一种防硫酸盐侵蚀混凝土及配比优化方法与应用

文档序号:460598 发布日期:2021-12-31 浏览:11次 >En<

阅读说明:本技术 一种防硫酸盐侵蚀混凝土及配比优化方法与应用 (Sulfate erosion preventing concrete and proportioning optimization method and application ) 是由 许崇帮 李雪峰 王华牢 高晓静 于 2021-10-21 设计创作,主要内容包括:本发明为工程领域的一种防硫酸盐侵蚀混凝土及其应用,具体涉及一种防硫酸盐侵蚀混凝土及试验方法与应用,所述混凝土由基料、骨料、掺合料、外添加剂及水混合搅拌而成,所述混凝土的组分及质量份数如下:所述基料为强度等级42.5的普通硅酸盐水泥17.4-17.5份;所述骨料包括细骨料和粗骨料,所述粗骨料为粒径5-10mm的玄武岩38.9份,所述细骨料为玄武岩质中砂33.1-33.2份;所述掺合料为硅粉或活性指数大于80%的粉煤灰1.9-1.95份,与现有技术相比,本发明的有益效果是:模拟工程实际的配比试验,结合弱透水性石膏岩地层的特殊腐蚀环境,再现硫酸盐型侵蚀的全过程并分析侵蚀成因,为防腐蚀混凝土材料的选取及组成设计的提供理论依据,所述试验中试样的组分及配比均结合工程现状及侵蚀特点设置。(The invention relates to a sulfate erosion preventing concrete and application thereof in the field of engineering, in particular to a sulfate erosion preventing concrete and a test method and application thereof, wherein the concrete is prepared by mixing and stirring base materials, aggregate, admixture, external additive and water, and the concrete comprises the following components in parts by weight: the base material is 17.4 to 17.5 parts of ordinary Portland cement with the strength grade of 42.5; the aggregate comprises fine aggregate and coarse aggregate, wherein the coarse aggregate is 38.9 parts of basalt with the particle size of 5-10mm, and the fine aggregate is 33.1-33.2 parts of basalt medium sand; the admixture is 1.9-1.95 parts of silica powder or fly ash with the activity index of more than 80%, compared with the prior art, the invention has the beneficial effects that: the method is characterized by simulating an actual proportioning test of engineering, combining a special corrosion environment of a weak water permeability gypsum rock stratum, reproducing the whole process of sulfate type corrosion and analyzing corrosion causes, providing a theoretical basis for selection and composition design of an anti-corrosion concrete material, and setting components and proportioning of a sample in the test according to the current situation of the engineering and corrosion characteristics.)

一种防硫酸盐侵蚀混凝土及配比优化方法与应用

技术领域

本发明为工程领域的一种防硫酸盐侵蚀混凝土及其应用,具体涉及一种防硫酸盐侵蚀混凝土及配比优化方法与应用。

背景技术

碳硫硅钙石型硫酸盐侵蚀是一种特殊的混凝土服役环境,在该环境中,采用普通混凝土的隧道衬砌会受到岩体中硫酸盐的侵蚀,现有研究表明,硫酸盐、水及一定温度条件下,碳硫硅钙石型硫酸盐侵蚀含有石灰石粉或石灰石掺合料的水泥基混凝土(TSA),破坏其凝胶特性,专利号为201110192758.6,一种碳硫硅钙石型硫酸盐侵蚀抑制剂及其制备方法

背景技术

中也已经说明,针对碳硫硅钙石型硫酸盐侵蚀,普通的防腐蚀混凝土无法到达防腐蚀效果,特殊的防腐蚀混凝土可以起到防腐作用,但其配料及工艺复杂,制作繁琐,且运输成本高,并不适用于实际工程中。

抑制剂的原理是在混凝土表面形成包裹层,抑制腐蚀反应,但抑制剂在一些特殊工况的隧道工程中适用较差,主要是隧道混凝土表层尤其是初期支护,并非是平整的表面,较难生成有效的包裹层。

