由硅基陶瓷或cmc制成的部件以及生产这种部件的方法

文档序号:384717 发布日期:2021-12-10 浏览:64次 >En<

阅读说明:本技术 由硅基陶瓷或cmc制成的部件以及生产这种部件的方法 (Component made of silicon-based ceramic or CMC and method for producing such a component ) 是由 艾玛尔·撒伯恩德吉 休格斯·丹尼斯·朱伯特 P·皮克特 卢克·帕特里斯·比安基 于 2020-04-30 设计创作,主要内容包括:本发明涉及由硅基陶瓷材料或硅基陶瓷基复合材料(CMC)制成的部件,该部件包括环境屏障涂层(EBC),所述涂层(12、13)包括沉积在陶瓷材料或陶瓷基复合材料(CMC)的表面上的粘合层(12),所述结合层(12)的顶部具有一个或多个层共同形成的多功能屏障结构(13),其特征在于,该结合层(12)在与多功能结构的界面处具有多晶氧化硅制成的层(12)或子层(12b)。(The invention relates to a component made of a silicon-based ceramic material or a silicon-based Ceramic Matrix Composite (CMC), comprising an Environmental Barrier Coating (EBC), said coating (12, 13) comprising a bonding layer (12) deposited on the surface of the ceramic material or Ceramic Matrix Composite (CMC), said bonding layer (12) having on top of it one or more layers forming together a multifunctional barrier structure (13), characterized in that the bonding layer (12) has, at the interface with the multifunctional structure, a layer (12) or a sub-layer (12b) made of polycrystalline silicon oxide.)

由硅基陶瓷或CMC制成的部件以及生产这种部件的方法

技术领域

本发明涉及由硅基陶瓷材料或硅基陶瓷基复合(CMC)材料制成的部件。

背景技术

目前在航空或航天领域中普遍考虑CMC材料,尤其来用于承受高工作温度的涡轮机部件。

经济和环境的限制促使了航空工业中的发动机制造商开发用以减少噪音污染、燃料消耗以及NOx和CO2排放方面的研究。

为了满足这些要求,尤其是最后两项要求,一种解决方案是提高涡轮喷气发动机燃烧室中气体的温度。这会提高发动机性能(减少煤油消耗)并允许使用稀薄的燃料混合物(NOx减少)运行。但是,燃烧室中使用的材料必须能够承受更高的温度。

目前,航空发动机中承受高工作温度的部件使用的材料是超合金。然而,达到的温度(约1100℃)已接近其使用极限。

在过去的几年中,已经提出了使用硅基陶瓷:碳化硅SiC陶瓷或SiC/SiC陶瓷基复合材料(CMC)来显著提高这些使用温度(高达1400℃)。

事实上,这些材料由于它们的机械性能和热性能以及它们在高温下的稳定性而成为很有前途的候选材料。此外,除了它们的高温特性外,碳化硅基CMC材料还具有比它们所替代的金属材料密度更低的优势。

大量研究集中在将这些材料引入极端应用(高温、高压、腐蚀性气氛、机械应力)中。

在这些条件下,会形成氧化硅薄层,从而能够限制氧气向基材的扩散。然而,在存在水的情况下,从1200℃开始,随着该层以HxSiyOz物质(例如,Si(OH)4或SiO(OH)2)的形式挥发,会出现表面衰退现象。这种现象导致氧化物的净生长速率降低,其厚度趋向于极限值,并且存在于CMC中的SiC加速衰退。

因此,为了延长使用时间和/或更高的温度,必须保护CMC以避免保护性氧化硅层的蒸发。对于用于燃烧室、高压涡轮机的CMC材料尤其如此,并且在较小程度上对于发动机排气部件的CMC材料也是如此。

通常,CMC材料由环境屏障涂层(根据通用的英文术语称为EBC或“EnvironmentalBarrier Coating”)保护。

如图1所示,这样的EBC涂层通常包括硅粘合层2(或粘合涂层),其覆盖要保护的CMC层1并且顶部是多功能陶瓷结构3。

例如,多功能结构3由以下部分组成:

一层或多层莫来石(旨在防止氧向硅层2的扩散);

