一种氮化硅陶瓷材料及其制备方法

文档序号:580567 发布日期:2021-05-25 浏览:17次 >En<

阅读说明:本技术 一种氮化硅陶瓷材料及其制备方法 (Silicon nitride ceramic material and preparation method thereof ) 是由 刘学建 张辉 黄政仁 姚秀敏 蒋金弟 陈忠明 于 2021-01-20 设计创作,主要内容包括:本发明涉及一种氮化硅陶瓷材料及其制备方法,所述氮化硅陶瓷材料包括氮化硅相和晶界相;所述氮化硅相的含量≥95wt%;所述晶界相为至少含有Y、Mg、O三种元素的混合物;所述晶界相的含量≤5wt%,且晶界相中结晶相的含量≥40vol%。(The invention relates to a silicon nitride ceramic material and a preparation method thereof, wherein the silicon nitride ceramic material comprises a silicon nitride phase and a grain boundary phase; the content of the silicon nitride phase is more than or equal to 95 wt%; the grain boundary phase is a mixture at least containing Y, Mg and O; the content of the grain boundary phase is less than or equal to 5wt%, and the content of a crystalline phase in the grain boundary phase is more than or equal to 40 vol%.)

一种氮化硅陶瓷材料及其制备方法

技术领域

本发明涉及一种氮化硅陶瓷材料及其制备方法,属于氮化硅陶瓷领域。

背景技术

近年来,半导体器件沿着大功率化、高频化、集成化的方向迅猛发展。半导体器件工作产生的热量是引起半导体器件失效的关键因素,而绝缘基板的导热性是影响整体半导体器件散热的关键。此外,如在电动汽车、高速铁路、轨道交通等领域,半导体器件使用过程中往往要面临颠簸、震动等复杂的力学环境,这对所用材料的可靠性提出了严苛的要求。

高导热氮化硅(Si3N4)陶瓷由于其优异的力学和热学性能,被认为是兼具高强度和高导热的最佳半导体绝缘基板材料,在大功率绝缘栅双极型晶体管(IGBT)的散热应用方面极具潜力。氮化硅晶体的理论热导率可达400W·m-1·K-1以上,具有成为高导热基板的潜力。优良的力学性能和良好的高导热潜质使氮化硅陶瓷有望弥补现有氧化铝、氮化铝等陶瓷基板材料的不足,在高端半导体器件、特别是大功率IGBT散热基板应用方面具有巨大潜力。然而,传统氮化硅陶瓷材料的热导率只有20~30W·m-1·K-1,根本无法满足大功率半导体器件基板散热的应用需求。

另一方面,氮化硅属于强共价键化合物,依靠固相扩散很难烧结致密,必须添加适量(添加量通常大于5wt%)的稀土氧化物和(或)金属氧化物作为烧结助剂(如Y2O3、La2O3、MgO、Al2O3、CaO等),但烧结助剂的添加会显著降低氮化硅陶瓷的热导率,低的烧结助剂含量有助于获得高的热导,然而低烧结助剂含量又带来氮化硅陶瓷烧结致密化的难题。

发明内容

针对上述技术问题,本发明的目的在于提供一种氮化硅陶瓷材料及其制备方法。

一方面,本发明提供了一种氮化硅陶瓷材料,所述氮化硅陶瓷材料包括氮化硅相和晶界相;所述氮化硅相的含量≥95wt%;所述晶界相为至少含有Y、Mg、O三种元素的混合物;所述晶界相的含量≤5wt%,且晶界相中结晶相的含量≥40vol%。

本公开中,氮化硅相组成含量高,且晶界相中结晶相的体积含量≥40%,该高的氮化硅结晶相和以及结晶的晶界相有利于减少声子的散射,提高氮化硅陶瓷材料的热导率和击穿场强。一般地,烧结助剂氧化物(如Y2O3、MgO等)和氮化硅粉体表面的少量原生氧化物(SiO2、SiOx等)在氮化硅陶瓷材料的高温烧结过程中将形成低共熔液相(即液相烧结机理),而随着烧结温度的降低,这些低共熔液相往往以非晶玻璃相的形式转化为固态(即晶界相)而存在于所制备的氮化硅陶瓷材料中。与氮化硅晶粒相比,晶界相的热导率和击穿场强更低,而且晶界相中非晶玻璃相的含量越高,其相应的热导率和击穿场强就越低。

