一种P-GaN栅增强型HEMT器件及其制备方法

文档序号:1848330 发布日期:2021-11-16 浏览:24次 >En<

阅读说明:本技术 一种P-GaN栅增强型HEMT器件及其制备方法 (P-GaN gate enhanced HEMT device and preparation method thereof ) 是由 李祥东 韩占飞 刘苏杭 张进成 郝跃 于 2021-08-06 设计创作,主要内容包括:本发明公开了一种P-GaN栅增强型HEMT器件及其制备方法,制备方法包括:在衬底层上依次生长缓冲层、沟道层、势垒层和P-GaN层;在P-GaN上半层注入氢原子,形成高阻GaN层;在高阻GaN层的上形成TiN金属层;在TiN金属层的上形成栅极区域,刻蚀掉栅极区域外的TiN金属层、高阻GaN层和P-GaN层直至势垒层的上表面;在TiN金属层和势垒层的上及P-GaN层和高阻GaN层两侧形成钝化层;在钝化层的上表面的两端形成N离子注入区;刻蚀掉栅极区域的钝化层直至TiN金属层的上表面,在TiN金属层的上沉积栅金属形成栅极;分别刻蚀掉漏极区域的钝化层、势垒层和部分沟道层,并分别在沟道层上形成漏极、源极。本发明制备得到了可用的MISP-GaN栅结构,在有效提高器件击穿电压的同时抑制阈值电压漂移。(The invention discloses a P-GaN gate enhanced HEMT device and a preparation method thereof, wherein the preparation method comprises the following steps: sequentially growing a buffer layer, a channel layer, a barrier layer and a P-GaN layer on the substrate layer; injecting hydrogen atoms into the upper half layer of the P-GaN layer to form a high-resistance GaN layer; forming a TiN metal layer on the high-resistance GaN layer; forming a gate region on the TiN metal layer, and etching away the TiN metal layer, the high-resistance GaN layer and the P-GaN layer outside the gate region until reaching the upper surface of the barrier layer; forming passivation layers on the TiN metal layer and the barrier layer and on the P-GaN layer and the two sides of the high-resistance GaN layer; forming N ion injection regions at two ends of the upper surface of the passivation layer; etching the passivation layer of the gate region until reaching the upper surface of the TiN metal layer, and depositing gate metal on the TiN metal layer to form a gate; and respectively etching the passivation layer, the barrier layer and part of the channel layer in the drain region, and respectively forming a drain electrode and a source electrode on the channel layer. The MISP-GaN gate structure prepared by the invention can effectively improve the breakdown voltage of the device and inhibit the drift of the threshold voltage.)

一种P-GaN栅增强型HEMT器件及其制备方法

技术领域

本发明属于半导体器件技术领域,具体涉及一种P-GaN栅增强型HEMT器件及其制备方法。

背景技术

GaN高电子迁移率晶体管(High Electron Mobility Transistor,简称HEMT)具有宽带隙、高击穿场强、高电子迁移率、高能量转换效率等优点,在高频大功率的电子电力应用中潜力巨大。

常规的AlGaN/GaN高电子迁移率晶体管是常开型器件,然而在实际的应用场景中,考虑到实际成本和故障保护等因素,往往需要增强型HEMT器件。经过几十年的发展,目前制备增强型HEMT器件的方法主要有沟槽栅、氟离子注入和P-GaN栅等,其中P-GaN栅增强型HEMT器件的已经实现商业化并展露出广阔的发展前景。

但是,在目前的实际应用中,采用P-GaN栅的器件栅极正向击穿电压较低,这限制了器件的栅极驱动电压摆幅,直接造成导通损耗较高。此外,在GaN上无法实现较高质量的介质沉积,因此无法制备可用的MIS P-GaN栅结构。

发明内容

为了解决现有技术中存在的上述问题,本发明提供了一种P-GaN栅增强型HEMT器件及其制备方法。本发明要解决的技术问题通过以下技术方案实现:

本发明一实施例提供了一种P-GaN栅增强型HEMT器件的制备方法,包括:

步骤1:在衬底层上依次生长缓冲层、沟道层、势垒层和Mg掺杂的P-GaN层;

