基于模态质量分布的数控机床工作空间点聚类方法

文档序号:189541 发布日期:2021-11-02 浏览:40次 >En<

阅读说明:本技术 基于模态质量分布的数控机床工作空间点聚类方法 (Numerical control machine tool working space point clustering method based on modal mass distribution ) 是由 毛新勇 郝才华 余凡 彭伊丽 李斌 刘红奇 彭芳瑜 于 2021-07-19 设计创作,主要内容包括:本发明属于数控机床动力学特征分析与表征相关技术领域,其公开了一种基于模态质量分布的数控机床工作空间点聚类方法,方法包括:采集工作空间的中心位置以及六个面中心位置的模态振型;基于模态振型获得子结构移动前后母结构的固有频率,并基于固有频率获得位置变化引起的母结构动态特性变化的敏感性系数;获取7个位置的敏感性系数,并基于敏感性系数将立方体工作空间划分为多个样本点;基于多个样本点的模态振型获得模态质量分布矩阵并将其映射至核空间进行聚类获得工作空间点的聚类。本申请基于整机结构的模态振型实现对不同方向动态特性变化敏感性分析,可以避免数控机床工作空间采样点选取的不合理性,实现对工作空间准确的划分和聚类。(The invention belongs to the technical field of numerical control machine tool dynamics characteristic analysis and characterization correlation, and discloses a numerical control machine tool working space point clustering method based on modal mass distribution, which comprises the following steps: acquiring the center position of a working space and the modal vibration modes of the center positions of six surfaces; obtaining the natural frequency of the mother structure before and after the movement of the substructure based on the mode shape, and obtaining the sensitivity coefficient of the dynamic characteristic change of the mother structure caused by the position change based on the natural frequency; acquiring sensitivity coefficients of 7 positions, and dividing a cube working space into a plurality of sample points based on the sensitivity coefficients; and obtaining a modal mass distribution matrix based on the modal shape of the plurality of sample points and mapping the modal mass distribution matrix to a kernel space for clustering to obtain the clustering of the working space points. The method and the device have the advantages that the sensitivity analysis of the modal shape on the dynamic characteristic changes in different directions is realized based on the whole structure, the irrationality of selecting the sampling points of the working space of the numerical control machine can be avoided, and the accurate division and clustering of the working space are realized.)

基于模态质量分布的数控机床工作空间点聚类方法

技术领域

本发明属于数控机床动力学特征分析与表征相关技术领域,更具体地,涉及一种基于模态质量分布的数控机床工作空间点聚类方法。

背景技术

机床加工空间中随加工位置的变化,整机结构的质量刚度分布发生变化,当整机结构存在刚度不均匀时,位置的变化会进一步导致结构中薄弱部件的变化。为了细化机床结构位置相关动力学特性的分析与描述,将位置变化引起的结构动态特性的变化分为仅有固有频率和阻尼比的变化,和模态参数以及结构的薄弱部件同时发生变化的两种变化类型。结构的薄弱部件通过模态质量分布进行识别,根据加工空间中不同位置模态质量分布是否变化将整个加工空间进行分区,同一区域内仅固有频率和阻尼比发生变化,不同区域之间结构的模态质量分布发生变化。模态质量分布的变化影响加工过程中整机结构振动主导的模态的变化,因此需要对整机结构在整个加工空间动力学特性进行分析。论文“partition of the workspace for machine tool based on position-dependentmodal energy distribution and clustering algorithm”其根据薄弱环节是否发生变化将整个工作空间划分成不同的子区域,在同一子区域只有模态参数发生变化,而薄弱点保持不变,在不同的子区域,整个机床的结构的薄弱点发生变化。但其是采用将工作空间均分的方式进行分析,并且直接进行计算聚类,聚类并不合理精准。

发明内容

针对现有技术的以上缺陷或改进需求,本发明提供了一种基于模态质量分布的数控机床工作空间点聚类方法,本申请通过敏感系数对数控立方体工作空间进行合理划分,再次基础上采用模态质量分布矩阵进行样本点聚类。该方法无需对加工空间遍历,基于整机结构的模态振型可以实现对不同方向动态特性变化敏感性分析,可以避免数控机床工作空间采样点选取的不合理性,实现对工作空间准确的划分和聚类。