较佳的,所述氮化硅陶瓷材料中的杂质总量≤1.0wt%。

较佳的,所述杂质包括晶格氧、金属杂质离子、杂质碳中的至少一种。

较佳的,所述氮化硅陶瓷材料的热导率为90W·m-1·K-1以上,击穿场强为30kV/mm以上。

在前期研究过程中,本发明人发现:氮化硅陶瓷为声子传热机制,只有当氮化硅晶格完整无缺陷时,声子的平均自由程大,热导率高。然而,在氮化硅陶瓷材料制备过程中,晶格氧、金属杂质离子、碳杂质等往往会不同程度地进入氮化硅晶格,形成空位、位错等结构缺陷,显著降低声子的平均自由程,从而导致材料的热导率降低。因此,如何降低晶格氧、金属杂质离子、碳杂质等含量是提高氮化硅陶瓷材料热导率的关键。

而且,本发明人还发现:在高温烧结氮化硅陶瓷材料过程中,虽然添加的烧结助剂可形成低共熔液相,而且容易与氮化硅粉体表面的少量原生氧化物(SiO2、SiOx等)发生反应,形成低熔点液相,从而促进氮化硅晶粒的液相传质实现高温烧结致密化(即液相烧结机理)。但是,随着烧结温度的降低,这些液相将在氮化硅晶粒之间形成以非晶态玻璃相为主的晶界相,该非晶态玻璃相为主的晶界相的是影响热导率较低(一般为几个-十几个W·m-1·K-1)的关键。因此,如何使得非晶的晶界相变成结晶化的晶界相(即提高晶界相中结晶相的含量)便是提高氮化硅陶瓷材料热导率的关键。

此外,本发明人,前期研究还表明:氮化硅陶瓷的热导率随着烧结助剂稀土元素离子半径的增大有减小的趋势;且与MgO烧结助剂相比,添加CaO烧结助剂不利于氮化硅柱状晶粒的生长,热导率及强度普遍较低。

综上所述,如何选用合适的烧结助剂种类、如何控制烧结助剂的含量、如何控制晶界相的结晶程度,是提升氮化硅陶瓷材料热导率的关键途径。

为此,本发明还提供了一种氮化硅陶瓷材料的制备方法,包括:

(1)以硅粉和氮化硅粉中的至少一种作为原始粉体,以Y2O3粉体和MgO粉体作为烧结助剂,再加入有机溶剂和粘结剂,在保护气氛混合,得到混合浆料;

(2)将所得混合浆料在保护气氛中经过流延成型,得到素坯;

(3)将所得素坯置于还原性气氛中、在500~800℃下进行预处理,得到坯体;

(4)将所得坯体置于氮气气氛中,先在1600~1800℃下低温热处理后,再于1800~2000℃进行高温热处理,得到所述氮化硅陶瓷材料。

较佳的,在流延成型之前,将所得混合浆料进行真空除气处理。

较佳的,所述粘结剂为聚乙烯醇缩丁醛(PVB),加入量为原始粉体质量和烧结助剂质量之和的5~9wt%。其中原始粉体质量为氮化硅粉体和硅粉完全氮化之后所生成氮化硅的质量总和。

较佳的,所述有机溶剂为无水乙醇;所得混合浆料的固含量(原始粉体质量和烧结助剂的总质量占浆料总质量的比)为50~70wt%。

为此,本发明还提供了另一种上述氮化硅陶瓷材料的制备方法,包括:

(1)以硅粉和氮化硅粉中的至少一种作为原始粉体,以Y2O3粉体和MgO粉体作为烧结助剂,在保护气氛中,经混合和成型,得到素坯;

(2)将所得素坯置于还原性气氛中、在500~800℃下进行预处理,得到坯体;

(3)将所得坯体置于氮气气氛中,先在1600~1800℃下低温热处理后,再于1800~2000℃进行高温热处理,得到所述氮化硅陶瓷材料。

在本发明中,本发明人通过在保护气氛中完成粉体和坯体的制备,控制原始粉体中的氧含量、金属杂质离子、杂质碳原子等杂质,同时通过将坯体在还原气氛中预处理的方式抑制原始粉体在制备过程中的进一步氧化,最终降低了氮化硅陶瓷晶格氧及其它缺陷浓度。在此基础上,本发明人还通过分步烧结方式,调控氮化硅陶瓷材料中晶界相的组分和含量,提高晶界相中结晶相的含量,最终得到高热导率和高击穿场强的氮化硅陶瓷材料。

下述描述中,若无特殊说明,本方法指的是上述两种方法。

在本方法中,较佳的,当原始粉体中含有硅粉时,所述原始粉体中硅粉的质量百分比不低于75wt%。当原始粉体为硅粉或硅粉和氮化硅粉的混合粉体时,所述原始粉体质量是指原始粉体中的氮化硅粉和原始粉体中的硅粉氮化之后所生成氮化硅的质量总和。