旨在保护层2免受水蒸气扩散的一个或多个层。

例如,已知的是,Si/莫来石/BSAS(钡锶铝硅酸盐)类型的多层环境屏障或包括硅结合层和稀土硅酸盐(例如Y2Si2O7)层的那些。这些实验性屏障可以通过热喷涂、物理相沉积(PVD)或浆料沉积工艺(例如“浸涂”或“喷涂”)以本身已知的方式沉积。

然而,由于在硅层和EBC涂层的其他层之间形成的氧化硅(图1中的虚线4a和团聚物4b)的不均匀性,这种结构仍然会随着时间的推移而劣化。

形成氧化硅的过程中的这些不均匀性会在EBC涂层中产生残余应力。

这会在叠覆层中引发并传播裂纹(图1中的裂纹4c)。

这会导致陶瓷层剥落,使CMC子层暴露于水蒸气的腐蚀性环境中,导致其加速衰退,从而限制了CMC的使用寿命。

这会由于层分离机制而导致系统过早劣化。

发明内容

本发明的总体目的是减轻现有技术中已知结构的缺点。

特别地,本发明的一个目的是提出一种能够改进的使用寿命的EBC结构。

因此,本发明提出了一种由硅基陶瓷材料或硅基陶瓷基复合(CMC)材料制成的部件,该部件包括环境屏障涂层(EBC),所述涂层包括沉积在陶瓷材料或陶瓷基复合(CMC)材料的表面上的粘合层,所述粘合层的顶部具有一个或多个层共同形成的多功能屏障结构,其特征在于,该粘合层在与多功能结构的界面处具有多晶氧化硅层或子层。

特别是,多晶氧化硅层或子层具有Hf和/或HfO2和/或磷掺杂的晶界。

根据一个实施方式,该部件通过实施以下步骤来生产:

在陶瓷材料或陶瓷基复合材料的表面上沉积硅层;

热氧化;

引入掺杂剂。

作为变型,上述生产是通过实施以下步骤来进行:

在陶瓷材料或陶瓷基复合材料的表面上沉积第一硅层;

沉积第二硅层,所述层是掺杂层;

热氧化。

本发明还提出一种航空或航天设备,尤其是涡轮机,包括至少一个所提出类型的部件。

附图说明

本发明的其他特征和优点将从以下描述中显现,这些描述纯粹是说明性的而非限制性的,并且应该结合附图阅读,其中:

图1,已经讨论过,示出了现有技术中已知的结构的缺陷形成和劣化;

图2示出了根据本发明的部件的示例;

图3a和图3b示出了根据本发明的一个实施方式的EBC涂覆的叠层(图3a);

图4示出了本发明的用于生产图3a类型的叠层的可能的实施方式;

图5和图6示出了本发明方法的另一可能的实施方式。

具体实施方式

作为示例,图2中示出的部件5包括涡轮机高压涡轮转子的叶片5a和叶片根部5b。

所述部件5是涂有保护性屏障EBC的陶瓷基复合材料CMC,下面将对其进行更具体的描述。

注意到的是,将CMC陶瓷用于涡轮机高压涡轮转子叶片是特别有利的,因为它可以在适用的情况下消除叶片上通常设置的用于冷却空气循环的孔。消除这些孔可进一步提高发动机性能。

可以理解的是,涡轮机高压涡轮叶片只是所提出的EBC结构的一个应用示例:它可以更普遍地应用于,尤其是在航天或航空领域中在高温(1100℃以上)下运行的部件:涡轮机燃烧室、发动机排气部件等。

CMC结构的生产

部件5的CMC结构的材料是硅基陶瓷(例如碳化硅SiC)或陶瓷基复合材料(CMC)。

在这里及全文中,CMC材料是指包含同样是陶瓷的基体中掺入有一组陶瓷纤维的复合材料。

纤维是例如碳(C)和碳化硅(SiC)纤维。

它们也可以是铝氧化物或氧化铝(Al2O3)纤维,或氧化铝和硅氧化物或氧化硅(SiO2)的混合晶体,例如莫来石(3Al2O3、2SiO2)。

基体是碳化硅SiC或包含碳化硅的任何混合物。

碳化硅基体中具有碳化硅纤维的SiC-SiC复合材料因其高热、机械和化学稳定性以及高强度/重量比而特别适合航空应用。

这些化合物可以使用高温碳(或PyC)或氮化硼(BN)作为界面材料。

可以设想使用不同的技术来生产陶瓷基复合材料部件。

特别地,根据第一种技术,CMC材料部件可以由编织纤维质地(woven fibretexture)的纤维预制件来生产。这种纤维预制件通过化学气相渗透(根据Anglo-Saxon术语为CVI或“Chemical Vapor Infiltration”)进行固结和致密化。

