Array rapid imaging method and application thereof

文档序号:420490 发布日期:2021-12-21 浏览:2次 中文

阅读说明:本技术 阵列快速成像方法及其应用 (Array rapid imaging method and application thereof ) 是由 张继龙 张鑫 张继康 张艺恒 宋雨花 俞晓琳 于 2021-10-11 设计创作,主要内容包括:本发明涉及光学成像、微波成像、雷达探测、无线通信、声呐、超声成像以及基于声、光、电等媒介的目标探测与成像识别技术领域,具体涉及一种阵列快速成像方法及其在上述各领域中的应用。本发明方法基于透镜成像原理,结合电磁场理论,根据天线阵列接收到的目标信号,通过单元信号的幅度、相位加权,采用高效并行算法,获得目标对应的像场分布。本发明方法能够实现宽视角、实时、多目标高效成像与探测,是低成本、高实时性、高精度的探测与成像识别技术。可广泛应用于光学成像、微波成像、雷达探测、声呐、超声成像以及声、光、电等为媒介的目标探测、成像识别、无线通信领域。(The invention relates to the technical field of optical imaging, microwave imaging, radar detection, wireless communication, sonar, ultrasonic imaging, target detection and imaging identification based on media such as sound, light, electricity and the like, in particular to an array rapid imaging method and application thereof in the fields. The method is based on the lens imaging principle, combines the electromagnetic field theory, and obtains the image field distribution corresponding to the target by the amplitude and phase weighting of unit signals and the efficient parallel algorithm according to the target signals received by the antenna array. The method can realize wide visual angle, real-time and multi-target high-efficiency imaging and detection, and is a detection and imaging identification technology with low cost, high real-time performance and high precision. The method can be widely applied to the fields of optical imaging, microwave imaging, radar detection, sonar, ultrasonic imaging, target detection with sound, light, electricity and the like as media, imaging identification and wireless communication.)

1. A method of rapid array imaging, comprising:

based on a lens imaging principle, in combination with an electromagnetic field theory, according to a target signal received by an antenna array, through amplitude and phase weighting of unit signals, an efficient parallel algorithm is adopted to obtain image field distribution corresponding to a target.

2. The array fast imaging method according to claim 1, comprising:

the image field distribution corresponding to the target is obtained by weighting the amplitude and the phase of the unit signal and adopting an efficient parallel algorithm, and the specific algorithm is as follows:

wherein:in order to be the image field distribution,for the purpose received by the array unitMarker signal, AmnIs a weighting coefficient for the array element amplitude,in order to focus the phase weighting coefficients,for scanning the phase weighting coefficients, M is the number of array elements in the x-direction, and N is the number of array elements in the y-direction, (x)m,yn) Is the coordinate of the array unit, (delta, sigma) is the coordinate of the image point, V is the image distance, i.e. the distance from the image plane to the array plane, m, n are the serial numbers of the array unit in the x direction and the y direction respectively,is the wavenumber, and λ is the wavelength.

3. The array rapid imaging method according to claim 1 and 2, characterized by comprising the following steps:

for a uniform discrete array, the high-precision image field calculation formula is:

wherein, ω isδ=kΔxsinθδ、ωσ=kΔysinθσ,ΔxIs the x-direction array element pitch, ΔyIs the y-direction array cell pitch, θδ、θσRespectively, the scan angular coordinates of the image point relative to the center of the array.

4. A method according to claim 2, 3, characterized in that the method comprises the steps of:

the method comprises the following steps: carrying out amplitude weighting on the array unit signals to reduce side lobe levels;

step two: carrying out scanning phase weighting on the array unit signals to adjust the central visual angle direction of the imaging system;

step three: carrying out focusing phase weighting on the array unit signals to realize imaging focusing;

step four: performing rapid imaging processing on signals of the array unit by adopting an efficient parallel algorithm;

step five: and resolving the image field coordinates, and performing coordinate inversion on the image field to obtain the position of the real target.

5. The method of claim 4, wherein the amplitude weighting method in step one comprises uniform distribution, cosine weighting, Hamming window, Taylor distribution, Chebyshev distribution and hybrid weighting method.

