Damper shock absorption system based on planar pillar equipment of transformer substation

文档序号:1934197 发布日期:2021-12-07 浏览:21次 中文

阅读说明:本技术 一种基于变电站平面型支柱类设备的阻尼器减震系统 (Damper shock absorption system based on planar pillar equipment of transformer substation ) 是由 李�昊 王耀龙 许志松 张云 于 2021-09-07 设计创作,主要内容包括:本发明公开了一种基于变电站平面型支柱类设备的阻尼器减震系统,包括两根支架立柱,两根支架立柱顶部固定有同一横向支架,该横向支架上安装有多根支柱式设备;两根支架立柱底部相对设置转向定滑轮,顶部内侧分别相对挂设有内阻尼器拉索,两根内阻尼器拉索分别绕过其对向支架立柱底部设置的转向定滑轮后连接在同一平面内阻尼器两侧;横向支架中部相互垂直固定连接有条形附加支架,条形附加支架两端分别挂设有外阻尼器拉索,两根外阻尼器拉索连接同一平面外阻尼器两侧,平面外阻尼器悬挂于平面内阻尼器正上方。本发明安装方便、使用经济,通过在水平正交两个方向上增加阻尼器,实现多方位减震效应,有效提升变电站平面型支柱类设备的抗震性能。(The invention discloses a damper shock absorption system based on planar pillar type equipment of a transformer substation, which comprises two support stand columns, wherein the tops of the two support stand columns are fixedly provided with a same transverse support, and a plurality of pillar type equipment are arranged on the transverse support; the bottom parts of the two support columns are oppositely provided with steering fixed pulleys, the inner sides of the top parts of the two support columns are respectively and oppositely hung with inner damper inhaul cables, and the two inner damper inhaul cables are respectively wound around the steering fixed pulleys arranged at the bottom parts of the opposite support columns and then are connected to two sides of the inner damper in the same plane; the middle part of the transverse support is vertically and fixedly connected with a bar-shaped additional support, two ends of the bar-shaped additional support are respectively provided with an outer damper inhaul cable in a hanging mode, the two outer damper inhaul cables are connected with two sides of an outer damper on the same plane, and the outer damper on the plane is hung right above the damper in the plane. The invention has convenient installation and economic use, realizes the multidirectional damping effect by adding the dampers in two horizontal and orthogonal directions, and effectively improves the anti-seismic performance of planar type pillar equipment of the transformer substation.)

1. The utility model provides a attenuator shock mitigation system based on planar pillar class equipment of transformer substation which characterized in that: the device comprises two support upright posts (1) which are oppositely arranged, wherein the tops of the two support upright posts (1) are fixedly supported with a same transverse support (2), and a plurality of support post devices (3) are arranged on the transverse support (2) along the extending direction of the transverse support;

two support stand (1) bottom sets up relatively and turns to fixed pulley (4), two support stand (1) top inboard is hung relatively respectively and is equipped with interior damper cable (5), two its subtend support stand (1) bottom setting is walked around respectively in interior damper cable (5) connect in the coplanar behind the fixed pulley (4) attenuator (6) both sides.

2. The damper shock absorption system based on the planar type pillar equipment of the transformer substation according to claim 1, wherein: the middle part of the transverse bracket (2) is fixedly connected with a strip-shaped additional bracket (7), the strip-shaped additional bracket (7) is perpendicular to the transverse bracket (2), and the transverse bracket (2) and the strip-shaped additional bracket (7) are arranged in an axial symmetry manner;

the bar-shaped additional support (7) is provided with two outer damper inhaul cables (8) at two ends in a hanging mode respectively, the bottoms of the outer damper inhaul cables (8) are connected to two sides of an outer damper (9) on the same plane respectively, and the outer damper (9) on the plane is hung over the damper (6) in the plane.

3. The damper shock absorption system based on the planar type pillar equipment of the transformer substation according to claim 2, wherein: the bar-shaped additional support (7) is of a square frame structure consisting of two oppositely arranged long groove steel bars (71) and two oppositely arranged short square steel pipes (72), the middle parts of the long groove steel bars (71) are fixedly connected with the middle parts of the transverse supports (2), pull rings (74) are hung in the middle parts of the bottom surfaces of the short square steel pipes (72) through turn buckle bolts (73), the upper ends of outer damper stay ropes (8) are hung on the pull rings (74), and the lower ends of the outer damper stay ropes (8) are fixed on the side walls of the out-of-plane damper (9).

4. The substation planar type pillar equipment based damper shock absorption system according to claim 3, wherein: two stiffening rib plates (75) are arranged in the middle of the long-slot steel bar (71), and the two stiffening rib plates (75) are respectively arranged close to the edge of the transverse support (2).

5. The damper shock absorption system based on the planar type pillar equipment of the transformer substation according to claim 1, wherein: the in-plane damper (6) is fixedly arranged on the plane of the support upright post (1).

