℃;出风温度为100~300℃,优选为120~200℃的条件下,进行干燥成型,得到所述树莓型氧化物微球,再经过焙烧后得到树莓型微球空腔催化剂。

在优选的情况下,所述硝酸盐选自硝酸铝、硝酸锆、硝酸镧和硝酸钇中的一种或多种。

在优选的情况下,所述胶溶剂选自酸类、碱类和盐类中的一种或多种。

在优选的情况下,所述造孔剂选自淀粉、合成纤维素、聚合醇和表面活性剂中的一种或多种。

在一些实施例中,所述耐热无机氧化物和/或其前驱体选自铝源、硅源、锆源和钛源中的一种或多种,其中所述铝源选自拟薄水铝石、醇铝、硝酸铝、硫酸铝、氯化铝和偏铝酸钠中的一种或多种,所述硅源选自硅酸酯、硅酸钠、水玻璃和硅溶胶中的一种或多种,所述锆源选自二氧化锆、四氯化锆、氯氧化锆、氢氧化锆、硫酸锆、磷酸锆、硝酸氧锆、硝酸锆、碱式碳酸锆和四丁氧基锆中的一种或多种,所述钛源选自二氧化钛、偏钛酸、硝酸钛、硫酸氧钛、二氯化钛、三氯化钛、四氯化钛、氯化铝钛、钛酸四乙酯,钛酸四丁酯、钛酸四正丙酯和钛酸四异丙酯中的一种或多种。

在本发明其中一种实施方式中,在制备浆液时,同时加入氧化铬、氧化钼、氧化铁、氧化钴、氧化钾等氧化物,或者加入可以形成这些氧化物的前驱体。

在本发明其中一种实施方式中,采用浸渍法将活性金属浸渍到树莓型氧化物微球上,采用的浸渍方法是本领域常规的浸渍方法。

在优选的情况下,所述分散剂选自水、醇类、酮类和酸类中的一种或多种。

在优选的情况下,所述硝酸盐、所述胶溶剂、所述造孔剂以及所述氧化物和/或其前驱体的质量比为(10-500):(1-10):(10-500):(10-1000)。

在一些实施例中,还包括向所述分散剂中加入爆破剂,所述爆破剂选自苦味酸、三硝基甲苯、雷酸汞、消化甘油、硝化棉、达纳炸药、黑索金、叠氮化铅和C4塑胶炸药中的一种或多种。

在优选的情况下,所述爆破剂的加入量为所述硝酸盐、所述胶溶剂、所述造孔剂以及所述氧化物和/或其前驱体的总干基重量的0~1%。

在优选的情况下,所述干燥装置为闪蒸干燥装置或喷雾干燥装置。

在优选的情况下,所述老化处理的温度为0~90℃,进一步优选为20~60℃。

在优选的情况下,所述焙烧的温度为400~600℃。

在本发明中,优选的树莓型微球空腔催化剂具有活性高、选择性好,稳定性强的特点。改善了现有微通道反应器内压差不均,压差大的问题,并提高了整体反应活性和选择性。

在本发明中,优选所得变换气中的CO的体积分数为0.01%~1%。

在本发明其中一种优选的实施方式中,PSA单元的吸附剂包含硅胶、硅质岩、沸石、氧化铝、活性炭、分子筛中的一种或多种。PSA单元产生的气体包括解吸气和产品气,其中产品气中氢气的体积分数不小于99.97%。

本发明还提供一种天然气水蒸汽重整制氢的方法,包括:

天然气进入天然气压缩及预热单元进行升压和预热;

加压和预热后天然气进入天然气脱硫单元,将天然气中含硫化合物脱除得到脱硫天然气;

原料水在原料水净化单元进行净化得到去离子水;

所得去离子水在制水蒸汽单元加热发生为去离子水蒸汽;

所得脱硫天然气和所得去离子水蒸汽在重整单元发生重整反应生成重整气;

所得重整气进入变换单元,在微通道变换反应器内与变换催化剂接触,将重整气中一氧化碳转化为氢气得到变换气;

所得变换气在PSA单元分离得到解吸气和产品气。

在优选的情况下,天然气脱硫单元设置加氢脱硫反应区和吸附脱硫反应区,加氢脱硫反应区的工艺条件为:反应温度280~360℃,反应压力0.1~6MPa,气体空速1000h~50000h-1,进料混合气中的氢气体积分数为1%~15%;吸附脱硫反应区的工艺条件为:反应温度在280~360℃,反应压力0.1~6MPa,气体空速500~20000h-1