6. The method of claim 4, wherein the scan phase weighting adjusts the central view direction of the imaging system in step two, and the phase calculation formula of the scan phase weighting is:

wherein:the phase difference between the adjacent cells of the array in the x direction and the y direction respectively has the following calculation formula:

wherein: deltax、ΔyThe array unit pitch theta in the x direction and the y directionζ、θξX, when the central visual angle direction points to the source coordinate (zeta ),The calculation formula of the scanning angle coordinate in the y direction is respectively as follows:

wherein: u is the object distance, i.e., the distance from the plane of the target to the plane of the array.

7. The method of claim 4, wherein step three comprises: and carrying out focusing phase weighting on the array unit signals by using a focusing phase weighting method to realize imaging focusing, wherein:

the autofocus phase weighted focus phase calculation formula is:

the zoom or fixed focus phase weighted focus phase calculation formula is:

wherein F is the focal length, and F < U, F < V.

8. The method of claim 4, wherein step four comprises: performing rapid imaging processing on the signals after the amplitude and the phase of the array unit are weighted by adopting an efficient parallel algorithm; the efficient parallel algorithm comprises two-dimensional or three-dimensional FFT, IFFT, non-uniform FFT and sparse FFT, and the calculation formula is as follows:

wherein:is like, symbolRepresents an efficient parallel algorithm function and is,is a target scattered field received by the array unit, A is an array unit amplitude weighting coefficient, phiFFor focusing the phase weighting coefficients, [ phi ]SWeighting coefficients for the scanning phases;

ω corresponding to the image field calculation resultδ、ωσThe value range is as follows: omegaδ∈[0,2π]、ωσ∈[0,2π]After fftshift operation, the value of ω is calculatedδ、ωσThe value range is transformed into: omegaδ∈[-π,π]、ωσ∈[-π,π]The image at this time is an image conforming to the actual distribution:

9. the method of claim 4, wherein step five comprises: carrying out coordinate calculation on an image field obtained by the efficient parallel algorithm, and carrying out coordinate inversion on the image field to obtain the distribution condition of a real target; wherein:

for the efficient parallel algorithm of the IFFT class, the calculation formula of the angular coordinate of the image field scanning is as follows:

for the FFT-type efficient parallel algorithm, the calculation formula of the image field scanning angle coordinate is as follows:

the rectangular coordinate calculation formula of the image is as follows:

δ=Vtanθδ

σ=Vtanθσ

the coordinate inversion calculation formula of the real target is as follows:

10. method according to claim 4, characterized in that the element spacing of the transceiving antennas is setTo avoid image aliasing.

11. An array fast imaging method, wherein the fast imaging method is used for long-distance imaging, comprising:

if U is ∞, then phiFA simplified formula suitable for long range imaging is 0:

the image field is calculated by adopting the efficient parallel algorithm according to claim 8, and the distribution condition of the targets in the wide visual angle range is obtained through one operation.

12. Use of the method according to any one of claims 1 to 11 in the fields of optical imaging, microwave imaging, radar detection, sonar, ultrasound imaging, and acoustic, optical, electrical based object detection, image recognition, wireless communication.

Technical Field

The invention relates to the technical fields of optical imaging, microwave imaging, radar detection, sonar, ultrasonic imaging, target detection based on sound, light, electricity and other media, imaging identification and wireless communication, in particular to an array rapid imaging method and application thereof in the fields.

Background

In the field of microwave imaging, the existing technical types are mainly classified into the following four categories:

the first type is represented by conventional radar technology, and the detection device forms an extremely narrow detection beam through a large-aperture array, and covers a spatial area to be detected with a plurality of wave positions, so as to obtain an image of a target. The main disadvantages are the need for large aperture arrays, the long imaging time required, and the high cost. Digital Beam Forming (DBF) is adopted for imaging, the number of synthesized beams is generally limited, and the more the synthesized beams are, the higher the requirement on hardware computing resources is. And such techniques have a poor effect on near field target imaging, resulting in imaging blur and distortion.

