Screw power propulsion system based on Brayton-Rankine combined waste heat cycle

文档序号:268937 发布日期:2021-11-19 浏览:27次 中文

阅读说明:本技术 基于布雷顿-朗肯联合余热循环的螺杆动力推进系统 (Screw power propulsion system based on Brayton-Rankine combined waste heat cycle ) 是由 杨元龙 孙玲 薛昌意 劳健锋 于 2021-08-09 设计创作,主要内容包括:本发明公开了一种基于布雷顿-朗肯联合余热循环的螺杆动力推进系统,包括燃气轮机、减速器、轴系、高压螺杆膨胀机、低压螺杆膨胀机、高温发生器和低温发生器,燃气轮机、高压螺杆膨胀机和低压螺杆膨胀机分别与减速器的三个输入轴连接,轴系与减速器的输出轴连接,燃气轮机的排烟围井中沿着烟羽流动方向依次设置高温发生器和低温发生器,高温发生器通过管道与高压螺杆膨胀机连接形成布雷顿循环系统,低压螺杆膨胀机通过管道与低温发生器连接形成朗肯循环系统。本发明提出的螺杆动力推进系统,结合两类热力循环的优点进行集成优化,能够更加充分利用燃气轮机的排气余热。本螺杆动力推进系统可有效地降低船舶能耗损失,提高实船动力系统的热效率。(The invention discloses a Brayton-Rankine combined waste heat cycle-based screw power propulsion system, which comprises a gas turbine, a speed reducer, a shaft system, a high-pressure screw expander, a low-pressure screw expander, a high-temperature generator and a low-temperature generator, wherein the gas turbine, the high-pressure screw expander and the low-pressure screw expander are respectively connected with three input shafts of the speed reducer, the shaft system is connected with an output shaft of the speed reducer, the high-temperature generator and the low-temperature generator are sequentially arranged in a smoke exhaust surrounding well of the gas turbine along the flow direction of smoke plumes, the high-temperature generator is connected with the high-pressure screw expander through a pipeline to form a Brayton cycle system, and the low-pressure screw expander is connected with the low-temperature generator through a pipeline to form a Rankine cycle system. The screw power propulsion system provided by the invention is integrated and optimized by combining the advantages of two types of thermodynamic cycles, and can more fully utilize the exhaust waste heat of the gas turbine. The screw power propulsion system can effectively reduce the energy consumption loss of ships and improve the heat efficiency of the power system of a real ship.)

1. A screw power propulsion system based on Brayton-Rankine combined waste heat cycle is characterized by comprising a gas turbine, a speed reducer, a shaft system, a high-pressure screw expander, a low-pressure screw expander, a high-temperature generator and a low-temperature generator, wherein,

the gas turbine, the high-pressure screw expander and the low-pressure screw expander are respectively connected with three input shafts of the speed reducer, the shaft system is connected with an output shaft of the speed reducer, the shaft system is connected with the propeller to propel a ship to sail, the high-temperature generator and the low-temperature generator are sequentially arranged in a smoke exhaust surrounding well of the gas turbine along the flow direction of smoke plumes, the high-temperature generator is connected with the high-pressure screw expander through a pipeline to form a Brayton cycle system, and the low-pressure screw expander is connected with the low-temperature generator through a pipeline to form a Rankine cycle system.

2. The Brayton-Rankine combined waste heat cycle-based screw power propulsion system according to claim 1, further comprising a compressor and a regenerator, wherein a first channel inlet of the regenerator is connected with a high-pressure screw expander outlet, a first channel outlet of the regenerator is connected with the compressor inlet, a compressor outlet is connected with a high-temperature generator inlet through a second channel of the regenerator, and a high-temperature generator outlet is connected with the high-pressure screw expander inlet.

3. The Brayton-Rankine combined waste heat cycle based screw power propulsion system according to claim 2, wherein the compressor and the high pressure screw expander are coaxially arranged.

4. The Brayton-Rankine combined waste heat cycle-based screw power propulsion system according to claim 2, wherein a precooler is further mounted on a pipeline between the outlet of the first channel of the reheater and the compressor.

5. The Brayton-Rankine combined waste heat cycle based screw power propulsion system according to claim 1, wherein the Rankine cycle system further comprises a condenser, an inlet of the condenser is connected with an outlet of the low pressure screw expander, and an outlet of the condenser is connected with an inlet of the low pressure screw expander via a low temperature generator.

6. The Brayton-Rankine combined waste heat cycle based screw power propulsion system of claim 4, wherein the Rankine cycle system further comprises a booster pump installed in a duct between the condenser and the low pressure screw expander.