在实际工程中,隧道衬砌的混凝土所受腐蚀更为复杂,一是周围岩体及地下水所形成的外部腐蚀条件,二是混凝土本身内部的渗水及腐蚀,例如在我国华北的太行山脉区域,也存在碳硫硅钙石型硫酸盐侵蚀,但该区域为弱透水性的石膏岩地层,渗水量及腐蚀条件与普通的碳硫硅钙石型硫酸盐侵蚀并不相同,而现有的碳硫硅钙石型硫酸盐侵蚀试验大多针对碳硫硅钙石的形成机制及相关参数的试验,多用于室内理论研究分析,针对实际工程环境的腐蚀尚缺少科学有效的配比研究,基础研究要应用于工程实际中还需要相关的配比试验以及对试验中的组分及含量的研究,所以,基础性试验在实际应用中还需要结合配比优化试验达到技术效果。

因此,开发一种防硫酸盐侵蚀混凝土及配比优化方法与应用,不但具有迫切的研究价值,也具有良好的经济效益和工业应用潜力,这正是本发明得以完成的动力所在和基础。

发明内容

为了克服上述所指出的现有技术的缺陷,本发明人对此进行了深入研究,在付出了大量创造性劳动后,从而完成了本发明。

具体而言,本发明提供一种抗碳硫硅钙石型硫酸盐侵蚀的混凝土及配比优化方法与应用,揭示防腐蚀混凝土在工程实际应用中理论及试验依据。

为实现上述目的,本发明提供如下技术方案:

一种防硫酸盐侵蚀混凝土,所述混凝土由基料、骨料、掺合料、外添加剂及水混合搅拌而成,所述混凝土的组分及质量份数如下:

所述基料为强度等级42.5的普通硅酸盐水泥17.4-17.5份;

所述骨料包括细骨料和粗骨料,所述粗骨料为粒径5-10mm的玄武岩38.9份,所述细骨料为玄武岩质中砂33.1-33.2份;

所述掺合料为硅粉或活性指数大于80%的粉煤灰1.9-1.95份;

水6.9-7份;

所述外添加剂为液体防腐剂及减水剂,减水剂为聚羧酸类减水剂0.23-0.24份,防腐剂为抗硫酸盐侵蚀型1.34-1.35份。

一种防硫酸盐侵蚀混凝土的配比优化方法,包括如下步骤:

(1)根据硫酸盐的侵蚀特性及腐蚀环境参数确定优化用基础试样及对比试样的成分及配比;

(2)按照不同成分及配比制作试验用试样组件,并进行28天基础养护,所述基础养护分为普通养护及特殊养护;

(3)考虑外部碳酸根离子影响,将同一组分及配比的试样设置两个,两试样分别采用标准养护及低温养护两种方式进行养护;

(4)分别记录试样不同养护时长内的养护数据;

(5)观察试样外观,进行XRD试验测试试样深层组分;

(6)对比试验结果并根据实验结果取得防腐蚀混凝土的最优组分及配比;

所述步骤(2)中标准养护为室温20℃条件下,采用硫酸镁溶液及10%浓度的石灰石粉水溶液流动式浸润,达到95%相对湿度;

所述步骤(2)中低温养护为将试件放置于温度4℃-6℃的溶液内浸水式养护,所述溶液为10%浓度的石灰石粉水溶液以及硫酸镁溶液的混合液;

所述步骤(1)中根据碳硫硅钙石型硫酸盐侵蚀分别设置普通试样、优化水泥试样、优化配比试样、优化配比并优化水泥试样、内部配制硫酸根离子试样、优化配比考虑碳酸根离子侵入试样以及优化水泥考虑碳酸根离子侵入试样。

在本发明中,作为一种改进,所述步骤(1)中试样的组分设置如下:

所述普通试样的组分为:强度为42.5的P.O水泥、水、粉煤灰、石灰岩、中砂、液体防腐剂及减水剂;

所述优化水泥试样在普通试样基础上,将普通试样中的水泥替换为强度为42.5的P.I水泥;

优化配比试样的组分为:强度为42.5的P.O水泥、水、粉煤灰、玄武岩、中砂、液体防腐剂及减水剂;

优化配比并优化水泥试样的组分在优化配比基础上,将优化配比试样中的水泥替换为强度为42.5的P.I水泥;

内部配制硫酸根离子试样的组分为:强度为42.5的P.O水泥、水、石灰石粉、石灰岩、中砂及减水剂。

在本发明中,作为一种改进,所述试样的配比如下:

所述普通试样的质量份数为:强度为42.5的P.O水泥393份,水200份,粉煤灰48份,石灰岩934份,中砂796份,液体防腐剂32.5份,减水剂3.84份,水胶比为0.45;

优化水泥试样在普通试样基础上,将普通试样中的水泥替换为强度为42.5的P.I水泥393份;

优化配比试样的质量份数为:强度为42.5的P.O水泥422份,水168份,粉煤灰47份,玄武岩940份,中砂801份,液体防腐剂32.5份,减水剂5.64份,水胶比为0.36;

优化配比并优化水泥试样在优化配比基础上,将优化配比试样中的水泥替换为强度为42.5的P.I水泥422份;

内部配制硫酸根离子试样的质量份数为:强度为42.5的P.O水泥422份,水190份,石灰石粉47份,石灰岩864份,中砂974份,减水剂5.64份,水胶比为0.35;

以上试样在28天基础养护中,采用水溶液喷淋的普通养护;

优化配比考虑碳酸根离子侵入试样为优化配比试样在28天基础养护中采用10%浓度的石灰石粉水溶液喷淋养护,为特殊养护;

优化水泥考虑碳酸根离子侵入试样为优化配比并优化水泥试样在28天基础养护中采用10%浓度的石灰石粉水溶液喷淋养护,为特殊养护;

在本发明中,作为一种改进,所述步骤(3)中的养护时长分别为1个月、3个月、6个月、9个月和12个月。

一种应用上述防硫酸盐侵蚀混凝土的隧道衬砌设计方法,所述隧道衬砌采用全环封闭形式设计,衬砌外围的围岩采用注浆阻水,隧道初次衬砌的防腐蚀混凝土抗渗等级大于P6、二次衬砌的防腐蚀混凝土抗渗等级大于P8,所述衬砌中,防腐蚀混凝土的耐蚀系数大于0.8。

与现有技术相比,本发明的有益效果是:

(1)模拟工程实际的配比试验,结合弱透水性石膏岩地层的特殊腐蚀环境,再现硫酸盐型侵蚀的全过程并分析侵蚀成因,为防腐蚀混凝土材料的选取及组成设计的提供理论依据,所述试验中试样的组分及配比均结合工程现状及侵蚀特点设置。

(2)通过试验揭示特殊地层区域的防腐蚀混凝土组分及配比,本申请的对比试验在考虑外部硫酸盐侵蚀的同时,根据外部腐蚀环境增加碳酸根离子的影响因素,从而针对实际工程环境作出全面的腐蚀评估。

(3)通过试验分析验证,本申请对碳硫硅钙石型硫酸盐侵蚀的防范更为简洁有效,取材方便,无需额外增加其他昂贵特殊材料,更有利于工程运用和节约工程造价,采用玄武岩骨料,有力于混凝土结构强度和承载能力的长期性能保持,增加了工程结构的耐久性。

附图说明

为了更清楚地说明本发明

具体实施方式

或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍。在所有附图中,类似的元件或部分一般由类似的附图标记标识。附图中,各元件或部分并不一定按照实际的比例绘制。

图1为本发明实施例一中各试样6个月龄期时XRD试验结果的结构示意图;