The second type is represented by a modern Radar technology, Synthetic Aperture (SAR) and Inverse Synthetic Aperture (ISAR) are two main forms, an equivalent large Aperture array is formed by the motion of a single antenna or a one-dimensional array, and an image of a target is obtained by comprehensively analyzing received signals at different positions. There are major disadvantages in that different relative motions between the target and the array elements are required, the required imaging time is long, the algorithm is extremely complex, and motion compensation is difficult.

The third category is represented by focal plane imaging techniques, in which an image of a target is formed on a focal plane mainly by a microwave lens or a microwave array lens, and then imaging information of the target is extracted at the focal plane with a precision sensor. The method has the main defects of non-ideal imaging effect, low imaging resolution and high development difficulty of a high-precision sensor.

The fourth category is represented by near-field microwave holographic imaging technology, which adopts a technology similar to laser holographic imaging, acquires target holographic information by referring to an irradiation source, and acquires an image of a target by a three-dimensional space spectrum. The main defects are long imaging time, complex algorithm and high hardware cost. And such techniques are only effective for near field target imaging and not effective for long range target detection and imaging.

In summary, in the imaging field, the prior art has disadvantages in cost and universality, and it is necessary to develop a detection and imaging recognition technology with low cost, high real-time performance and high precision.

Disclosure of Invention

In order to overcome the above-mentioned defects and shortcomings of the conventional imaging technology, the present invention provides a set of solutions.

As shown in fig. 1, a coordinate system of an imaging system is established, wherein: p is the target, Q is the image of the target, the antenna array is located on the plane where z is 0, and X denotes the transmit and receive antenna elements. The array unit receives the echo signal of the target, and the image of the target can be obtained by imaging the echo signal.

The propagation phase shift introduced when a signal propagates through a single pass of R1, R2 is:

among the components useful for imaging focusing are:

wherein phi is1Is the propagation phase shift, phi, of the scattering source P to the array elements2For the propagation phase shift of the array element to the image point Q,is the wave number, U is the object distance, V is the image distance; (ζ, ξ) are target coordinates, (x, y) are array element coordinates, and (δ, σ) are image point coordinates.

By equating the antenna array as a lens with focal length F, the effective phase shift of the lens elements is:

wherein phi isLF is the focal length for the lens phase shift of the array element.

After receiving the target echo signal, the antenna unit performs secondary scattering in the form of spherical waves. The target echo signal passes through a different transmission path R1、R2And the field intensity reaching the image plane after the phase shift of the lens is as follows:

wherein the content of the first and second substances,in order to be the image field distribution,is the target reflected signal. Substitution of phi1、φ2、φLThe expression of (A) is obtained after the arrangement:

wherein the content of the first and second substances,

when the imaging conditions are satisfied:at this time there is Ψ10, orderFinishing to obtain:

for an ideal rectangular lens front:substituting the formula to carry out definite integration to obtain:

wherein Sinc represents the Sinc function, and when the aperture of the array is larger, the function shows the characteristics of the impulse function, so that the image field distribution and the target have a good linear mapping relationship.

For an actual discrete array imaging system, assuming that a target transmission signal received by the transceiving antenna unit is E, the imaging needs to process a target echo signal received by an array as follows:

wherein the content of the first and second substances,for the field received by the array element, AmnThe amplitude weighting coefficients of the array elements. The formula is developed and finished to obtain:

wherein the content of the first and second substances,

when the imaging conditions are satisfied:at this time has psi1=0。

Let xm=x0+mΔx,yn=y0+nΔyM and n are respectively the serial numbers of the array units in the x direction and the y direction, deltax、ΔyArray unit spacing in x-direction and y-direction respectively, (x)0,y0) Is the array starting cell coordinate. The formula is simplified and arranged as follows:

wherein the content of the first and second substances,

the right coefficient of the above formula satisfiesThe spatial fluctuation characteristic of an image field is reflected, and the influence on imaging is basically avoided and can be ignored. The summation operation can be rapidly solved by using two-dimensional IFFT, and then the image field calculation formula is as follows:

where IFFT represents a two-dimensional inverse fast fourier transform. Omega corresponding to IFFT calculation resultδ、ωσValue rangeThe enclosure is as follows: omegaδ∈[0,2π]、ωσ∈[0,2π]After fftshift operation, the value of ω is calculatedδ、ωσThe value range is transformed into: omegaδ∈[-π,π]、ωσ∈[-π,π]The image at this time is the image which is in accordance with the actual distribution, and has a good linear mapping relation with the source field.