7. The Brayton-Rankine combined waste heat cycle based screw power propulsion system according to claim 1, wherein the operating medium in the Brayton cycle system is carbon dioxide gas and the operating medium in the Rankine cycle system is lithium bromide organic matter.

8. The Brayton-Rankine combined waste heat cycle based screw power propulsion system according to claim 1, wherein the high pressure screw expander and the low pressure screw expander are in a parallel double split shaft arrangement.

9. The Brayton-Rankine combined waste heat cycle based screw power propulsion system according to any one of claims 1 to 8, characterized in that a flue gas generator is further arranged in the flue gas enclosure.

10. The brayton-rankine combined cycle based screw power propulsion system according to claim 9, characterized in that said flue gas generator, high temperature generator and low temperature generator are arranged in sequence in an upstream to downstream direction within a flue gas enclosure.

Technical Field

The invention relates to the field of ship power system design, in particular to a Brayton-Rankine combined waste heat cycle-based screw power propulsion system.

Background

The power plant such as gas turbine, diesel engine, etc. is the "heart" of the ship propulsion system, combine the structure and operation characteristic of two kinds of internal-combustion engines, adopt the power types such as the propulsion of the whole combustion, whole firewood propulsion, firewood-burning jointly impels, firewood-burning alternately impels in the past ship product, the gas turbine plant adopts the Brayton cycle mode of simple cycle and intercooling backheating, the diesel engine plant generally adopts the Miller cycle mode. From the stand-alone perspective, stand-alone equipment thermal efficiency is not high, mainly because of high temperature exhaust gas, cooling water etc. a large amount of energy consumption losses cause, along with a large amount of high temperature flue gas emissions and pollute the sea area environment, has also brought the boats and ships to consume oil the rate great and system thermal efficiency low simultaneously.

With the continuous maturity of the ship waste heat power cycle technology, a method is provided for utilizing the high-temperature waste heat of a gas turbine device, and a gas Brayton cycle and an organic Rankine cycle are cycle modes with high system operation thermal efficiency. The Brayton cycle has the capacity of utilizing high-temperature waste heat, the organic Rankine cycle has the capacity of utilizing low-temperature waste heat, integration and optimization are carried out by combining the advantages of the two types of thermodynamic cycles, and the exhaust waste heat of the gas turbine can be more fully utilized.

Disclosure of Invention

The invention mainly aims to provide a Brayton-Rankine combined waste heat cycle-based screw power propulsion system, and aims to solve the problems of large waste heat loss and low system efficiency of the conventional power device.

In order to achieve the above purpose, the present invention provides a screw power propulsion system based on brayton-rankine combined waste heat cycle, which comprises a gas turbine, a reducer, a shaft system, a high-pressure screw expander, a low-pressure screw expander, a high-temperature generator and a low-temperature generator, wherein,

the gas turbine, the high-pressure screw expander and the low-pressure screw expander are respectively connected with three input shafts of the speed reducer, the shaft system is connected with an output shaft of the speed reducer, the shaft system is connected with the propeller to propel a ship to sail, the high-temperature generator and the low-temperature generator are sequentially arranged in a smoke exhaust surrounding well of the gas turbine along the flow direction of smoke plumes, the high-temperature generator is connected with the high-pressure screw expander through a pipeline to form a Brayton cycle system, and the low-pressure screw expander is connected with the low-temperature generator through a pipeline to form a Rankine cycle system.

Preferably, the brayton cycle system further comprises a gas compressor and a heat regenerator, wherein a first channel inlet of the heat regenerator is connected with an outlet of the high-pressure screw expander, a first channel outlet of the heat regenerator is connected with a gas compressor inlet, a gas compressor outlet is connected with a high-temperature generator inlet through a second channel of the heat regenerator, and a high-temperature generator outlet is connected with an inlet of the high-pressure screw expander.

Preferably, the compressor and the high-pressure screw expander are arranged coaxially.

Preferably, a precooler is further mounted on a pipeline between the outlet of the first channel of the regenerator and the compressor.

Preferably, the Rankine cycle system further comprises a condenser, wherein an inlet of the condenser is connected with an outlet of the low-pressure screw expander, and an outlet of the condenser is connected with an inlet of the low-pressure screw expander through the low-temperature generator.

Preferably, the rankine cycle system further includes a booster pump installed in a pipe between the condenser and the low-pressure screw expander.

Preferably, the operation working medium in the Brayton cycle system is carbon dioxide gas, and the operation working medium in the Rankine cycle system is lithium bromide organic matter.