6. The damper shock absorption system based on the planar type pillar equipment of the transformer substation according to claim 2, wherein: the bottom of the out-of-plane damper (9) is fixedly connected with the top of the in-plane damper (6).

Technical Field

The invention belongs to the technical field of damping and shock absorption, and particularly relates to a damper shock absorption system based on planar pillar equipment of a transformer substation.

Background

China is located between two earthquake zones in the world, namely the Pacific earthquake zone and the Eurasia earthquake zone, and earthquakes are very active. As a country with frequent earthquakes, the earthquake disasters have great threat to substation equipment. A large number of cantilever support column type devices exist in a transformer substation, in order to meet the requirement of electrical insulation safety distance, a certain distance is needed between the support column type electrical devices and the ground, steel supports are generally adopted for connection and installation, and the supports have obvious amplification effect on input earthquakes. Due to the limitation of material characteristics and structural characteristics, the existing structural form of the pillar type electrical equipment is difficult to change, and conventionally, the structural parts of the equipment are generally reinforced to resist strong earthquake action and improve the earthquake resistance of the electrical equipment.

The existing transformer substations at home and abroad adopt a damping technology to reduce earthquake input and earthquake energy dissipation of equipment, so that the structural integrity of pillar type electrical equipment under strong earthquake can be ensured, the basic functions of the electrical equipment in normal operation are not influenced, and the effectiveness of the electrical equipment is verified. But at present, the damping technology is mainly applied to single-body strut equipment. In the case of a planar device having a plurality of legs, such as a disconnecting switch and a circuit breaker, since there is a possibility that the actual seismic excitation may occur in any horizontal direction, it is necessary to simultaneously damp the vibration in both the plane of the device and the direction orthogonal thereto. However, the existing damping technical scheme has obvious defects:

1. if each strut of the equipment is only subjected to shock absorption, the economic cost is high;

2. the damping scheme which does not take the whole equipment as an object may cause that the relative displacement between different struts is larger than that before damping, so that the lead between the equipment is pulled and damaged under the action of an earthquake;

3. if an additional damping device is installed on the whole equipment, the existing damping arrangement scheme only can effectively damp in the plane direction aiming at the structural form of the plane type equipment;

4. in the out-of-plane direction, there is no significant relative motion between the parts of the apparatus, so it is difficult to produce a good damping effect by the damping device.

Therefore, the orthogonal bidirectional damping technical scheme designed for the planar strut equipment is of great significance.

Disclosure of Invention

The invention aims to overcome the defects that the existing planar type pillar equipment of a transformer substation is poor in anti-seismic performance and has no auxiliary shock absorption of shock absorption members, and provides a shock absorption system of a damper based on the planar type pillar equipment of the transformer substation.

The invention adopts the following technical scheme:

the utility model provides a attenuator shock mitigation system based on planar pillar class equipment of transformer substation which the key lies in: the device comprises two support stand columns which are oppositely arranged, wherein the tops of the two support stand columns are fixedly supported with the same transverse support, and a plurality of support column type devices are arranged on the transverse support along the extending direction of the transverse support;

two the support stand bottom sets up the direction turning fixed pulley relatively, two the inside relative string in support stand top is equipped with interior damper cable respectively, two interior damper cable walks around its subtend support stand bottom setting respectively connect in the coplanar behind the direction turning fixed pulley damper both sides.

The effect of this scheme is: the plane inner damper is suspended on a plane type strut equipment support through an inner damper inhaul cable, so that in a plane, the inner damper inhaul cable is directly connected with the top end point of a support upright column, the bottom of the support upright column is connected with the two sides of the plane inner damper in the horizontal direction through a pulley mechanism, the whole framework deforms under the action of an earthquake, the inner damper inhaul cable stretches and contracts on two diagonal lines, translation is generated at the two ends of the plane inner damper, energy dissipation and shock absorption are often realized through a viscous damping mechanism inside the plane inner damper, the displacement of the whole framework is limited, and a good shock absorption effect is achieved.

Preferably, the middle part of the transverse bracket is fixedly connected with a strip-shaped additional bracket, the strip-shaped additional bracket is perpendicular to the transverse bracket, and the transverse bracket and the strip-shaped additional bracket are arranged in axial symmetry;

outer damper inhaul cables are hung at two ends of the bar-shaped additional support respectively, the bottoms of the two outer damper inhaul cables are connected to two sides of the outer damper on the same plane respectively, and the outer damper on the plane is hung right above the damper in the plane.