为实现上述目的,按照本发明的一个方面,提供了一种基于模态质量分布的数控机床工作空间点聚类方法,所述方法包括:S1:采集所述数控机床立方体工作空间的中心位置以及六个面中心位置的模态振型;S2:将所述模态振型代入结构动力学特征方程获得子结构移动前后所依附的母结构的固有频率,并基于所述固有频率获得位置变化引起的母结构动态特性变化的敏感性系数;S3:获取所述中心位置以及六个面中心位置的敏感性系数,并基于所述中心位置以及六个面中心位置的敏感性系数将所述立方体工作空间划分为多个样本点;S4:获取多个所述样本点的模态振型并代入模态质量计算模型获得模态质量分布矩阵;S5:将所述模态质量分布矩阵映射至核空间并进行逐层聚类获得工作空间点的聚类。

优选地,所述步骤S2中,子结构移动前所述结构动力学特征方程为:

其中,K1为母结构的刚度矩阵;M1为母结构的质量矩阵;ω1i为子结构移动前母结构的第i阶固有频率,为母结构的第i阶模态振型;

子结构移动后所述结构动力学特征方程为:

其中,ω′1i为子结构移动后母结构的第i阶固有频率,为子结构移动后母结构的第i阶模态振型,m′为子结构位置的移动对所述母结构的附加质量,

优选地,步骤S2中所述基于所述固有频率获得位置变化引起的母结构动态特性变化的敏感性系数具体为:

忽略位置变化前后第i阶模态振型的变化,将所述子结构移动前所述结构动力学特征方程与所述子结构移动后所述结构动力学特征方程做差获得子结构移动前后母结构第i阶固有频率的关系式如下:

将子结构移动前后母结构的第i阶固有频率代入位置变化敏感性系数公式δ=(ω1i-ω′1i)/ω1i中获得子结构位置变化引起的结构动态特性变化的敏感性系数δ1

优选地,所述数控机床包括立柱、滑枕和横梁,X方向为滑枕和横梁在立柱上的运动,Y方向为滑枕在横梁上的运动,Z方向为滑枕的上下运动,所述步骤S3中获取所述中心位置以及六个面中心位置的敏感性系数具体包括:

基于所述敏感性系数公式获得立方体工作空间的中心位置以及六个面中心位置处在XYZ方向的敏感性系数,其中,X方向的敏感性系数通过立柱的质量以及滑枕和横梁的质量计算,Y方向的敏感性系数通过横梁的质量以及滑枕的质量计算,Z方向的敏感性系数通过滑枕的质量以及横梁和立柱的质量计算。

优选地,所述步骤S3中基于所述中心位置以及六个面中心位置的敏感性系数将所述立方体工作空间划分为多个样本点具体为:

将所述中心位置以及前后面中心位置点在X方向的敏感系数求均值获得所述立方体工作空间在X方向的敏感系数;

将所述中心位置以及左右面中心位置点在Y方向的敏感系数求均值获得所述立方体工作空间在Y方向的敏感系数;

将所述中心位置以及上下面中心位置点在Z方向的敏感系数求均值获得所述立方体工作空间在Z方向的敏感系数;

根据所述立方体工作空间在XYZ方向的敏感系数的大小进行划分,敏感系数大的方向划分密集样本点,敏感系数小的方向划分稀疏样本点。

优选地,所述模态质量计算模型为:

iii=0

其中,K为样本点所在结构的刚度矩阵,M为所述结构的质量矩阵,λi为代表固有频率的特征根,φi为特征根对应的特征向量即模态振型。

优选地,所述模态质量分布矩阵的表达式为:

其中,n为所述结构的第n个自由度。

优选地,采用核函数以及层次聚类算法对所述样本点进行聚类。总体而言,通过本发明所构思的以上技术方案与现有技术相比,本发明提供的基于模态质量分布的数控机床工作空间点聚类方法具有如下有益效果:

1.本申请基于不同方向动力学特性变化敏感性的分析实现工作空间划分,无需对加工空间进行遍历,可以实现动力学特性变化较大的方向选择较密集的样本点,动力学特性变化较大的方向选择较稀疏的样本点,进而在较密集的样本点处密集选择聚类位置点,在较稀疏的样本点处减少聚类位置点,即简化了运算又极大提高了聚类的合理性和准确性。

2.通过各位置的点平均值获取工作空间在XYZ方向的敏感系数更加准确合理。

3.采用核函数以及层次聚类算法对样本点进行逐层聚类,用户可以根据需要选择对应层级中的聚类结构,可以满足不同聚类要求。

附图说明

图1是基于模态质量分布的数控机床工作空间点聚类方法的步骤图;

图2是本实施例对数控机床施加的运行信号;

图3是本实施例数控机床立方体工作空间中心位置以及每个面中心位置共7个位置点;

图4是本实施例数控机床上测点的布置;

