一种高性能速滑冰刀刀片的制备方法

文档序号:1945303 发布日期:2021-12-10 浏览:18次 >En<

阅读说明:本技术 一种高性能速滑冰刀刀片的制备方法 (Preparation method of high-performance blade of speed skating blade ) 是由 任淑彬 王钢 黄玺章 赵洋 曲选辉 于 2021-08-18 设计创作,主要内容包括:一种高性能速滑冰刀刀片材料的制备方法,属于金属材料领域。首先采用真空气雾化制粉技术制备质量比为C:1.20-1.30%;Si:0.3-0.5%;Mn:0.65-1.00%;Cr:4.8-5.2%;Mo:4.8-5.2%;V:4.8-5.2%;Co:4.8-5.2%;W:4.8-5.2%;O≤0.005%;N:0.03-0.05%,余量为Fe的球形金属粉末,其中粉末的粒度范围为10-250μm微米,然后进行热等静压烧结致密化得到热等静压锭,再将热等静压锭进行锻造开坯和热轧,得到一定厚度的板坯,之后将板坯与相同厚度的刀背材料进行焊接得到双金属刀片毛坯,再进行性能热处理,之后将热处理后的板坯加工成所需要尺寸的半成品双金属刀片,最后对该双金属刀片的刀刃部分进行辉光粒子氮化处理,在表面形成厚度为0.11~0.12mm的碳氮化物层,采用本发明方法所制备的冰刀具有优异的耐磨性、韧性,同时与冰面的摩擦系数更低,可进一步提高运动效率。(A preparation method of a high-performance blade material of a speed skating blade belongs to the field of metal materials. Firstly, preparing a powder by adopting a vacuum gas atomization powder preparation technology, wherein the mass ratio of C is 1.20-1.30%; 0.3 to 0.5 percent of Si; 0.65 to 1.00 percent of Mn; 4.8 to 5.2 percent of Cr; 4.8 to 5.2 percent of Mo; v, 4.8-5.2%; 4.8 to 5.2 percent of Co; 4.8 to 5.2 percent of W; o is less than or equal to 0.005 percent; n: 0.03-0.05 percent of Fe, and the balance of Fe, wherein the particle size range of the powder is 10-250 microns, then hot isostatic pressing sintering densification is carried out to obtain a hot isostatic pressing ingot, then forging cogging and hot rolling are carried out on the hot isostatic pressing ingot to obtain a plate blank with a certain thickness, then the plate blank and a knife back material with the same thickness are welded to obtain a bimetal blade blank, then performance heat treatment is carried out, the plate blank after heat treatment is processed into a semi-finished bimetal blade with the required size, finally glow particle nitridation treatment is carried out on the blade part of the bimetal blade, and a carbonitride layer with the thickness of 0.11-0.12 mm is formed on the surface.)

一种高性能速滑冰刀刀片的制备方法

技术领域

本发明属于金属材料领域,涉及一种高性能速滑冰刀刀片的制备方法。

背景技术

运动员滑冰过程是涉及承压、摩擦与磨损等多因素综合的复杂过程, 冰刀的性能、寿命和可靠性对运动员的运动效率有着重要的影响。冰 刀主要由刀片、刀托、刀管等几部分组成,其中刀片通常为双金属刀 片,由高强韧性的刀背和高耐磨高韧性的刀刃组成。在滑行过程中, 刀刃与冰面高速摩擦,长时间承受较大摩擦力的作用。冰刀使用一段 时间后,其刃口会变钝,此时运动员身体倾斜动作的有效支撑能力下 降,有效蹬冰力量和驱动效率降低,这时通常需要对其重新研磨使其 恢复原来的形状。因此,为防止冰刀刀刃部位出现磨损或变形而影响 运动员发挥竞技水平,需要刀刃能够长时间保持锋利,持续保障“切 冰”效果和防止侧滑,实现冰刀的高效驱动,即刀刃与冰面接触部位 需要具有较强的耐磨性能;同时,刀刃还应具有足够的抗塑性变形和 脆性断裂的能力,即足够的强韧性。目前,从应用效果看,冰刀刀片 材料,尤其是刀刃材料仍然不能完全满足竞赛或训练需求,急需在现 有材料的基础上,研制新的冰刀刀片材料以满足竞赛和训练要求。

发明内容

本发明的目的制备一种兼顾强韧性、耐磨损、与冰面低摩擦的冰刀刀片,实现冰刀的高效驱动,同时解决冰刀刀片使用寿命短的问题。

本发明所述一种高性能速滑冰刀刀片材料的制备方法,其特征在于制备步骤如下:一种高性能速滑冰刀刀片的制备方法,其特征在于制备步骤如下:

1)采用真空气雾化制粉技术制备球形金属粉末,其中粉末的粒度范围为10-250μm微米,Cr、Mo W、Co和V的质量比Cr:Mo:W: Co:V=1:1:1:1:1;

2)将粉末装入碳钢包套后进行热等静压烧结得到热等静压锭;

3)将热等静压锭进行锻造开坯,再热轧成带材;

4)将热轧后的刀刃带材与冰刀背材采用激光进行焊接,背材的厚度与刀刃带材厚度一致;

5)将焊接后的双金属片毛坯进行性能热处理,得到热处理后的双金属刀片;

6)将经过性能热处理的双金属刀片根据最终需要的刀片厚度和外形轮廓尺寸进行机械加工,得到半成品的双金属刀片,再将该刀片至于辉光离子氮化炉中进行氮化处理,氮化时只氮化刀刃部分,刀背部分采用保护措施进行保护,不淡化,得到成品双金属刀片。

进一步地,步骤1)所述金属粉末质量百分比为C:1.20-1.30%; Si:0.3-0.5%;Mn:0.65-1.00%;Cr:4.8-5.2%;Mo:4.8-5.2%;V:4.8-5.2%; Co:4.8-5.2%;W:4.8-5.2%;O≤0.005%;N:0.03-0.05%,余量为 Fe。

进一步地,步骤2)所述烧结温度1120-1150℃,烧结压力70- 90MPa,保温时间2-2.5小时。

进一步地,步骤3)所述锻造和热轧的开始温度为1150℃~1160℃,终止温度为900℃~910℃,热轧后的带材厚度为1.35-1.40mm,宽度为10-12mm。

进一步地,步骤4)所述冰刀背材的成分为C:0.2-0.3%;Si:0.3- 0.5%;Mn:0.9-1.2%;Cr:6.0-7.0%;Mo:2.5-3.5%;W:3.0-3.8%,余量为Fe,背材的厚度与刀刃带材厚度均为1.35-1.40毫米,宽度为40mm-45mm,激光焊接的功率为2400-2500W,焊接速度为1.8-2m/min。

进一步地,步骤5)所述热处理的工艺为:从室温以60-65℃/h 升温至750-755℃,保温40min~45min,然后继续以70-80℃/h的速度升温至1100-1150℃,保温2-3min,再采用油淬冷却到50℃以下,然后进行回火处理,回火温度为550-570℃,保温时间2-2.5h。

进一步地,步骤6)所述氮化的温度为550-560℃,氮化时间2- 2.5h,气源采用氨气,最终在刀刃表面形成厚度为0.11~0.12mm的碳氮化物层。

本发明在成分设计时,尽管加入的元素都是常规的强化元素,但是在元素的选择和加入量是根据最终冰刀刀刃性能要求设计的。冰刀刀刃要求具有高的耐磨性、高的韧性、与冰面低的摩擦系数、高的强度,为了兼顾上述综合性能,在成分设计时,通过在铁基体中添加Cr、 Mo、W、Co、V,并严格控制他们的含量,即这些元素的质量比Cr: Mo:W:Co:V=1:1:1:1:1时,可通过淬火和回火处理,在基体中形成500-900nm的Fe51W14Mo19Cr9Si5Co2相、1-2微米的VC相、400- 900nm的(Cr、Mo、Fe)23C6复合碳化物相、500-900nm的(W、Mo、 Fe、Cr)6C复合碳化物相,这些相弥散分布在基体中,并且四种相的质量比为1:1:1:1,可以很好的发挥这几种相各自的优势,弥补其不足,如Fe51W14Mo19Cr9Si5Co2相具有高的断裂韧性和一定的耐磨性,VC具有高的硬度、耐磨性,但断裂韧性差,(Cr、Mo、Fe)23C6复合碳化物相和(W、Mo、Fe、Cr)6C和复合碳化物相具有一定的硬度和断裂韧性,这样通过控制四种相的比例,可以重复发挥给自的优势,使得冰刀刀刃部分具有高的韧性、强度和耐磨性等优异的综合力学性能。

在此成分设计并结合热处理性能调控的基础上,再对刀刃部分进行表面渗氮处理,即在表面深入氮原子,氮原子与Fe及其他元素 W、Mo、Cr、C等形成(Fe,W,Mo,Cr)3(C,N)复合碳氮化物层,该层的厚度为0.11~0.12mm,通过氮化可以进一步提高刀刃的表面硬度(可达到HRC70)和疲劳强度,降低与冰面的摩擦系数,同时还保留刀刃芯部的高韧性和高硬度,使得最终刀刃和整体刀片具有优异的综合性能。