在本方法中,较佳的,所述Y2O3粉体和MgO粉体的摩尔比为(1.0~1.4):(2.5~2.9),占比不超过原料粉体和烧结助剂总质量的5wt%。当原始粉体为硅粉和氮化硅粉的混合粉体时,所述原始粉体的质量是指原始粉体中的氮化硅和原始粉体中的硅粉氮化之后所生成氮化硅的质量总和。

在本方法中,较佳的,所述保护气氛为惰性气氛或氮气气氛,优选为氮气气氛。

在本方法中,较佳的,所述还原性气氛为氢气含量不高于5%的氢气/氮气混合气氛;所述预处理的时间为1~3小时。

在本方法中,较佳的,当原始粉体中含有硅粉时,在预处理之后且低温热处理之前,将所得坯体在氮气气氛进行氮化处理;所述氮化处理处理的参数包括:氮气气氛为氢气含量不高于5%的氢气/氮气混合气氛,压力为0.1~0.2MPa,温度为1350~1450℃,保温时间为3~6小时。

在本方法中,较佳的,所述氮气气氛(优选不含氢气)的压力为0.5~10MPa;所述低温热处理的时间为1.5~2.5小时;所述高温热处理的时间为4~12小时。

有益效果:

本发明通过制备工艺过程中氧含量的控制(包括混料和素坯成型过程中避免原料氧化、还原性气氛预处理)、金属杂质离子含量控制、碳含量的控制,减少晶格空位、位错等结构缺陷的量,达到提高氮化硅陶瓷材料热导率和击穿场强的目的。同时,通过两步烧结工艺来调控晶界相的组分和含量,低温烧结阶段促使烧结助剂生成液相,促进致密化;高温阶段使残余的MgO烧结助剂部分挥发,同时进一步降低晶界相中玻璃相含量,从而达到减少晶界相含量、增加晶界相的结晶化程度、进而提高氮化硅陶瓷材料热导率的目的。同时,材料的高击穿场强有利于在大功率器件应用、并有利于减小基片材料的厚度和降低热阻,使采用该材料制成的覆铜板呈现抗热冲击、高可靠、使用寿命长的典型特点。

附图说明

图1为实施例1制备氮化硅陶瓷材料的XRD图谱;

图2为实施例1制备氮化硅陶瓷材料的典型SEM微观结构;

图3为实施例1制备氮化硅陶瓷材料的典型TEM微观结构;

图4为实施例6氮化处理后所制备材料的XRD图谱;

图5为实施例6高温烧结后所制备材料的XRD图谱;

图6为实施例6制备氮化硅陶瓷材料的典型SEM微观结构。

具体实施方式

以下通过下述实施方式进一步说明本发明,应理解,下述实施方式仅用于说明本发明,而非限制本发明。

在本公开中,氮化硅陶瓷材料中含有不低于95%的氮化硅相、和结晶相含量不低于40%的晶界相。而且,所得氮化硅陶瓷材料中晶格氧、金属杂质离子、碳杂质等含量低,总量在1.0wt%以下。因此,本发明中氮化硅陶瓷材料具有高的热导率和击穿场强。

在本发明一实施方式中,通过采用洁净化、保护气氛下的制备工艺,避免空气或热空气接触材料,控制制备陶瓷中的杂质含量和氧含量,从而在不降低材料弯曲强度的前提下,达到提高材料热导率和击穿场强的目的。以下示例性地说明本发明提供的氮化硅陶瓷材料的制备方法。

该氮化硅陶瓷材料的制备方法具体包含以下步骤:在保护气氛下的混料和素坯成型、还原性气氛下的预处理、氮气气氛下的烧结并控制烧结制度。

保护气氛下的混料。将原始粉体、烧结助剂Y2O3粉体与MgO粉体在密闭容器中加入无水乙醇作为溶剂,在保护气氛保护下混合均匀,再经干燥,得到混合粉体。或者,将原始粉体、烧结助剂Y2O3粉体与MgO粉体置于密闭容器中,再加入无水乙醇作为有机溶剂、PVB作为粘结剂,然后在保护气氛保护下混合均匀,得到混合浆料。其中,粘结剂可为原始粉体+烧结助剂总质量的5~9wt%。所得混合浆料的固含量为50~70wt%。

在可选的实施方式中,混料所用保护气氛为惰性气氛或氮气气氛,优选为氮气气氛。优选,采用具有聚氨酯或尼龙内衬的密闭容器进行混料,并在容器中通入氮气,避免空气的进入。

在可选的实施方式中,原始粉体为氮化硅粉体、硅粉、或氮化硅粉与硅粉混合粉体。其中,氮化硅与硅混合粉体中硅粉的质量百分比不低于75%,即由Si粉氮化后所生成氮化硅占全部氮化硅相质量百分比80%以上。