Combining with the array antenna theory, the imaging calculation formula and the array antenna far-field directional diagram calculation formula have a similar form, so that the array antenna theory can be used for correcting the field coordinates: omegaδ=kΔx sinθδ、ωσ=kΔy sinθσThe symbol sin denotes a sine function. The condition that the directional diagram has no grating lobe is as follows:no imaging aliasing occurs at this time.

And finally, correcting the scanning angular coordinate of the image point by adopting an array antenna theory:

wherein, the symbol sin-1Representing an arcsine function.

On the basis of the above knowledge, the invention provides an array fast imaging method, which is based on a lens imaging principle, combines an electromagnetic field theory, and obtains image field distribution corresponding to a target by weighting the amplitude and the phase of a unit signal according to a target signal received by an antenna array and adopting an efficient parallel algorithm.

Further, in the method, the image field distribution corresponding to the target is obtained by weighting the amplitude and the phase of the unit signal and adopting an efficient parallel algorithm, and the specific algorithm is as follows:

wherein: j is an imaginary unit, e is an Euler constant,in order to be the image field distribution,for the target signal received by the array unit, AmnFor array element amplitude weighting coefficients, [ phi ] FmnFor focusing phase weighting coefficients, [ phi ] SmnFor scanning the phase weighting coefficients, M is the number of array elements in the x-direction, and N is the number of array elements in the y-direction, (x)m,yn) Is the coordinate of the array unit, (delta, sigma) is the coordinate of the image point, V is the image distance, i.e. the distance from the image plane to the array plane, m, n are the serial numbers of the array unit in the x direction and the y direction respectively,in wavenumber, λ is the wavelength, and the symbol Σ represents the summation operation.

Under the condition of large-angle imaging, the image field coordinates of the imaging formula have large errors and need to be corrected. For a uniform discrete array, the high-precision image field calculation formula is:

wherein, ω isδ=kΔx sinθδ、ωσ=kΔy sinθσ,ΔxIs the x-direction array element pitch, ΔyIs the y-direction array cell pitch, θδ、θσRespectively, the scan angular coordinates of the image point relative to the center of the array.

Specifically, the array rapid imaging method comprises the following steps:

the method comprises the following steps: carrying out amplitude weighting on the array unit signals to reduce side lobe levels;

step two: carrying out scanning phase weighting on the array unit signals to adjust the central visual angle direction of the imaging system;

step three: carrying out focusing phase weighting on the array unit signals to realize imaging focusing;

step four: performing rapid imaging processing on signals of the array unit by adopting an efficient parallel algorithm;

step five: and resolving the image field coordinates, and performing coordinate inversion on the image field to obtain the position of the real target.

Further, the amplitude weighting method in step one of the method of the present invention includes, but is not limited to, uniform distribution, cosine weighting, hamming window, Taylor distribution, chebyshev distribution, and hybrid weighting method.

Further, in step two of the method of the present invention, the scanning phase is weighted to adjust the central view direction of the imaging system, and the phase calculation formula of the scanning phase weighting is as follows:

wherein:the phase difference between the adjacent cells of the array in the x direction and the y direction respectively has the following calculation formula:

wherein: deltax、ΔyThe array unit pitch theta in the x direction and the y directionζ、θξThe x and y scanning angle coordinates when the central visual angle direction points to the source coordinates (zeta, xi) are respectively calculated as follows:

wherein: u is the object distance, i.e., the distance from the plane of the target to the plane of the array.

Further, the method comprises the following steps: and carrying out focusing phase weighting on the array unit signals by using a focusing phase weighting method to realize imaging focusing, wherein:

the autofocus phase weighted focus phase calculation formula is:

the zoom or fixed focus phase weighted focus phase calculation formula is:

wherein F is the focal length, and F is less than U, F and less than V.