在优选的情况下,制水蒸汽单元所得去离子水蒸汽的温度在150~250℃之间,压力在0.5~4.0MPa之间。

在优选的情况下,重整单元的工艺条件为:反应压力在0.1~6.0MPa之间,反应温度在550~950℃之间,气体空速在1000~20000h-1之间;重整原料中水蒸汽和甲烷的摩尔比例在2.0~4.0:1之间。

在优选的情况下,重整单元的重整气经过冷却后进入变换单元,重整单元出口重整气的温度在750~950℃之间,冷却后重整气的温度在200~380℃之间。

在优选的情况下,变换单元的变换反应为单段等温反应的操作模式,反应温度在200~380℃之间,反应压力在0.1~6.0MPa之间,气体空速在500~20000h-1之间。

进一步优选,变换反应器内反应物料的进出口温差小于20℃。

在优选的情况下,PSA单元所得解吸气包括甲烷、二氧化碳、一氧化碳和氢气;进一步优选所得解吸气引入重整单元的燃烧炉中,作为燃料气使用。PSA单元所得产品气中氢气的体积分数不小于99.97%。

本发明与现有技术相比,优点在于:

(1)本发明提供的天然气水蒸汽重整制氢的系统和方法具有设备占地小,甲烷转化率高,能量利用效率高的特点,不需要额外提供能源,甲烷既作为重整反应的原料,又作为重整反应的供热热源,减少了原料种类。本发明提供的方法中,仅天然气、电力和自来水等三种原料和能源,且都是城市管网基础设施完备的原料,大大降低了应用难度。因此,本发明提供的方法具有简便易行、设备占地小、能量效率高的特点,应用前景广泛。

(2)本发明中的变换单元是采用微通道变换反应器的一步法变换反应,与现有技术中低温法变换反应和高温法变换反应结合相比,节省了大量设备空间和能耗,并且反应效率高。

(3)本发明优选的变换催化剂为树莓型微球空腔催化剂,改善了现有微通道反应器内压差不均,压差大的问题,并明显提高了整体反应活性和选择性。

附图说明

图1是本发明提供的天然气水蒸汽重整制氢方法的流程简图。

图例说明:a原料天然气;b氢气;c原料水;d空气;e产品气;f解析气;g移热介质;1天然气压缩机;2预热器;3天然气脱硫单元;4原料水净化单元;5制水蒸汽单元;6预热器;7重整单元;8换热器;9变换单元;10PSA单元。

图2是本发明实施例2中树莓型氧化物微球的SEM照片。

具体实施方式

以下对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。

下面结合附图对本发明所提供的天然气水蒸汽重整制氢方法予以进一步的说明,但本发明并不因此受到任何限制。图中省略了许多天然气水蒸汽重整制氢的辅助设备但这对本领域普通技术人员是公知的。

如图1所示,本发明提供的天然气水蒸气重整制氢的方法,包括以下步骤:

原料天然气a和氢气b混合后进入天然气压缩机1,增压到一定压力,然后进入预热器2预热。

加压和预热后的天然气和氢气的混合气进入天然气脱硫单元3,依次进入加氢脱硫反应器和吸附脱硫反应器。

原料水c在原料水净化单元4进行净化得到去离子水;所得去离子水在制水蒸汽单元5加热发生为去离子水蒸汽。

所得脱硫天然气和所得去离子水蒸汽经换热器6换热后进入重整单元7,在重整反应炉内发生重整反应生成重整气。重整炉所用燃料气为原料天然气a和/或PSA单元的解吸气f,所用助燃剂为空气d。

所得重整气经过换热器8换热后,进入变换单元9,在微通道变换反应器内与变换催化剂接触,将重整气中一氧化碳转化为氢气得到变换气,微通道变换反应器采用移热介质g进行传热;

所得变换气在PSA单元10分离得到解吸气f和产品气e,所得产品气e为高纯氢气。

以下结合具体的实施例进一步对本发明的具体特征和使用效果进行说明,但并不因此而限制本发明。

下面结合实施例对本发明的方法予以进一步地说明,但本发明并不因此而限制。

在本发明中,在未作相反说明的情况下,使用的气体和液体的体积数值均为25℃和1个标准大气压下的数值。

实施例1

使用城市管道天然气作为原料气,天然气中的总硫摩尔分数为1×10-4,压力为0.3MPa。

使用气体压缩机将天然气压缩至2.0MPa;使用电加热将天然气预热至320℃,加入10%体积分数的氢气,然后通入加氢脱硫反应器。

加氢脱硫反应器中装填加氢脱硫催化剂,加氢脱硫催化剂的活性组分为Co和Mo,质量比例为2:1;载体为氧化铝,活性组分与载体的比例为0.2:1。加氢脱硫反应器中反应温度为320℃,反应压力为2MPa,气体空速为4000h-1。天然气经过加氢脱硫反应器后,天然气中的有机硫的摩尔分数不大于2×10-8。加氢脱硫后的天然气继续通入吸附脱硫反应器。