The effect of this scheme is: the bar-shaped additional support is perpendicular to the transverse support, the outer damper is hung on the plane, the outer damper inhaul cable and the outer damper on the plane form a V-shaped system, under the action of an earthquake, the whole framework moves out of plane, the stretching trends of two limbs of the V-shaped inhaul cable of the outer damper are different, the moving directions of the V-shaped inhaul cable of the outer damper are conducted to the dampers and are not on the same straight line, and energy dissipation and shock absorption in the outer direction of the plane are achieved.

According to the preferable scheme, the strip-shaped additional support is a square frame structure formed by two oppositely arranged long groove steel bars and two oppositely arranged short square steel pipes, the middle parts of the long groove steel bars are fixedly connected with the middle parts of the transverse supports, a pull ring is hung at the middle part of the bottom surface of each short square steel pipe through a turnbuckle, the upper end of an outer damper inhaul cable is hung on the pull ring, and the lower end of the outer damper inhaul cable is fixed on the side wall of the plane outer damper.

The effect of this scheme is: the frame structure is beneficial to light weight and cost reduction of the device, the closed square steel pipe is good in torsion resistance, and torsion under the action of the pulling force of the outer damper inhaul cable can be avoided.

Preferably, two stiffening rib plates are arranged in the middle of the long-groove steel bar, and the two stiffening rib plates are respectively arranged close to the edge of the transverse support. The effect of this scheme is: avoiding the local tearing of the steel beam plate.

Preferably, the in-plane damper is fixed on a plane on which the support column is mounted. The effect of this scheme is: the position of the damper in the fixed plane is fixed, and the relative movement position of the two inner damper inhaul cables is limited by the fixed plane, so that the damping effect is better guaranteed.

Preferably, the bottom of the out-of-plane damper is fixedly connected with the top of the in-plane damper. The effect of this scheme is: and the multi-direction mutual drag and offset are favorable for improving the damping performance.

Has the advantages that: the damper damping system based on the planar type pillar equipment of the transformer substation is convenient to install and economical to use, achieves the multidirectional damping effect by adding the dampers in the two horizontal and orthogonal directions, and effectively improves the anti-seismic performance of the planar type pillar equipment of the transformer substation.

Drawings

Fig. 1 is a representation of the deformation state of a planar post-type device of a substation;

fig. 2 is a schematic view of a planar in-plane damper 6 for planar equipment such as a pillar of a substation;

fig. 3 is a simplified structural diagram of the planar type pillar equipment of the transformer substation simultaneously provided with the in-plane damper 6 and the out-of-plane damper 9;

fig. 4 is a simplified structural diagram of the bar-shaped additional support 7.

Detailed Description

The invention is described in further detail below with reference to the following figures and examples:

example (b):

as shown in fig. 1 and 2, the damper shock absorption system based on the planar type pillar equipment of the transformer substation comprises two oppositely arranged support pillars 1, wherein the tops of the two support pillars 1 are fixedly supported with a same transverse support 2, and a plurality of pillar equipment 3 are arranged on the transverse support 2 along the extending direction of the transverse support; two 1 bottoms of support stand set up relatively and turn to fixed pulley 4, two 1 top inboard of support stand hangs relatively respectively and is equipped with interior damper cable 5, two interior damper cable 5 walks around its setting of 1 bottoms of subtending support stand respectively turn to connect 6 both sides of interior damper in the coplanar behind the fixed pulley 4.

As shown in fig. 3, a bar-shaped additional support 7 is fixedly connected to the middle of the transverse support 2, the bar-shaped additional support 7 is perpendicular to the transverse support 2, and the transverse support 2 and the bar-shaped additional support 7 are arranged in axial symmetry; the bar is attached 7 both ends of support and is hung outer attenuator cable 8 respectively, two outer attenuator cable 8 bottom is connected respectively in the outer attenuator 9 both sides of coplanar, outer attenuator 9 in the plane hang in directly over attenuator 6 in the plane, 6 fixed mounting of attenuator in the plane are in on the plane of support stand 1, outer attenuator 9 bottom in the plane with 6 top fixed connection of attenuator in the plane.

As shown in fig. 4, the bar-shaped additional support 7 is a square frame structure composed of two oppositely arranged long groove steel bars 71 and two oppositely arranged short square steel tubes 72, the middle of the long groove steel bars 71 is fixedly connected with the middle of the transverse support 2, a pull ring 74 is suspended in the middle of the bottom surface of the short square steel tubes 72 through a turnbuckle 73, the upper end of the outer damper stay 8 is suspended on the pull ring 74, and the lower end of the outer damper stay 8 is fixed on the side wall of the out-of-plane damper 9. Two stiffening rib plates 75 are arranged in the middle of the long-slot steel bar 71, and the two stiffening rib plates 75 are respectively arranged close to the edge of the transverse support 2.

Finally, it should be noted that the above-mentioned description is only a preferred embodiment of the present invention, and those skilled in the art can make various similar representations without departing from the spirit and scope of the present invention.

9页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种空气弹簧的上气室结构

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类