Further, the method of the invention comprises the following fourth step: performing rapid imaging processing on the signals after the amplitude and the phase of the array unit are weighted by adopting an efficient parallel algorithm; the efficient parallel algorithm includes, but is not limited to, two-dimensional or three-dimensional FFT, IFFT, non-uniform FFT, sparse FFT, and the calculation formula is:

wherein:is like, symbolRepresents an efficient parallel algorithm function and is,is a target scattered field received by the array unit, A is an array unit amplitude weighting coefficient, phiFIs a focusing phase weighting coefficient, and phi s is a scanning phase weighting coefficient;

ω corresponding to the image field calculation resultδ、ωσThe value range is as follows: omegaδ∈[0,2π]、ωσ∈[0,2π]After fftshift operation, the value of ω is calculatedδ、ωσThe value range is transformed into: omegaδ∈[-π,π]、ωσ∈[-π,π]The image at this time is an image conforming to the actual distribution:

further, the method of the invention comprises the following step five: carrying out coordinate calculation on an image field obtained by the efficient parallel algorithm, and carrying out coordinate inversion on the image field to obtain the distribution condition of a real target; wherein:

for the efficient parallel algorithm of the IFFT class, the calculation formula of the angular coordinate of the image field scanning is as follows:

for the FFT-like efficient parallel algorithm, the calculation formula of the image field scanning angle coordinate is as follows:

the rectangular coordinate calculation formula of the image is as follows:

δ=V tanθδ

σ=V tanθσ

the coordinate inversion calculation formula of the real target is as follows:

furthermore, the method of the invention sets the array unit spacingTo avoid image aliasing.

In addition, the invention also provides an array rapid imaging method, which is used for remote imaging and comprises the following steps: if U is ∞, then phiFA simplified formula suitable for long range imaging is 0:

and calculating an image field by adopting the efficient parallel algorithm, and obtaining the target distribution condition in a wide visual angle range through one-time operation.

Furthermore, the method of the invention is not only suitable for passive imaging systems, but also suitable for semi-active systems and conventional phased array systems, namely, semi-active systems adopting additional antennas as irradiation sources and conventional phased array systems in which all array units transmit and receive signals simultaneously can adopt the method of the invention to carry out rapid imaging.

Meanwhile, the invention also relates to the application of the method in the fields of optical imaging, microwave imaging, radar detection, sonar, ultrasonic imaging, sound, light and electric target detection, imaging identification and wireless communication.

In conclusion, the array rapid imaging method has the following advantages:

1) small operation amount, low hardware cost and high imaging speed

Compared with the traditional digital beam synthesis technology, the method has the characteristics of high operation speed, low hardware cost, high imaging speed and the like.

2) Compatible far, medium and near distance imaging

The invention adopts the algorithm framework of 'phase compensation-IFFT', and the phase compensation quantity of the algorithm framework is related to the distance, so the method can be suitable for imaging under the conditions of different distances, such as far distance, medium distance and near distance, and has good compatibility.

3) Can be compatible with different imaging systems such as passive, semi-active and active systems

The imaging method is not only suitable for a passive imaging system, but also suitable for a semi-active system and a conventional phased array system, namely, the semi-active system adopting an additional antenna as an irradiation source and the conventional phased array system adopting all array units to simultaneously transmit and receive signals can adopt the method to carry out rapid imaging.

In addition, the method has good application prospect, can be widely applied to the technical field of target detection and wireless communication taking sound, light, electricity and the like as media, and when the detection media are electromagnetic waves, the technology is suitable for microwave imaging, radar detection, wireless communication, synthetic aperture radar and inverse synthetic aperture radar; when the detection medium is sound wave and ultrasonic wave, the technology is suitable for sonar, ultrasonic imaging and synthetic aperture sonar; when the detection medium is light, the technology is suitable for optical imaging and synthetic aperture optical imaging.

Drawings

In order to more clearly illustrate the technical solutions of the prior art and the embodiments of the present invention, the drawings needed to be used in the description of the prior art and the embodiments of the present invention will be briefly described below, it is obvious that the following drawings are only some embodiments described in the present invention, and it is obvious for those skilled in the art that other drawings can be obtained based on these drawings without creative efforts.

