一种吸收增强型硅基光电探测器及其制备方法

文档序号:1965272 发布日期:2021-12-14 浏览:10次 >En<

阅读说明:本技术 一种吸收增强型硅基光电探测器及其制备方法 (Absorption enhanced silicon-based photoelectric detector and preparation method thereof ) 是由 杨荣 于 2021-08-19 设计创作,主要内容包括:本发明提供了一种吸收增强型硅基光电探测器及其制备方法,包括SOI衬底、波导以及SOI衬底上的光电探测器,光电探测器包括P型接触层、吸收层、N型接触层以及位于P型接触层和N型接触层之上的金属电极;所述SOI衬底从下至上为背衬底硅层、压应变氮化硅层以及顶硅层;所述N型接触层由向顶硅层局部区域中注入杂质后转化而来;顶硅层经过刻蚀得到所述波导,波导末端与N型接触层连接;所述SOI衬底中位于N型接触层两侧的顶硅层、氮化硅层以及背衬底硅层上表面部分通过刻蚀去除。本发明提出的探测器与III-V族红外光电探测器相比,Ge探测器容易与Si集成;与传统Ge探测器相比,拥有更广的探测范围;与其他四族材料,如Sn,Pb等引入相比,氮化硅与CMOS完全兼容。(The invention provides an absorption enhanced silicon-based photoelectric detector and a preparation method thereof, and the absorption enhanced silicon-based photoelectric detector comprises an SOI (silicon on insulator) substrate, a waveguide and a photoelectric detector on the SOI substrate, wherein the photoelectric detector comprises a P-type contact layer, an absorption layer, an N-type contact layer and metal electrodes positioned on the P-type contact layer and the N-type contact layer; the SOI substrate is provided with a backing bottom silicon layer, a compressive strain silicon nitride layer and a top silicon layer from bottom to top; the N-type contact layer is formed by injecting impurities into a local area of the top silicon layer and then is converted; etching the top silicon layer to obtain the waveguide, wherein the tail end of the waveguide is connected with the N-type contact layer; and the upper surface parts of the top silicon layer, the silicon nitride layer and the back lining bottom silicon layer which are positioned at two sides of the N-type contact layer in the SOI substrate are removed by etching. Compared with the III-V family infrared photoelectric detector, the Ge detector provided by the invention is easy to integrate with Si; compared with the traditional Ge detector, the detector has a wider detection range; compared with other four-family materials, such as Sn, Pb and the like, the silicon nitride is completely compatible with CMOS.)

一种吸收增强型硅基光电探测器及其制备方法

技术领域

本发明涉及半导体领域,特别涉及一种吸收增强型硅基光电探测器及其制备方法。

背景技术

光电探测器是半导体光电子器件领域的关键器件之一,近年来被广泛应用于光通信、光学传感、光学成像、自动驾驶等领域。尤其在光学传感、远距离成像等应用领域中,不仅要求光电探测器具有高的响应度、高的速率,而且要求器件具有宽的光谱范围。

由于光电探测器的光谱响应范围是受探测器材料的禁带宽度以及光生载流子的寿命限制的,因此目前常用的半导体光电探测器仅能工作在一定的波长范围内,如近红外波段,可见光波段等,目前没有成熟的L、U波段Ge光电探测器产品。学术上,目前主要通过在Ge中引入Sn、Pb等其他四族元素增加Ge探测器吸收范围,引入其他元素后与CMOS的兼容性有很大问题,所以目前没有CMOS线采用。

发明内容

针对现有技术中存在的问题,提供了一种吸收增强型硅基光电探测器及其制备方法,相较于传统的III-V族和II-V族红外探测器,IV族红外探测器因其制备工艺与Si基CMOS工艺兼容,具有体积小、易集成、低成本、高性能等潜在优势。基于Si衬底或SOI衬底的Ge探测器在通讯及传感领域获得了广泛的应用。通过在Ge中引入拉应变,可以进一步延伸探测器的探测范围,使其用于L波段与U波段通信。氮化硅是CMOS兼容材料,通过在底部引入氮化硅,可以有效增加Ge层中应力的引入。