步骤2:在所述P-GaN层的上半层注入氢原子,形成高阻GaN层;其中,氢原子注入深度小于P-GaN层的厚度;

步骤3:在所述高阻GaN层的上表面沉积TiN金属,形成TiN金属层;

步骤4:在所述TiN金属层的上表面形成栅极区域,刻蚀掉栅极区域外的所述TiN金属层、所述高阻GaN层和所述P-GaN层直至所述势垒层的上表面;

步骤5:在所述TiN金属层和所述势垒层的上表面及所述P-GaN层和所述高阻GaN层两侧沉积介质材料,形成钝化层;

步骤6:在所述钝化层的上表面的两端分别注入N离子,形成N离子注入区;其中,所述N离子注入区的注入深度包括所述钝化层、所述势垒层和所述沟道层;

步骤7:在所述高阻GaN层上的钝化层的上表面形成所述栅极区域,刻蚀掉所述栅极区域的所述钝化层直至所述TiN金属层的上表面,在所述TiN金属层的上表面沉积栅金属形成栅极;

步骤8:分别在邻接所述N离子注入区的钝化层的上表面形成漏极区域和源极区域,刻蚀掉所述漏极区域的所述钝化层、所述势垒层和部分所述沟道层,在所述沟道层上沉积漏金属形成漏极,刻蚀掉所述源极区域的所述钝化层、所述势垒层和部分所述沟道层,在所述沟道层上沉积源金属形成源极。

在本发明的一个实施例中,所述步骤1在衬底层上依次生长缓冲层、沟道层、势垒层和Mg掺杂的P-GaN层,包括:

利用MOCVD技术在所述衬底层上依次生长厚度为800nm~6000nm的高阻GaN缓冲层、厚度为50nm~500nm的非掺杂GaN沟道层、厚度为10nm~40nm的AlxGa1-xN势垒层和厚度为50nm~500nm、Mg掺杂浓度为1018cm-3~1020cm-3的P-GaN层;其中,x=0.1~0.5。

在本发明的一个实施例中,所述步骤1在衬底层上依次生长缓冲层、沟道层、势垒层和Mg掺杂的P-GaN层,包括:

利用MOCVD技术在所述衬底层上依次生长厚度为800nm~6000nm的高阻AlGaN缓冲层、厚度为50nm~500nm的非掺杂GaN沟道层、厚度为10nm~40nm的AlxGa1-xN势垒层和厚度为50nm~500nm、Mg掺杂浓度为1018cm-3~1020cm-3的P-GaN层;其中,x=0.1~0.5。

在本发明的一个实施例中,所述步骤2在所述P-GaN层的上半层注入氢原子,形成高阻GaN层,包括:

利用离子注入工艺或等离子体处理工艺在所述P-GaN层的上半层注入氢原子,氢原子注入深度为5nm~100nm、注入浓度为1018cm-3~1020cm-3,形成厚度为5nm~100nm的高阻GaN层。

在本发明的一个实施例中,所述步骤3在所述高阻GaN层的上表面沉积TiN金属,形成TiN金属层,包括:

利用PVD工艺在所述高阻GaN层的上表面溅射沉积TiN金属,形成厚度为5nm~300nm的所述TiN金属层。

在本发明的一个实施例中,所述步骤5在所述TiN金属层和所述势垒层的上表面及所述P-GaN层和所述高阻GaN层两侧沉积介质材料,形成钝化层,包括:

利用PEALD或ALD或ECVD或LPCVD工艺在所述TiN金属层和所述势垒层的上表面及所述P-GaN层和所述高阻GaN层两侧沉积介质材料,形成厚度为50nm~400nm的所述钝化层。

在本发明的一个实施例中,所述介质材料包括SiO2或SiN或AlON或Al2O3

本发明另一实施例提供了一种P-GaN栅增强型HEMT器件,包括:

衬底层,依次位于所述衬底层上的缓冲层、沟道层、势垒层;

Mg掺杂的P-GaN层,位于部分所述势垒层上;