FIG. 1 is a coordinate system of an arrayed imaging system of the present invention;

FIG. 2 is an algorithm block diagram of the array fast imaging method of the present invention;

FIG. 3 is a graph of the results of a rapid imaging simulation with different amplitude weightings, wherein (a) is the target model and (b) is the imaging simulation result;

fig. 4 is a comparison of the array fast imaging result of the present invention and the imaging result of the conventional digital beam forming technique, wherein (a) is the target distance of 0.1m, and (b) is the target distance of 100 m.

Detailed Description

In order to make the objects, technical solutions and advantages of the present invention more apparent, the technical solutions of the present invention will be described in detail and completely with reference to the following embodiments and accompanying drawings. It is to be understood that the embodiments described are merely illustrative of some, but not all, of the present invention and that the invention may be embodied or carried out in various other specific forms, and that various modifications and changes in the details of the specification may be made without departing from the spirit of the invention.

Also, it should be understood that the scope of the invention is not limited to the particular embodiments described below; it is also to be understood that the terminology used in the examples is for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present invention.

Example 1: a fast imaging method of array (refer to the attached figures 1-2) is based on the lens imaging principle, combines the electromagnetic field theory, and obtains the image field distribution corresponding to the target by the amplitude and phase weighting of unit signals and the high-efficiency parallel algorithm according to the target signals received by the antenna array, and the specific algorithm is as follows:

wherein: j is an imaginary unit, e is an Euler constant,in order to be the image field distribution,for the target signal received by the array unit, AmnIs a weighting coefficient for the array element amplitude,in order to focus the phase weighting coefficients,for scanning the phase weighting coefficients, M is the number of array elements in the x-direction, and N is the number of array elements in the y-direction, (x)m,yn) Is the coordinate of the array unit, (delta, sigma) is the coordinate of the image point, V is the image distance, i.e. the distance from the image plane to the array plane, m, n are the serial numbers of the array unit in the x direction and the y direction respectively,in wavenumber, λ is the wavelength, and the symbol Σ represents the summation operation.

Under the condition of large-angle imaging, the image field coordinates of the imaging formula have large errors and need to be corrected. For a uniform discrete array, the high-precision image field calculation formula is:

wherein, ω isδ=kΔx sinθδ、ωσ=kΔy sinθσ,ΔxIs the x-direction array element pitch, ΔyIs the y-direction array cell pitch, θδ、θσRespectively, the scan angular coordinates of the image point relative to the center of the array.

Specifically, the method comprises the following steps:

the method comprises the following steps: carrying out amplitude weighting on the array unit signals to reduce side lobe levels;

the amplitude weighting method comprises a uniform distribution method, a cosine weighting method, a Hamming window method, a Taylor distribution method, a Chebyshev distribution method and a mixed weighting method.

Step two: carrying out scanning phase weighting on the array unit signals to adjust the central visual angle direction of the imaging system;

wherein, the scanning phase weighting adjusts the central view angle direction of the imaging system, and the phase calculation formula of the scanning phase weighting is as follows:

wherein: m and n are respectively the serial numbers of the array units in the x direction and the y direction,the phase difference between the adjacent cells of the array in the x direction and the y direction respectively has the following calculation formula:

wherein: deltax、ΔyThe array unit spacing in the x-direction and the y-direction respectively, the symbol sin represents a sine function, thetaζ、θξThe x and y scanning angle coordinates when the central visual angle direction points to the source coordinates (zeta, xi) are respectively calculated as follows:

wherein: u is the object distance, i.e. the distance from the plane of the target to the plane of the array, and the symbol tan-1Representing the arctan function.

Step three: carrying out focusing phase weighting on the array unit signals to realize imaging focusing;

the method specifically comprises the following steps: and carrying out focusing phase weighting on the array unit signals by using a focusing phase weighting method to realize imaging focusing, wherein:

the autofocus phase weighted focus phase calculation formula is:

the zoom or fixed focus phase weighted focus phase calculation formula is:

wherein F is the focal length, and F < U, F < V.