Preferably, the high pressure screw expander and the low pressure screw expander are in a parallel twin-split shaft arrangement.

Preferably, a smoke generator is also arranged in the smoke surrounding well.

Preferably, the flue gas generator, the high temperature generator and the low temperature generator are arranged in sequence from upstream to downstream within the flue gas enclosure.

According to the screw power propulsion system based on the Brayton-Rankine combined waste heat cycle, the Brayton cycle has the capacity of utilizing high-temperature waste heat, the organic Rankine cycle has the capacity of utilizing low-temperature waste heat, and the screw power propulsion system is integrated and optimized by combining the advantages of the two types of thermodynamic cycles, so that the exhaust waste heat of the gas turbine can be more fully utilized. Considering the requirements of real ship maneuverability and adaptability, a power output device with small volume and strong variable load capacity is needed, so that the screw expander is used as the power output device and can be combined with the gas turbine for operation, the arrangement and installation of equipment in a real ship cabin can be realized, and the requirement of quick ship maneuverability can be met. The screw power propulsion system can effectively reduce the energy consumption loss of ships and improve the heat efficiency of the power system of a real ship. In addition, the screw power propulsion system also has the advantages of simple structure, easy realization and reliable work.

Drawings

FIG. 1 is a schematic structural diagram of a screw power propulsion system based on a Brayton-Rankine combined waste heat cycle according to a preferred embodiment of the invention.

In the figure, 1, a speed reducer; 2. a gas turbine; 3. a high pressure screw expander; 4. a low pressure screw expander; 5. a shaft system; 6. a propeller; 7. a smoke exhaust surrounding well; 8. a high temperature generator; 9. a low temperature generator; 10. a flue gas generator; 11. a heat regenerator; 12. a precooler; 13. a compressor; 14. a condenser; 15. a booster pump.

The implementation, functional features and advantages of the objects of the present invention will be further explained with reference to the accompanying drawings.

Detailed Description

It should be understood that the specific embodiments described herein are merely illustrative of the invention and are not intended to limit the invention.

It should be noted that in the description of the present invention, the terms "lateral", "longitudinal", "upper", "lower", "front", "rear", "left", "right", "vertical", "horizontal", "top", "bottom", "inner", "outer", etc. indicate orientations or positional relationships based on those shown in the drawings, and are only for convenience of description and simplicity of description, and do not indicate or imply that the referred device or element must have a specific orientation, be constructed and operated in a specific orientation, and thus, should not be construed as limiting the present invention. Furthermore, the terms "first," "second," and the like are used for descriptive purposes only and are not to be construed as indicating or implying relative importance.

Referring to fig. 1, in the preferred embodiment, a screw power propulsion system based on brayton-rankine combined waste heat cycle comprises a gas turbine 2, a reducer 1, a shaft system 5, a high-pressure screw expander 3, a low-pressure screw expander 4, a high-temperature generator 8 and a low-temperature generator 9, wherein,

the gas turbine 2, the high-pressure screw expander 3 and the low-pressure screw expander 4 are respectively connected with three input shafts of the speed reducer 1, the shaft system 5 is connected with an output shaft of the speed reducer 1, the shaft system 5 is connected with the propeller 6 to propel a ship to sail, the high-temperature generator 8 and the low-temperature generator 9 are sequentially arranged in the smoke exhaust surrounding well 7 of the gas turbine 2 along the flow direction of smoke plumes, the high-temperature generator 8 is connected with the high-pressure screw expander 3 through a pipeline to form a Brayton cycle system, and the low-pressure screw expander 4 is connected with the low-temperature generator 9 through a pipeline to form a Rankine cycle system.

The high-temperature generator 8 and the low-temperature generator 9 are both used for heating the operation working medium circulating in the high-temperature generator. Specifically, the operation working medium in the Brayton cycle system is carbon dioxide gas, and the operation working medium in the Rankine cycle system is lithium bromide organic matter.

In this embodiment, the brayton cycle system further includes a compressor 13 and a heat regenerator 11, an inlet of a first channel of the heat regenerator 11 is connected to an outlet of the high-pressure screw expander 3, an outlet of the first channel of the heat regenerator 11 is connected to an inlet of the compressor 13, an outlet of the compressor 13 is connected to an inlet of the high-temperature generator 8 through a second channel of the heat regenerator 11, and an outlet of the high-temperature generator 8 is connected to an inlet of the high-pressure screw expander 3.

Further, the compressor 13 and the high-pressure screw expander 3 are coaxially disposed, thereby maximizing the use of the power source.