高阻GaN层,位于所述P-GaN层内;其中,所述高阻GaN层是通过对所述P-GaN层的上半层进行氢原子注入形成的,所述高阻GaN层的厚度小于所述P-GaN层的厚度;

TiN金属层,位于所述高阻GaN层上;

钝化层,位于所述TiN金属层和所述势垒层上及所述P-GaN层和所述高阻GaN层两侧;

N离子注入区,位于器件两端;其中,所述N离子注入区的注入深度包括所述钝化层、所述势垒层和所述沟道层;

栅极,贯穿所述钝化层且位于所述TiN金属层上;

漏极、源极,分别贯穿邻接所述N离子注入区的所述钝化层、所述势垒层和部分所述沟道层且位于所述沟道层上;

其中,所述P-GaN栅增强型HEMT器件由权利要求1~7任一项所述的P-GaN栅增强型HEMT器件的制备方法制备形成。

在本发明的一个实施例中,所述P-GaN层的厚度为50nm~500nm、Mg掺杂浓度为1018cm-3~1020cm-3

在本发明的一个实施例中,通过氢原子注入形成的所述高阻GaN层的厚度为5nm~100nm;其中,氢原子注入深度为5nm~100nm、注入浓度为1018cm-3~1020cm-3

本发明的有益效果:

本发明提出的P-GaN栅增强型HEMT器件的制备方法,通过在Mg掺杂的P-GaN层的上半层中注入氢原子,氢原子与掺杂元素Mg形成Mg-H络合物,从而消耗空穴,在P-GaN层的上半层中形成高阻GaN层,得到栅极漏电流小、击穿电压高、阈值电压稳定的增强型HEMT器件;

此外,本发明采用氢原子注入的方式制备得到可用的MIS P-GaN栅结构,制备的器件损伤小,提升了P-GaN栅增强型HEMT器件在高频大功率工作条件下的能量转换效率和可靠性。

以下将结合附图及实施例对本发明做进一步详细说明。

附图说明

图1是本发明实施例提供的一种P-GaN栅增强型HEMT器件的制备方法的流程示意图;

图2a~图2h是本发明实施例提供的一种P-GaN栅增强型HEMT器件的制备结构示意图;

图3是本发明实施例提供的一种P-GaN栅增强型HEMT器件的结构示意图。

附图标记说明:

1-衬底层;2-缓冲层;3-沟道层;4-势垒层;5-P-GaN层;6-高阻GaN层;7-TiN金属层;8-钝化层;9-栅极;10-源极;11-漏极。

具体实施方式

下面结合具体实施例对本发明做进一步详细的描述,但本发明的实施方式不限于此。

实施例一

为了提高P-GaN栅增强型HEMT器件的击穿电压,本发明实施例提出了一种P-GaN栅增强型HEMT器件的制备方法,请参见图1,图1是本发明实施例提供的一种P-GaN栅增强型HEMT器件的制备方法的流程示意图,该制备方法包括以下步骤:

步骤1、在衬底层1上依次生长缓冲层2、沟道层3、势垒层4和Mg掺杂的P-GaN层5。

具体而言,请参见图2a,本发明实施例一种可选方案,利用金属有机化合物化学气相淀积(Metal-organic Chemical Vapor Deposition,简称MOCVD)技术在衬底层1上依次生长厚度为800nm~6000nm的高阻GaN缓冲层2、厚度为50nm~500nm的非掺杂GaN沟道层3、厚度为10nm~40nm的AlxGa1-xN势垒层4和厚度为50nm~500nm、Mg掺杂浓度为1018cm-3~1020cm-3的P-GaN层5;其中,x=0.1~0.5。

本发明实施例另一种可选方案,利用MOCVD技术在衬底层1上依次生长厚度为800nm~6000nm的高阻AlGaN缓冲层2、厚度为50nm~500nm的非掺杂GaN沟道层3、厚度为10nm~40nm的AlxGa1-xN势垒层4和厚度为50nm~500nm、Mg掺杂浓度为1018cm-3~1020cm-3的P-GaN层5;其中,x=0.1~0.5。