本发明采用的技术方案如下:一种吸收增强型硅基光电探测器,包括SOI衬底、波导以及SOI衬底上的光电探测器,光电探测器包括P型接触层、吸收层、N型接触层以及位于P型接触层和N型接触层之上的金属电极;所述SOI衬底从下至上为背衬底硅层、压应变氮化硅层以及顶硅层;所述N型接触层由向顶硅层局部区域中注入杂质后转化而来;顶硅层经过刻蚀得到所述波导,波导末端与N型接触层连接;所述SOI衬底中位于N型接触层两侧的顶硅层、压应变氮化硅层以及背衬底硅层上表面部分通过刻蚀去除,通过对压应变氮化硅层与衬底硅刻蚀,SiN中压应变释放会在吸收层中引入拉应变,吸收层在L与U波段吸收增强。

进一步的,所述吸收层由Ge材料构成。

进一步的,所述压应变氮化硅层应变1GPa到3Gpa。

进一步的,所述P型接触层为在吸收层上选择性外延生长后离子注入形成的P型Ge接触层。

进一步的,所述波导末端宽度大于波导本体宽度。

本发明还提供了一种吸收增强型硅基光电探测器的制备方法,包括以下步骤:

步骤1、在硅衬底上注入氢离子;

步骤2、在注入氢离子的硅衬底正面和方面沉积压应变氮化硅;

步骤3、晶圆键合;

步骤4、通过Smart cut与CMP工艺完成背衬底硅层-压应变氮化硅层-顶硅层的SOI衬底制备;

步骤5、在SOI衬底的背衬底硅层表面沉积压一层应变氮化硅;

步骤6、通过光刻及干刻蚀顶硅层制备波导;

步骤7、在波导末端通过光刻定义N型接触层范围,在范围内制备N型接触层;

步骤8、定义光电探测器范围,在N型接触层上选择性外延生长Ge吸收层;

步骤9、在Ge吸收层上选择性外延生长P型Ge接触层。

步骤10、在P型Ge接触层、N型接触层上沉积金属电极,并通过光刻刻蚀形成Ge光电探测器电极;

步骤11、通过光刻定义应力释放区域,刻蚀应力释放区域的顶硅层、压应变氮化硅层以及部分背衬底硅层;

步骤12、去除背衬底硅层表面的应变氮化硅。

进一步的,所述光电探测器范围小于N型接触层范围,光电探测器位于N型接触层中部。

进一步的,步骤7中,采用离子注入及高温退火方法制备N型接触层,掺杂浓度为2e19cm-3。

进一步的,步骤9中,P型Ge接触层的离子掺杂浓度为2e19 cm-3。

进一步的,步骤11中,应力释放区域为N型接触层两侧。

与现有技术相比,采用上述技术方案的有益效果为:

(1)与III-V族红外光电探测器相比,Ge探测器容易与Si集成。

(2)与传统Ge探测器相比,拥有更广的探测范围。

(3)与其他四族材料,如Sn,Pb等引入相比,氮化硅与CMOS完全兼容。

附图说明

图1是本发明一实施例的吸收增强型硅基光电探测器的三维结构示意图。

图2是本发明一实施例的吸收增强型硅基光电探测器的截面示意图。

图3(a)-图3(h)为本发明提出的吸收增强型硅基光电探测器制备流程示意图。

具体实施方式

下面结合附图对本发明做进一步描述。

本发明的目的在于针对现有Ge红外光电探测器在光波长大于1.5um时,响应度极具下降的问题,提出一种吸收增强型硅基光电探测器及制作方法,解决现有探测器探测范围窄的问题。具体方案如下:

实施例1

图1为本实施例的吸收增强型硅基光电探测器的一个三维结构示意图,图2是本实施例的吸收增强型硅基光电探测器的一个截面示意图。

如图所示,一种吸收增强型硅基光电探测器,包括SOI衬底、波导以及SOI衬底上的光电探测器,

光电探测器包括P型接触层、吸收层、N型接触层以及位于P型接触层和N型接触层之上的金属电极;其制备工艺与标准CMOS工艺兼容,在本实施例中,吸收区由Ge材料构成,采用Ge的选择性外延生长和离子注入方法制备。