图2为本发明实施例一中各试样9个月龄期时XRD试验结果的结构示意图;

图3为本发明实施例一中各试样11个月龄期时XRD试验结果的结构示意图;

图4为本发明实施例一中各试样12个月龄期时XRD试验结果的结构示意图;

具体实施方式

下面将结合附图对本发明技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本发明的技术方案,因此只作为示例,而不能以此来限制本发明的保护范围。

一种防硫酸盐侵蚀混凝土的配比优化试验方法,所述优化方法第一步为根据碳硫硅钙石型硫酸盐的侵蚀特性及腐蚀环境参数确定优化试验试样及对比试样的成分及配比,包括以下步骤:

(1)根据已有研究中碳硫硅钙石型硫酸盐侵蚀的特性,所述试样从两方面考虑,一是外部的硫酸盐侵蚀,二是混凝土内部自身的硫酸根离子生成,所述试验的试样根据以下方式设置:

1)设有基础对比试样;

2)设置水泥及骨料组分中不含石灰类物质的试样;

3)外添加剂不含可生成硫酸根离子或硫酸根离子的试样;

4)考虑外部硫酸根离子或硫酸根离子侵入的试样。

(2)设有基础试样及对比试样共7组,其中包括:普通试样、优化水泥试样、优化配比试样、优化配比并优化水泥试样、内部配制硫酸根离子试样、优化配比考虑硫酸根离子侵入试样以及优化水泥考虑硫酸根离子侵入试样,试样的设置一是可以体现不同组分对侵蚀反应的影响,二是通过优化配比可体现不同配比条件下的反应过程,以找到最优防腐蚀效果。

(3)根据试样测试需要并结合工程实际的腐蚀环境及地质参数确定试样的成分及配比。

其中,普通试样为隧道衬砌工程中常用的组分及配比,其配比未根据硫酸盐侵蚀调整,普通试样的组分及配比包括强度为42.5的P.O水泥393份,水200份,粉煤灰48份,石灰岩934份,中砂796份,液体防腐剂32.5份,减水剂3.84份,水胶比为0.45;

根据步骤(1),优化水泥试样在普通试样基础上,将普通试样中的P.O水泥替换为强度为42.5的P.I水泥393份;

优化配比试样的组分及配比包括强度为42.5的P.O水泥422份,水168份,粉煤灰47份,玄武岩940份,中砂801份,液体防腐剂32.5份,减水剂5.64份,水胶比为0.36,根据腐蚀环境中的岩层的渗水特性调整水泥与水的含量,改变水胶比,同时,水胶比影响硫酸盐侵蚀效果,从而达到所需的防腐蚀测试目的;

优化配比并优化水泥试样在优化配比基础上,将优化配比试样中的水泥替换为强度为42.5的P.I水泥422份;

内部配制硫酸根离子试样的配比为:强度为42.5的P.O水泥422份,水190份,石灰石粉47份,石灰岩864份,中砂974份,减水剂5.64份,水胶比为0.35,在试样组分中含有硫酸根离子,从而测试由内至外试样的侵蚀效果;

优化配比考虑硫酸根离子侵入试样以及优化水泥考虑硫酸根离子侵入试样则从外部体现硫酸根离子侵入。

第二步:按照不同成分及配比制作试验用试样组件,并进行28天基础养护,所述基础养护分为普通养护及特殊养护;

所述普通试样、优化水泥试样、优化配比并优化水泥试样和内部配制硫酸根离子试样在28天基础养护中,采用水溶液喷淋的基础养护,为常规养护方式;

优化配比考虑硫酸根离子侵入试样为优化配比试样在28天基础养护中采用10%浓度的石灰石粉水溶液喷淋养护,为特殊养护,形成外部硫酸根离子侵入;

优化水泥考虑硫酸根离子侵入试样为优化配比并优化水泥试样在28天基础养护中采用10%浓度的石灰石粉水溶液喷淋养护,同样为特殊养护;