在又一变型中,预制件可以是基于碳化硅的纤维层,所述预制件的纤维通过CVI涂覆有氮化硼层,该氮化硼层的顶部是碳或碳化物,尤其是碳化硅的层。

对于用于制造SiC/SiC CMC结构的技术的示例,可以有利地参考例如专利US9440888或US8846218。

EBC结构—第一实施方式

在图3a的示例中,CMC层用11表示,并且EBC涂层的多功能结构用13表示。

粘合层(层12)是具有掺杂晶界的多晶氧化硅。

注入晶界的掺杂剂例如是铪(Hf)和/或氧化铪(HfO2)和/或磷的掺杂剂。

如下生产该层12(图4):

步骤20:沉积Si层,

步骤21:热氧化,

步骤22:引入掺杂剂。

层12所得的结构则是图3b中所示的类型:它包括大SiO2晶粒(晶粒12a)和掺杂的晶界(边界12b)。在这里,大晶粒意味着尺寸介于约10纳米和直至50微米之间。

这种结构是致密的(孔隙率小于10%)和多晶的。它具有优异的均质性(孔隙率差低于10%)、大晶粒和高的氧气和水蒸气密封性。

特别地,注入掺杂剂能够增强SiO2子层的晶界并减缓SiO2层中氧气和水蒸气的渗透率。

通过用铪和/或氧化铪和/或磷阻挡晶界来稳定氧化硅层。

氧化硅生长动力学因此被阻止或至少减慢。

还注意到的是,在水渗透率方面,氧化铪的结果优于SiO2的结果。

Si层(步骤20)可以通过不同的技术沉积:等离子喷涂、电子束气相沉积等,或者这些技术的任意组合。

例如,这样的层具有介于5μm和30μm之间的厚度。

热氧化(步骤21)在氧气存在下于烘箱中进行(干氧化)。

该氧化在以下条件下进行,例如:热处理温度:1100℃至1300℃;持续时间:1小时至50小时;氧气流量:1l/min至20l/min。

然后通过离子轰击引入掺杂剂(步骤22)。

层12中掺杂剂的原子百分比例如对于Hf为1%至2%并且对于磷小于20%。

在生产层12之后,生产多功能结构13。它包括几层陶瓷(Yb2SiO5,BSAS等),旨在选择并确定尺寸以确保各种所需的密封。

EBC结构—第二实施方式

在图5所示的实施方式中,结合层12包括硅子层121和掺杂边界氧化硅子层122。

在该第二实施方式中,该层12如下获得(图6):

步骤30:沉积第一硅层,

步骤31:沉积第二硅层,所述层为掺杂层,

步骤32:热氧化。

在热氧化之后,则进行EBC结构的其他层的沉积(沉积多功能结构的层)。

该硅层在以下条件下通过气流和以下反应经化学气相沉积(CVD)来沉积(步骤30):P=100至200毫巴;T=1020℃至1050℃

3AlCl(g)+(2y)Ni+H2(g)==>1AlNiy+AlCl3+HCl

沉积的层的厚度通常介于10μm和20μm之间。

掺杂硅层也通过CVD技术沉积(步骤31)。

该掺杂层的厚度通常介于1μm和5μm之间。

通过离子注入预先进行硅掺杂。

第二硅层的掺杂是Hf和/或磷掺杂,其中对于Hf,原子质量浓度在1%和2%之间,对于磷,原子质量浓度小于20%。

氧化后,结合层12设置有硅子层121和掺杂边界氧化硅子层122。

子层122具有多晶结构,具有大的SiO2晶粒以及Hf和HfO2晶界。

它具有高氧气和水的气密性。

它确保在硅层和多功能层13之间的氧化硅界面处具有相对均匀的厚度。

与现有技术相比,氧化硅的生长较慢。

这使得EBC结构的使用寿命得以改进。

10页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:用于产生合成角鲨烷和角鲨烷衍生物的方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!