采用上述工艺制备的冰刀刀刃材料的整体冲击韧性大于 110J/cm2,抗弯强度大于5000MPa,芯部硬度HRC62~65,刀刃表面硬度达到HRC70,与冰面的摩擦系数较现有材料降低20%以上,综合性能较现有刀刃材料有大幅度提升。

具体实施方式

实施例1制备整体厚度1.2mm、刀刃部分渗氮层厚度为0.12mm的速滑冰刀刀片

1)采用真空气雾化制粉技术制备质量百分比为C:1.25%;Si:0.4%; Mn:0.7%;Cr:5%;Mo:5%;V:5%;Co:5%;W:5%;O≤0.005%;N: 0.04%,余量为Fe的球形金属粉末,粉末的粒度范围为10-250μm 微米;

2)将粉末装入碳钢包套后进行热等静压烧结得到热等静压锭,烧结温度1130℃,烧结压力80MPa,保温时间2小时;

3)将热等静压锭进行锻造开坯,再热轧成带材,锻造和热轧的开始温度为1150℃,终止温度为900℃,热轧后的带材厚度为1.35毫米,宽度为11mm;

4)将热轧后的刀刃带材与冰刀背材采用激光进行焊接,冰刀背材的成分为C:0.25%;Si:0.4%;Mn:1%;Cr:6.5%;Mo:3%;W:3.5%,余量为Fe,背材的厚度与刀刃带材厚度一致,为1.35mm,宽度为 40mm,激光焊接的功率为2400W,焊接速度为2m/min;

5)将焊接后的双金属片毛坯进行性能热处理,热处理的工艺为:从室温以60℃/h升温至750℃,保温40min,然后继续以80℃/h 的速度升温至1100℃,保温2min,再采用油淬冷却到50℃以下,然后进行回火处理,回火温度为550℃,保温时间2h,得到热处理后的双金属刀片;

6)将经过性能热处理的双金属刀片进行表面磨削,从1.35mm磨到 1.2mm,得到半成品的双金属刀片,再将该刀片至于辉光离子氮化炉中进行氮化处理,氮化时只氮化刀刃部分,刀背部分采用保护措施进行保护,不淡化;氮化的温度为560℃,氮化时2.5h,气源采用氨气,最终在刀刃表面形成厚度为0.12mm的碳氮化物层,得到成品双金属刀片。

实施例2制备整体厚度1.1mm、刀刃部分渗氮层厚度0.11mm的速滑冰刀刀片

1)采用真空气雾化制粉技术制备质量百分比为C:1.30%;Si:0.5%; Mn:1.00%;Cr:5.2%;Mo:5.2%;V:5.2%;Co:5.2%;W:5.2%;O≤ 0.005%;N:0.05%,余量为Fe的球形金属粉末,其中粉末的粒度范围为10-250μm微米,Cr、Mo W、Co和V的质量比Cr:Mo: W:Co:V=1:1:1:1:1;

2)将粉末装入碳钢包套后进行热等静压烧结得到热等静压锭,烧结温度1150℃,烧结压力90MPa,保温时间2.5小时;

3)将热等静压锭进行锻造开坯,再热轧成带材,锻造和热轧的开始温度为1150℃,终止温度为900℃,热轧后的带材厚度为1.40mm,宽度为12mm;

4)将热轧后的刀刃带材与冰刀背材采用激光进行焊接,冰刀背材的成分为C:0.3%;Si:0.5%;Mn:1.2%;Cr:7.0%;Mo:3.5%;

W:3.8%,余量为Fe,背材的厚度与刀刃带材厚度一致,为1.40 毫米,宽度为45mm,激光焊接的功率为2500W,焊接速度为 1.8m/min;

5)将焊接后的双金属片毛坯进行性能热处理,热处理的工艺为:从室温以65℃/h升温至755℃,保温45min,然后继续以80℃/h 的速度升温至1150℃,保温3min,再采用油淬冷却到50℃以下,然后进行回火处理,回火温度为570℃,保温时间2h,得到热处理后的双金属刀片;

6)将经过性能热处理的1.40毫米厚的双金属刀片进行机械加工,磨到1.2mm,得到半成品的双金属刀片,再将该刀片至于辉光离子氮化炉中进行氮化处理,氮化时只氮化刀刃部分,刀背部分采用保护措施进行保护,不淡化;氮化的温度为550℃,氮化时2h,气源采用氨气,最终在刀刃表面形成厚度为0.11mm的碳氮化物层,得到成品双金属刀片。

5页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种取向碳纳米管-金属基复合材料导热盘的制备方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!