步骤2、在P-GaN层5的上半层注入氢原子,形成高阻GaN层6;其中,氢原子注入深度小于P-GaN层5的厚度。

具体而言,为了提高栅极击穿电压,必需在栅金属和P-GaN层中间插入一层具有低缺陷密度的高阻绝缘层,通常是在栅金属和P-GaN层之间生长一层高阻绝缘层,比如:若在P-GaN层上生长SiO2作为高阻绝缘层,生长的高阻绝缘层SiO2质量较低,会导致栅极存在严重的阈值电压漂移问题;若在P-GaN层上直接生长高阻GaN层作为高阻绝缘层,在生长高阻GaN层的过程中,由于Mg源具有记忆效应,且在材料中易扩散,在切断Mg源之后,炉子内残留的Mg会继续掺杂到高阻GaN层,并且,p-GaN层的Mg也容易扩散到高阻GaN层,导致无法生长出高质量的高阻GaN层。因此,本实施例提出采用氢原子注入方式,在不引入新材料下,制备高阻GaN层,在氢原子注入时,需要控制氢原子注入深度小于P-GaN层5的厚度,以得到高质量的高阻GaN层,具体请参见图2b,本发明实施例利用离子注入工艺或等离子体处理工艺在P-GaN层5的上半层注入氢原子,氢原子注入深度为5nm~100nm、注入浓度为018cm-3~1020cm-3,形成厚度为5nm~100nm的高阻GaN层6,即高阻GaN层6为注入氢原子的P-GaN层5,未注入氢原子的P-GaN层为图2b所示的P-GaN层5,图2b中的P-GaN层5和高阻GaN层6的总厚度为图2a中未进行氢原子注入的P-GaN层5的厚度。

本发明实施例通过氢原子注入后,形成高阻GaN层6,阻断了栅极9电流漏电路径,可以大大减少栅极9的漏电流,且高阻GaN层6可以承受更高的电场,在有效提高器件栅极9的击穿电压的同时抑制阈值电压漂移;且本发明实施例由于利用同一材料制备高阻层,减少了不同材料之间的应力问题以及异质结的界面缺陷。

步骤3、在高阻GaN层6的上表面沉积TiN金属,形成TiN金属层7。

具体而言,请参见图2c,本发明实施例利用物理气相沉积(Physical VaporDeposition,简称PVD)工艺在高阻GaN层6的上表面溅射沉积TiN金属,形成厚度为5nm~300nm的TiN金属层7。

步骤4、在TiN金属层7的上表面形成栅极9区域,刻蚀掉栅极9区域外的TiN金属层7、高阻GaN层6和P-GaN层5直至势垒层4的上表面。

具体而言,请参见图2d,本发明实施例利用光刻显影技术,用光刻胶作为掩膜层在TiN金属层7的上表面形成栅极9区域,刻蚀掉栅极9区域外的TiN金属层7、高阻GaN层6和P-GaN层5直至势垒层4的上表面。

步骤5、在TiN金属层7和势垒层4的上表面及P-GaN层5和高阻GaN层6两侧沉积介质材料,形成钝化层8。

具体而言,请参见图2e,本发明实施例利用等离子体增强原子层沉积(PlasmaEnhanced Atomic Layer Deposition,简称PEALD)或原子层沉积(Atomic LayerDeposition,简称ALD)或增强化学气相沉积(Enhance Chemical Vapour Deposition,简称ECVD)或低压力化学气相沉积(Low Pressure Chemical Vapor Deposition,简称LPCVD)工艺在TiN金属层7和势垒层4的上表面及P-GaN层5和高阻GaN层6两侧沉积介质材料,形成厚度为50nm~400nm的钝化层8。其中,介质材料包括SiO2或SiN或AlON或Al2O3,但不局限于这些材料。