Further, a precooler 12 is further mounted on the pipeline between the outlet of the first channel of the heat regenerator 11 and the compressor 13, and the precooler 12 cools the operating working medium in the pipeline.

The Brayton cycle is established through the high-temperature generator 8 and the high-pressure screw expander 3, carbon dioxide gas is adopted as an operation working medium, the carbon dioxide heated by the high-temperature generator 8 enters the high-pressure screw expander 3 to do work, and then enters the air compressor 13 to pressurize the working medium after being cooled by the heat regenerator 11 and the precooler 12, and the pressurized carbon dioxide is returned to the high-temperature generator 8 to perform system cycle operation again.

Specifically, the rankine cycle system further comprises a condenser 14, wherein an inlet of the condenser 14 is connected with an outlet of the low-pressure screw expander 4, and an outlet of the condenser 14 is connected with an inlet of the low-pressure screw expander 4 through the low-temperature generator 9.

Further, the rankine cycle system further includes a booster pump 15 installed in a pipe between the condenser 14 and the low-pressure screw expander 4, and the booster pump 15 boosts the operating medium in the pipe.

An organic Rankine cycle is established through the low-temperature generator 9 and the low-pressure screw expander 4, the operation working medium adopts a lithium bromide organic matter, lithium bromide heated by the low-temperature generator 9 enters the low-pressure screw expander 4 to do work, and is pressurized and conveyed back to the low-temperature generator 9 through the booster pump 15 after being cooled by the condenser 14, and the system is circulated again.

In this embodiment, the high-pressure screw expander 3 and the low-pressure screw expander 4 are arranged in parallel with a double split shaft. After the power of the gas turbine 2 and the power of the screw expander are converged, the power is transmitted to the propeller 6 through the shafting 5, and the ship is propelled to sail.

Further, an upstream area of the fume surrounding well 7 is provided with a fume generator 10. The smoke generator 10, the high temperature generator 8 and the low temperature generator 9 are arranged in the smoke surrounding well 7 in sequence from upstream to downstream, so that heat carried by smoke is generated after fuel oil and air are combusted in the gas turbine 2 to do work gradually.

When the residual heat of the flue gas is insufficient, fuel oil and air are sprayed into the flue gas generator 10 for combustion, and a part of newly generated high-temperature flue gas is mixed with the exhaust gas of the gas turbine 2 to compensate and regulate the residual heat of the exhaust gas of the gas turbine 2.

The working principle of the screw power propulsion system based on the Brayton-Rankine combined waste heat cycle is as follows. The gas turbine 2 works to drive the screws of the high-pressure screw expander 3 and the low-pressure screw expander 4 to rotate, so that the Brayton cycle system and the Rankine cycle system are driven to work, and the shafting 5 transmits torque to the propeller 6 to propel the ship to sail. In the Brayton cycle system, carbon dioxide heated by a high-temperature generator 8 enters a high-pressure screw expander 3 to do work, then enters an air compressor 13 to pressurize a working medium after being cooled by a heat regenerator 11 and a precooler 12, and the high-pressure carbon dioxide is returned to the high-temperature generator 8 to perform system cycle operation again. In the Rankine cycle system, lithium bromide heated by the low-temperature generator 9 enters the low-pressure screw expander 4 to do work, is cooled by the condenser 14, is pressurized and conveyed back to the low-temperature generator 9 by the booster pump 15, and is subjected to system cycle operation again.

According to the screw power propulsion system based on the Brayton-Rankine combined waste heat cycle, the Brayton cycle has the capacity of utilizing high-temperature waste heat, the organic Rankine cycle has the capacity of utilizing low-temperature waste heat, and the screw power propulsion system is integrated and optimized by combining the advantages of the two types of thermodynamic cycles, so that the exhaust waste heat of the gas turbine 2 can be more fully utilized. Considering the requirements of real ship maneuverability and adaptability, a power output device with small volume and strong variable load capacity is needed, so that the screw expander is used as the power output device and can be combined with the gas turbine 2 for parallel operation, the arrangement and installation of equipment in a real ship cabin can be realized, and the requirement of quick ship maneuverability can be met. The screw power propulsion system can effectively reduce the energy consumption loss of ships and improve the heat efficiency of the power system of a real ship. In addition, the screw power propulsion system also has the advantages of simple structure, easy realization and reliable work.

The above description is only for the preferred embodiment of the present invention and is not intended to limit the scope of the present invention, and all equivalent structural changes made by using the contents of the present specification and the drawings, or any other related technical fields, are intended to be covered by the scope of the present invention.

7页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:润滑系统及燃气轮机发电设备

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!