所述SOI衬底从下至上为背衬底硅层、压应变氮化硅层以及顶硅层;所述N型接触层由向顶硅层局部区域中注入杂质后转化而来;顶硅层经过刻蚀得到所述波导,波导末端与N型接触层连接;所述SOI衬底中位于N型接触层两侧的顶硅层、压应变氮化硅层以及背衬底硅层上表面部分通过刻蚀去除,底部SiN刻蚀后,可以在Ge中引入拉应变,从而提升探测器的吸收能力。在另一实施例中,将N型接触层四周的顶硅层、压应变氮化硅层以及背衬底硅层上表面部分都刻蚀去除。

具体的,N型接触层的范围大与吸收层范围,金属电极制备在吸收层两侧的N型接触层表面上,以及P型接触层表面上。

在本实施例中,去除SOI衬底中位于N型接触层两侧的顶硅层、压应变氮化硅层以及背衬底硅层上表面部分是为了释放压应变氮化硅的应力,从而在Ge吸收层中引入拉应变,以增加探测器探测范围到L乃至U波段。

在本实施例中,P型接触层为在吸收层上选择性外延生长后离子注入形成的P型Ge接触层。

优选的,所述波导末端宽度大于波导本体宽度,且末端宽度与N型接触层相当。在一个实施例中,波导本体宽度为500nm,吸收层部分波导宽度10um。

实施例2

如图3(a)-图3(h)所示,本实施例还提供了一种制备实施例1中的吸收增强型硅基光电探测器方法,包括以下步骤:

步骤1、在硅衬底上注入氢离子;

步骤2、在注入氢离子的硅衬底正面和方面沉积压应变氮化硅,以保证硅衬底应力平衡,不发生翘曲;

步骤3、晶圆键合;

步骤4、通过Smart cut与CMP工艺完成背衬底硅层-压应变氮化硅层-顶硅层的SOI衬底制备;

步骤5、在SOI衬底的背衬底硅层表面沉积压一层应变氮化硅,保持应力平衡;

步骤6、通过光刻及干刻蚀顶硅层制备波导;

步骤7、在波导末端通过光刻定义N型接触层范围,在范围内制备N型接触层;

步骤8、通过SiO2硬掩模定义光电探测器范围,采用CVD方法在N型接触层上选择性外延生长Ge吸收层;

步骤9、在Ge吸收层上选择性外延生长P型Ge接触层。

步骤10、在P型Ge接触层、N型接触层上沉积金属电极,并通过光刻刻蚀形成Ge光电探测器电极;

步骤11、通过光刻定义应力释放区域,刻蚀应力释放区域的顶硅层、压应变氮化硅层以及部分背衬底硅层;

步骤12、去除背衬底硅层表面的应变氮化硅。

具体的,所述光电探测器范围小于N型接触层范围,光电探测器位于N型接触层中部。

优选的,步骤7中,采用离子注入及高温退火方法制备N型接触层,掺杂浓度为2e19cm-3,在本实施例中采用磷离子注入。

优选的,步骤9中,P型Ge接触层的离子掺杂浓度为2e19 cm-3,在本实施例中采用硼离子注入。

优选的,步骤11中,应力释放区域为N型接触层两侧。在另一个实施例中,应力四方区域也可以包括除波导与N型接触层以外的其他区域。

本发明提出的吸收增强型硅基光电探测器与III-V族红外光电探测器相比,Ge探测器容易与Si集成;与传统Ge探测器相比,拥有更广的探测范围;与其他四族材料,如Sn,Pb等引入相比,氮化硅与CMOS完全兼容。

本发明并不局限于前述的具体实施方式。本发明扩展到任何在本说明书中披露的新特征或任何新的组合,以及披露的任一新的方法或过程的步骤或任何新的组合。如果本领域技术人员,在不脱离本发明的精神所做的非实质性改变或改进,都应该属于本发明权利要求保护的范围。

本说明书中公开的所有特征,或公开的所有方法或过程中的步骤,除了互相排斥的特征和/或步骤以外,均可以以任何方式组合。

本说明书中公开的任一特征,除非特别叙述,均可被其他等效或具有类似目的的替代特征加以替换。即,除非特别叙述,每个特征只是一系列等效或类似特征中的一个例子而已。

10页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:全柔性自收展太阳阵

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类