吸附脱硫反应器中装填吸附脱硫催化剂,吸附脱硫催化剂为ZnO。吸附脱硫反应器中反应温度为320℃,反应压力为2MPa,气体空速为4000h-1。天然气经过吸附脱硫反应器后,吸附脱硫后天然气中总硫的摩尔分数不大于1.5×10-8

使用城市自来水作为原料,脱除阳离子后,得到去离子水,去离子水加热后生成去离子水蒸汽。脱硫后的天然气与去离子水蒸汽混合通入预热器,天然气和水蒸汽的体积比例为1:3。预热后天然气和水蒸汽的温度在600℃。

重整单元使用方箱炉,供热热源为天然气和PSA单元解吸气燃烧;重整反应器使用列管反应器,列管的数量在8根,直径在14mm;重整反应器内装填催化剂,催化剂的活性中心为Ni,载体为氧化铝,活性中心和载体的质量比为0.3:1;重整反应的压力为2.0MPa,反应入口温度为600℃,出口温度为850℃,气体空速在5000h-1

重整单元出口重整气(不列出水蒸气)的组成见表1。

表1重整单元出口重整气体组成

气体组成 体积分数/%
CH<sub>4</sub> 2.5
H<sub>2</sub> 77.3
CO 9.4
CO<sub>2</sub> 10.8

重整单元的重整气经冷却降温至2200℃,进入变换单元。

变换单元使用微通道反应器,反应通道尺寸为0.5mm*5mm*300mm,截面为0.5mm*5mm的圆角矩形,通道数目为40个。通道内装填变换催化剂,变换催化剂直径在40~200μm之间,催化剂的外形为微球状;催化剂的活性中心为CoO、MoO和K2O,重量比例为1:1:1,载体为氧化铝,活性中心和载体的重量比例为1:1;变换反应的反应压力在2MPa,反应温度在220℃,气体空速在4000h-1。反应2000小时后,微通道变换反应器的压差为0.86MPa。出口气中CO的干基体积分数为2.4%。

变换单元出口变换气(不列出水蒸气)的组成见表2。

表2变换单元出口变换气组成

气体组成 体积分数/%
CH<sub>4</sub> 2.3
H<sub>2</sub> 76.3
CO 2.4
CO<sub>2</sub> 19.0

变换单元出口气降温至40℃后,通入PSA单元。

PSA单元吸附剂包括分子筛、氧化铝和活性炭。

PSA单元产品气中氢气的体积分数为99.99%。

实施例2

本实施例采用的微通道变换催化剂的制备方法如下:

在反应釜中加入水20kg,向其中加入硝酸铝1.2kg,之后加入浓硝酸200g,再加入2.3kg的PEG4000,最后加入拟薄水铝石粉4kg,搅拌均匀并研磨得到分散浆液。

将分散浆液在35℃搅拌老化1.5个小时。

将老化后的分散浆液送入喷雾干燥装置中干燥成型得到树莓型氧化物微球,其中喷雾干燥的雾化压力为0.3~3.0MPa,塔内压力-0.0010~-0.0090MPa;干燥初始入风温度为580℃,干燥终止出风温度为160℃。

树莓型氧化物微球的SEM照片如图2所示。

将所得树莓型氧化物微球作为载体,配置Co盐、Mo盐和K盐的浸渍液进行浸渍,经过120℃温度干燥,420℃焙烧后,得到树莓型微球空腔催化剂。该催化剂的活性中心为CoO、MoO和K2O,重量比例为1:1:1,载体为氧化铝,活性中心和载体的重量比例为1:1。树莓型微球空腔催化剂平均粒径150μm,中空结构的平均直径为45μm,大孔的孔径为20μm。

变换单元使用微通道反应器,反应通道尺寸为0.5mm*5mm*300mm,截面为0.5mm*5mm的圆角矩形,通道数目为40个。通道内装填上述所得树莓型微球空腔催化剂;变换反应的反应压力在2Mpa,反应温度在220℃,气体空速在4000h-1。反应2000小时后,微通道变换反应器的压差为0.13MPa。出口气中CO的干基体积分数为0.3%。

变换单元出口变换气(不列出水蒸气)的组成见表2。

表3变换单元出口变换气组成

气体组成 体积分数/%
CH<sub>4</sub> 2.1
H<sub>2</sub> 75.9
CO 0.3
CO<sub>2</sub> 21.7

14页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种提高回收氢气的吸收液质量的方法、装置、以及多晶硅尾气处理方法和系统

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类