第三步:考虑外部碳酸根离子影响,将同一组分及配比的试样设置两个,两试样分别采用标准养护及低温养护两种方式进行养护试验;

所述标准养护为室温20℃条件下,采用硫酸镁溶液及10%浓度的石灰石粉水溶液流动式浸润,达到95%相对湿度;

所述低温养护为将试件放置于温度4℃-6℃的溶液内浸水式养护,所述溶液为10%浓度的石灰石粉水溶液以及硫酸镁溶液的混合液;

所述标准养护及低温养护均是实际工程中衬砌所处的腐蚀条件,两种养护方式模拟自然条件中的腐蚀环境,再现腐蚀过程,在弱透水性的石膏岩地层处,碳硫硅钙石型硫酸盐的侵蚀会经历室温及低温两种条件。

第四步:分别记录试样不同养护时长内的养护数据,其中,记录数据的养护时长分别为1个月、3个月、6个月、9个月和12个月。

第五步:观察试样外观,进行XRD试验测试试样深层组分。

第四步和第五步均为常规的试验数据测试及检测步骤,所需的仪器及设备也为现有设备。

第六步:对比试验结果并根据实验结果取得防腐蚀混凝土的最优组分及配比,将多组实验数据对比后,找出最佳的防腐蚀混凝土组分及配比,并结合工程现状确定工程所用防腐蚀混凝土的组分及配比。

通过上述试验,可得出特殊地况下工程用防硫酸盐侵蚀混凝土组分及配比,所述混凝土由基料、骨料、掺合料、外添加剂及水混合搅拌而成;

所述基料为强度等级42.5的普通硅酸盐水泥17.4-17.5份;

所述骨料包括细骨料和粗骨料,所述粗骨料为粒径5-10mm的玄武岩,所述细骨料为玄武岩质中砂,其中,玄武岩38.9份,玄武岩质中砂33.1-33.2份;

所述掺合料为硅粉或活性指数大于80%的粉煤灰,1.9-1.95份;

所述外添加剂为不生成硫酸根离子或硫酸根离子的液体防腐剂及减水剂,减水剂为聚羧酸类减水剂0.23-0.24份,防腐剂为抗硫酸盐侵蚀型1.34-1.35份;水6.9-7份。

上述防硫酸盐侵蚀混凝土应用于隧道衬砌中的设计方法,所述隧道衬砌采用全环封闭形式设计,衬砌外围的围岩采用注浆阻水,隧道初次衬砌的防腐蚀混凝土抗渗等级大于P6、二次衬砌的防腐蚀混凝土抗渗等级大于P8,所述衬砌中,防腐蚀混凝土的耐蚀系数大于0.8。

实施例一:本实施例以杜公岭隧道TSA破坏过程为例,根据杜公岭隧道初支混凝土发生硫酸盐型侵蚀的腐蚀环境设置本实验。

杜公岭隧道工程地质条件为弱透水性的灰岩及石膏岩地层,TSA破坏受地下水影响,且破坏混凝土中水泥的胶性,考虑该地质条件及渗水性,在现有混凝土配比的基础上调整水胶比,从而实现与现有混凝土配比的对比防腐蚀试验。

1、根据TSA破坏特点,试验共选择两种水泥、两种石子进行了配合比的设计,水泥为:P.O42.5及P.I42.5,石子为石灰岩和玄武岩,又充分考虑了外界硫酸根离子的渗入对碳硫硅钙石生成的影响,设计了10%石灰石粉溶液的养护条件,共7个混凝土配合比试验试样进行测试,包括:普通试样、优化水泥试样、优化配比试样、优化配比并优化水泥试样、内部配制硫酸根离子试样、优化配比考虑硫酸根离子侵入试样以及优化水泥考虑硫酸根离子侵入试样,具体试样组分及配合比见下表所示:

混凝土TSA试验方案

2、根据试验需要按照如下要求制作混凝土试样:

(1)按照混凝土配合比成型混凝土试块(40*40*160mm)18条模(试验用10条,8条备用)。

(2)按照混凝土配合比搅拌后筛除石子成型(40*40*40mm)试块18块。

(3)按混凝土配合比中的胶凝组成和比例搅拌净浆,成型试块(40*40*40mm)试块18块。

试样制作完成后,28天基础养护中,试样1-5采用普通养护,试样6和7采用10%浓度的石灰石粉水溶液喷淋养护。

为充分考虑外界碳酸根离子渗入对混凝土性能的影响,28天基础养护后采用两种养护方式,标准养护和低温养护。

所述标准养护为室温20℃条件下,采用硫酸镁溶液及10%浓度的石灰石粉水溶液流动式浸润,达到95%相对湿度;

所述低温养护为将试件放置于温度4℃-6℃的溶液内浸水式养护,所述溶液为10%浓度的石灰石粉水溶液以及硫酸镁溶液的混合液。

3、测试结果分析

混凝土试样在养护后,分别在1个月、3个月、6个月、9个月和12个月进行力学实验、表观、微观分析,其中,通过力学实验设备测试其抗折强度,通过红外及热分析测试设备测试其外表面及内部状态。

观察外观变化,进行拍照取样,分析试样的裂缝产生、结构完整度等现象,以分析内部破坏的产生对试样外观的影响趋势;

通过实验设备进行力学测试,养护条件对混凝土试样强度的发展有一定程度的影响,表现在低温养护时,抗压强度、抗折强度都呈现出下降趋势,且在相应的耐蚀系数有体现,具体如下表所示:

低温养护条件下6个月时试样的力学性能变化

低温养护条件下12个月时试样的力学性能变化

与标准养护条件相比,低温条件减缓了试样的力学性能发展。相同试样,随着龄期的延长,抗压强度、抗折强度及相应的耐蚀系数均呈现出下降趋势。

为进一步验证各试样外观变化及力学性能发展的深层次原因,对不同组成试样进行了XRD试验,结果如图1-图4所示;

在试验条件下,5号试样在9个月时开始出现TSA破坏的典型特征,如外观裂缝、结构剥落,耐蚀系数下降严重,XRD精修结果中发现有TSA的典型特征峰等,说明其发生TSA破坏的可能性大,且抵抗能力较弱。

当浸泡时间为9个月时,1号试样已经出现明显的硫酸盐侵蚀,但腐蚀物中尚未出现碳硫硅钙石。当浸泡时间为11个月时,腐蚀物中已经出现约4.11%的碳硫硅钙石,该结果表明,1号试样所采用的混凝土,如其遭遇高浓度硫酸盐服役环境且其自身抗渗性较差时,侵入混凝土内部的高浓度硫酸盐将加速混凝土出现硫酸盐型侵蚀。

通过试验试样2号与5号对比表明,在混凝土材料中添加石粉对生成碳硫硅钙石影响较显著;5号试验试样和6号试验试样对比表明,外部环境碳酸根离子影响对TSA影响较弱。

通过综合实验数据比对,得出4号试样为防硫酸盐侵蚀的最优配比。

采用4号组分及配比制作混凝土试件,并将其浸泡于含石膏岩的箱体内,并放入隧道内直到现场隧道施工结束,试块浸泡溶液中所使用的石膏岩来自于隧道围岩,石膏含量90%以上。试验过程中分别在不同时期观察混凝土外观变化并测试腐蚀物成分,浸泡时间为20个月是混凝土表层砂浆层的XRD图谱,测试结果显示表层砂浆内没有检测到明显的钙矾石及碳硫硅钙石,表明病害处治所采用的混凝土具有较高的抵抗硫酸盐侵蚀能力。

最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围,其均应涵盖在本发明的权利要求和说明书的范围当中。

15页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种高强度再生混凝土及其制备方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!