图5是本实施例数控机床立方体工作空间中样本点的分布;

图6是本实施例的聚类示意图;

图7是本实施例的聚类结果示意图。

具体实施方式

为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。

请参阅图1,本发明提供了一种基于模态质量分布的数控机床工作空间点聚类方法。该方法通过采集数控机床立方体工作空间中心位置以及六个面中心位置的不同方向的空运行激励响应信号(也即模态振型),对该信号进行分析得到工作空间不同方向的动力学特征敏感系数,根据该敏感系数对工作空间进行划分为多个样本点,然后通过在每个样本点进行空运行激励实验,提取不同工作空间点下模态质量分布矩阵,并作为特征向量映射到高斯核空间,通过层次聚类模型对其进行聚类分析,将工作空间划分为不同区域,可以更有效准确地实现对加工空间不同位置结构动态特性的预测。该方法可实现对数控机床空间位置的精确划分,具有划分快速和准确,更有效地实现对加工空间不同位置结构动态特性预测等特点。以下将以龙门加工数控机床为例对本申请中的方法进行详细介绍。如图4所示,本实施例中的龙门加工数控机床包括立柱、横梁和滑枕,立柱用于支撑所述横梁和滑枕,横梁可以在立柱上前后移动,滑枕可以在横梁上左右滑动和上下滑动。本申请中的方法具体包括如下步骤S1~S5。

S1:采集所述数控机床立方体工作空间的中心位置以及六个面中心位置的模态振型。

分别在立柱,横梁和滑枕部件各布置8个测点,滑枕下部的铣头布置1个测点,共25个测点,每个测点放置PCB三向振动传感器。每批次可以测量9个测点,铣头测点为参考点,在传感器分批次测量过程中该测点保持不变,其他24个测点分3次测量,完成共25个测点的数据采集。横梁和滑枕所能达到的最大空间为数控机床立方体工作空间。其中,X方向的进给运动通过滑枕和横梁在立柱上的前后运动实现;Y方向的运动通过滑枕在横梁上的左右运动实现;Z方向的运动通过滑枕的上下运动实现。对机床施加运行信号(如图2所示),分别采集数控机床立方体工作空间中心位置以及每个面中心位置共7个位置点处(如图3所示)的空运行激励响应信号(模态振型),可以通过在主轴头和滑枕部件布置加速度传感器测量振动响应信号,以铣头测点为基准,在传感器分批次测量过程中该测点保持不变。

S2:将所述模态振型代入结构动力学特征方程获得子结构移动前后所依附的母结构的固有频率,并基于所述固有频率获得位置变化引起的母结构动态特性变化的敏感性系数。

由于结构中子结构的位置变化引起的结构动态特性变化的敏感系数为δ:δ=(ω1i-ω′1i)/ω1i,其中,ω1i为子结构移动前母结构的第i阶固有频率,ω′1i为子结构移动后母结构的第i阶固有频率。因此,为获得敏感系数必须获得子结构移动前后母结构的第i阶固有频率。

子结构在母结构上移动时,子结构可以视为母结构的附加质量。结构动力学方程可以简化为其中,M1为母结构的质量矩阵,C1为母结构的阻尼矩阵,K1为母结构的刚度矩阵,x1为结构振动位移向量,F1为外加激励力,不考虑结构阻尼的影响,将上式方程转化为其对应的特征方程为:

其中,K1为母结构的刚度矩阵;M1为母结构的质量矩阵;ω1i为子结构移动前母结构的第i阶固有频率,为母结构的第i阶模态振型;

子结构移动后所述结构动力学特征方程为:

其中,ω′1i为子结构移动后母结构的第i阶固有频率,为子结构移动后母结构的第i阶模态振型,m′为子结构位置的移动对所述母结构的附加质量,

m′随子结构位置的变化而变化,m2r为子结构2位置的移动对所述母结构的附加质量矩阵。忽略位置变化前后第i阶模态振型的变化,将所述子结构移动前所述结构动力学特征方程与所述子结构移动后所述结构动力学特征方程做差获得子结构移动前后母结构第i阶固有频率的关系式如下:

将子结构移动前后母结构的第i阶固有频率代入位置变化敏感性系数公式δ=(ω1i-ω′1i)/ω1i中获得子结构位置变化引起的结构动态特性变化的敏感性系数δ1

S3:获取所述中心位置以及六个面中心位置的敏感性系数,并基于所述中心位置以及六个面中心位置的敏感性系数将所述立方体工作空间划分为多个样本点。

本实施例中,数控机床包括立柱滑枕和横梁,X方向为滑枕和横梁在立柱上的运动,Y方向为滑枕在横梁上的运动,Z方向为滑枕的上下运动,所述步骤S3中获取所述中心位置以及六个面中心位置的敏感性系数具体包括:

基于所述敏感性系数公式获得立方体工作空间的中心位置以及六个面中心位置处在XYZ方向的敏感性系数。X方向的敏感性系数通过立柱的质量以及滑枕和横梁的质量计算,其中,立柱为母结构,滑枕和横梁为子结构;Y方向的敏感性系数通过横梁的质量以及滑枕的质量计算,其中,滑枕为子结构,横梁为母结构;Z方向的敏感性系数通过滑枕的质量以及横梁和立柱的质量计算,其中,滑枕为子结构,横梁和立柱为母结构。

步骤S3中基于所述中心位置以及六个面中心位置的敏感性系数将所述立方体工作空间划分为多个样本点具体为:

将所述中心位置以及前后面中心位置点在X方向的敏感系数求均值获得所述立方体工作空间在X方向的敏感系数;

将所述中心位置以及左右面中心位置点在Y方向的敏感系数求均值获得所述立方体工作空间在Y方向的敏感系数;

将所述中心位置以及上下面中心位置点在Z方向的敏感系数求均值获得所述立方体工作空间在Z方向的敏感系数;

根据所述立方体工作空间在XYZ方向的敏感系数的大小进行划分,敏感系数大的方向划分密集样本点,敏感系数小的方向划分稀疏样本点。

本实施例中基于敏感系数的大小的计算,Z方向的样本点较为密集,X和Y方向的样本点较为稀疏。根据以上原则选择如图5所示的加工空间中的63个位置进行整机结构模态参数辨识。

S4:获取多个所述样本点的模态振型并代入模态质量计算模型获得模态质量分布矩阵。

基于以上样本点,对测点进行布置,立柱上设置8个测点,在横梁和滑枕上各布置8个测点,铣头布置一个测点,在主轴头和滑枕部件布置加速度传感器测量各样本点处的振动响应信号(模态振型),以铣头测点为基准,在传感器分批次测量过程中该测点保持不变,获取各样本点在的空运行激励响应信号(模态振型)。

所述模态质量计算模型为:

iii=0

其中,K为样本点所在结构的刚度矩阵,M为所述结构的质量矩阵,λi为代表固有频率的特征根,φi为特征根对应的特征向量即模态振型。

结构的第i阶模态的模态质量可以表示为:

其中,k=1,2,…n为结构n个自由度中的第k个自由度,Mk为模态质量在第k个自由度下的分布矩阵,φki为第i阶模态振型在第k个自由度下的分布矩阵。模态质量表达是中各累加项为模态振型的平方与结构质量的乘积,其正比于动能的表达式,因此将模态质量表达式中的各累加项的展开来表示模态能量在各自由度上的分布,模态能量集中的自由度为结构的薄弱环节。将各阶模态的模态质量在各自由度的累加项展开可得模态质量分布矩阵T′i

其中,n为所述结构的第n个自由度。

S5:将所述模态质量分布矩阵映射至核空间并进行逐层聚类获得工作空间点的聚类。

将Q个样本点的模态质量构成的矩阵通过高斯核函数映射的核空间,计算每个样本点的之间的距离,形成Q*Q的距离矩阵

将每个样本点作为一个类,总共得到Q个类,每类仅包含一个样本,类与类之间的距离就是它们里面的所有样本之间的距离。如图6所示,找到最接近的两个类合并成一类,总的类的个数减少1。然后采用平均相似距离重新计算新构建的类与之前类之间的距离,重复以上步骤,直到最后所有样本合并成一个类。后期用户可以根据实际需要从聚类结果中选择对应的聚类层级即可获得最终的聚类结果。

本实施例中根据所取的63个位置点模态实验所辨识的模态振型计算各位置点处结构的模态质量分布,通过高斯核函数映射之后进行层次聚类,最终根据结果选取两个雷,因此加工空间被分成两个区域,如图7所示。

综上所述,本申请提出的方法对数控机床工作空间动态特性变化敏感性分析并针对不同方向的敏感系数的差异进行空间划分,在每个工作空间取样点上获取机床的模态质量分布矩阵,然后进行高斯核映射以及层次聚类分析发现同一类别下的机床动力学特性有较强的相似性,该方法可以更有效地实现对加工空间不同位置结构动态特性的预测有极大的意义。本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

14页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:基于握手协议的智能调机方法及系统

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类