步骤6、在钝化层8的上表面的两端分别注入N离子,形成N离子注入区;其中,N离子注入区的注入深度包括钝化层8、势垒层4和沟道层3。

具体而言,请参见图2f,本发明实施例利用等离子体注入工艺在钝化层8的上表面的两端分别注入N离子,形成N离子注入区,控制注入深度至沟道层3实现平面器件隔离。

步骤7、在高阻GaN层6上的钝化层8的上表面形成栅极9区域,刻蚀掉栅极9区域的钝化层8直至TiN金属层7的上表面,在TiN金属层7的上表面沉积栅金属形成栅极9。

具体而言,请参见图2g,本发明实施例利用光刻显影技术,用光刻胶作为掩膜层在高阻GaN层6上的钝化层8的上表面形成栅极9区域,刻蚀掉该栅极9区域处的钝化层8直至TiN金属层7的上表面,并在TiN金属层7的上表面沉积栅金属形成栅极9,实现栅极9的欧姆接触。

步骤8、分别在邻接N离子注入区的钝化层8的上表面形成漏极11区域和源极10区域,刻蚀掉漏极11区域的钝化层8、势垒层4和部分沟道层3,在沟道层3上沉积漏金属形成漏极11,刻蚀掉源极10区域的钝化层8、势垒层4和部分沟道层3,在沟道层3上沉积源金属形成源极10。

具体而言,请参见图2h,本发明实施例用光刻显影技术,用光刻胶作为掩膜层,分别在邻接N离子注入区的钝化层8的上表面形成漏极11区域和源极10区域,刻蚀掉该漏极11区域处的钝化层8、势垒层4和部分沟道层3,在沟道层3上沉积漏金属形成漏极11,实现漏极11的欧姆接触,同时,刻蚀掉源极10区域处的钝化层8、势垒层4和部分沟道层3,在沟道层3上沉积源金属形成源极10,实现源极10的欧姆接触。最后对整个器件进行退火处理。

需要说明的是,本发明实施例并未进行工艺参数的具体说明,制备过程中采用的各工艺为现有技术,具体工艺参数根据实际情况设计,此处不做限制说明。

综上所述,本发明实施例提出的P-GaN栅增强型HEMT器件的制备方法,通过在Mg掺杂的P-GaN层5的上半层中注入氢原子,氢原子与掺杂元素Mg形成Mg-H络合物,从而消耗空穴,在P-GaN层5的上半层中形成高阻GaN层6,得到栅极9漏电流小、击穿电压高、阈值电压稳定的增强型HEMT器件;

此外,本发明实施例采用氢原子注入的方式制备得到可用的MIS P-GaN栅结构,制备的器件损伤小,提升了P-GaN栅增强型HEMT器件在高频大功率工作条件下的能量转换效率和可靠性。

基于同一发明构思,请再参见图3,本发明实施例还提出了一种P-GaN栅增强型HEMT器件,包括:

衬底层1,依次位于衬底层1上的缓冲层2、沟道层3、势垒层4;

Mg掺杂的P-GaN层5,位于部分势垒层4上;优选地,P-GaN层5的厚度为50nm~500nm、Mg掺杂浓度为1018cm-3~1020cm-3

高阻GaN层6,位于P-GaN层5内;其中,高阻GaN层6是通过对P-GaN层5的上半层进行氢原子注入形成的,高阻GaN层6的厚度小于P-GaN层5的厚度;优选地,通过氢原子注入形成的高阻GaN层6的厚度为5nm~100nm;其中,氢原子注入深度为5nm~100nm、注入浓度为1018cm-3~1020cm-3

TiN金属层7,位于高阻GaN层6上;

钝化层8,位于TiN金属层7和势垒层4上及P-GaN层5和高阻GaN层6两侧;

N离子注入区,位于器件两端;其中,N离子注入区的注入深度包括钝化层8、势垒层4和沟道层3;

栅极9,贯穿钝化层8且位于TiN金属层7上;

漏极11、源极10,分别贯穿邻接N离子注入区的钝化层8、势垒层4和部分沟道层3且位于沟道层3上;

其中,P-GaN栅增强型HEMT器件根据上述P-GaN栅增强型HEMT器件的制备方法制备形成。

对于器件实施例而言,由于其基本相似于制备方法实施例,所以描述的比较简单,相关之处参见制备方法实施例的部分说明即可。

在本发明的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。

在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。此外,本领域的技术人员可以将本说明书中描述的不同实施例或示例进行接合和组合。

尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。

以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

15页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种实现薄片晶圆背面切割道的工艺方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类