Step four: performing rapid imaging processing on signals of the array unit by adopting an efficient parallel algorithm;

the method specifically comprises the following steps: performing rapid imaging processing on the signals after the amplitude and the phase of the array unit are weighted by adopting an efficient parallel algorithm; the efficient parallel algorithm comprises two-dimensional or three-dimensional FFT, IFFT, non-uniform FFT and sparse FFT, and the calculation formula is as follows:

wherein:is like, symbolRepresents an efficient parallel algorithm function and is,is a target scattered field received by the array unit, A is an array unit amplitude weighting coefficient, phiFFor focusing the phase weighting coefficients, [ phi ]SWeighting coefficients for the scanning phases;

ω corresponding to the image field calculation resultδ、ωσThe value range is as follows: omegaδ∈[0,2π]、ωσ∈[0,2π]After fftshift operation, the value of ω is calculatedδ、ωσThe value range is transformed into: omegaδ∈[-π,π]、ωσ∈[-π,π]The image at this time is an image conforming to the actual distribution:

step five: resolving an image field coordinate, and performing coordinate inversion on the image field to obtain the position of a real target;

the method specifically comprises the following steps: carrying out coordinate calculation on an image field obtained by the efficient parallel algorithm, and carrying out coordinate inversion on the image field to obtain the distribution condition of a real target; wherein:

for the efficient parallel algorithm of the IFFT class, the calculation formula of the angular coordinate of the image field scanning is as follows:

for the FFT-like efficient parallel algorithm, the calculation formula of the image field scanning angle coordinate is as follows:

the rectangular coordinate calculation formula of the image is as follows:

δ=V tanθδ

σ=V tanθσ

the coordinate inversion calculation formula of the real target is as follows:

in addition, the unit distance of the transmitting and receiving antenna is set in the method of the inventionTo avoid image aliasing.

Example 2: the different amplitude weighted imaging results of the array fast imaging (embodiment 1 method) of the invention comprise:

a cosine amplitude weighting method is adopted:

wherein R isLAlpha is the minimum amplitude weighted value of the array edge for the array effective aperture radius, and alpha belongs to (0, 1) can be selected according to the requirement]。

The target model is a cross-shaped metal object and is positioned on the array normal line, the distance from the center of the array is 10m, and the aperture of the array is 2m×2m, the unit interval is 0.5 lambda, the frequency of the irradiated plane wave is 10GHz, and the imaging result is shown in figure 3.

Example 3: the comparison of the imaging results of the array fast imaging (example 1 method) of the present invention and the conventional digital beam forming technology comprises:

the target model is an ideal point source target and is positioned in the normal direction of the array, and the array size is 32×32, the cell pitch is 0.5 λ, and the irradiated plane wave frequency is 10 GHz. The target distances are 0.1m and 100m respectively, imaging simulation is carried out, and imaging results are shown in the attached figure 4.

Example 4: a method of array fast imaging, the method for long range imaging, comprising: if U is ∞, then phiFA simplified formula suitable for long range imaging is 0:

the image field is calculated by adopting the efficient parallel algorithm, and the distribution condition of all targets in a wide visual angle range can be obtained through one-time operation.

Further, selecting omegaδ=0、ωσWhen the target echo is equal to 0, the imaging calculation formula is degraded into a traditional active phased array radar target echo calculation formula:

through the above description of the embodiments, those skilled in the art will clearly understand that the present invention can be implemented by means of software plus a necessary hardware platform. With this understanding, the above embodiments can be embodied in the form of a software product, which can be stored in a non-volatile storage medium (such as a CD-ROM, a usb disk, an EPROM, a removable hard disk, etc.) and includes instructions for causing a computer device (such as a personal computer, a server, or an embedded device) to execute the method according to the embodiments of the present invention.

Finally, it should be noted that: the above description is only intended to illustrate the basic technical solution of the present invention, and not to limit it; although the present invention has been described in detail with reference to the foregoing description, any person skilled in the art may modify, perfect, omit, or substitute some of the technical features mentioned above, and such modifications or substitutions are included in the scope of the present invention.

The embodiments of the present invention are described in a progressive manner, each embodiment focuses on differences from other embodiments, and the same and similar parts among the embodiments are referred to each other.

The above description is only an example of the present invention, and is not intended to limit the present invention. Various modifications and alterations to this invention will become apparent to those skilled in the art. Any modification, replacement, or the like that comes within the spirit and principle of the present invention should be included in the scope of the claims of the present invention.

15页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种基于强散射点的舰船目标定位方法及系统

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类