在可选的实施方式中,烧结助剂(Y2O3粉体与MgO粉体)的总质量不超过原始粉体+烧结助剂总质量的5wt%。若烧结助剂过多,则因所制备氮化硅陶瓷材料中晶界相含量增加而降低材料的热导率和击穿场强。若烧结助剂过少,则不能充分促进致密化,导致所制备氮化硅陶瓷材料致密度偏低,气孔增加,从而降低材料的热导率和击穿场强。进一步优选,烧结助剂中Y2O3与MgO的摩尔比可为1.0~1.4:2.5~2.9。若MgO过量,则由烧结助剂形成的液相共熔点温度相对偏低,MgO在高温下挥发较严重,致使所制备氮化硅陶瓷材料的热导率和击穿场强偏低。若MgO少量,因烧结助剂中MgO比例偏低,由烧结助剂形成的液相共熔点温度相对偏高,材料致密化效果相对较差,致使所制备氮化硅陶瓷材料的热导率和击穿场强均明显降低。

保护气氛下的素坯成型。在保护气氛中,将混合粉体直接压制成型,得到素坯。其中压制成型的方式包括但不仅限于干压成型、等静压成型等。或者,在保护气氛中,将混合浆料直接流延成型,得到素坯(片状素坯)。优选,在流延成型之前,将混合浆料进行真空除气处理(真空度一般为-0.1~-10kPa,时间为4~24小时)。更优选,通过控制流延成型的刮刀高度来调节片状素坯的厚度。在可选的实施方式中,素坯成型所用保护气氛可为惰性气氛或氮气气氛,优选为氮气气氛。一般是在成型过程中直接通入氮气保护。

还原性气氛下成型素坯的预处理。在还原性气氛、一定温度下进行成型素坯的预处理,去除原始粉体中的氧,脱除成型素坯中的有机物。在可选的实施方式中,当原始粉体为硅粉、或氮化硅与硅的混合粉体时,成型素坯先在还原性气氛中、一定温度下预处理之后,再在还原性气氛中进一步氮化处理。

在可选的实施方式中,所述预处理可在氢气含量不高于5%的还原性氮气气氛中进行,还原性气氛的气体压力为0.1~0.2MPa。预处理温度可为500~800℃,保温时间可为1~3小时。

在可选的实施方式中,所述氮化处理可在氢气含量不高于5%的氮气气氛中进行,气氛压力为0.1~0.2MPa。氮化处理温度为1350~1450℃,保温时间为3~6小时。

坯体的烧结处理,包括低温热处理和高温热处理。具体来说,在高氮气压力下、采用分步烧结工艺进行烧结致密化,所述分步烧结工艺包括抑制烧结助剂中低熔点物质挥发的低温热处理,以及进一步的高温烧结使其致密。在本发明中,烧结处理应采用高氮气压力条件下的气压烧结,气氛压力可为0.5~10MPa。可将坯体放在BN坩埚中进行烧结处理。其中,低温热处理(低温烧结)的温度可为1600~1800℃,保温时间可为1.5~2.5小时。高温热处理(高温烧结)的温度可为1800~2000℃,保温时间可为4~12小时。

在本发明中,所制备的氮化硅陶瓷中晶格氧、金属杂质离子、杂质碳等的含量低,具有高热导、高击穿场强的特点,其热导率在90W·m-1·K-1以上,同时击穿场强达30KV/mm以上。

下面进一步例举实施例以详细说明本发明。同样应理解,以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。下述示例具体的工艺参数等也仅是合适范围中的一个示例,即本领域技术人员可以通过本文的说明做合适的范围内选择,而并非要限定于下文示例的具体数值。

实施例1

首先,将95g Si3N4粉体、5g烧结助剂粉体(Y2O3:MgO=1.2:2.5,摩尔比)、1g蓖麻油、1g PEG、70g无水乙醇和200g氮化硅研磨球放入具有气氛保护功能的内衬聚氨酯球磨罐中,封装球磨罐盖后依次抽真空、通入N2保护气氛,球磨混合6h后得到浆料;在上述浆料中进一步添加5g PVB和3g DBP,继续在N2气氛保护下球磨6h后得到均匀浆料;其次,对浆料真空脱气处理6h,在N2气氛保护下进行流延成型基片素坯,基片素坯厚度d±0.05mm(d=0.2~2.0);再次,将成型基片素坯裁剪成所需的形状放入BN坩埚中,并将其装入碳管炉中;然后,按照以下工艺顺序进行热处理:(1)在0.15MPa N2(含有5%H2)气氛保护下、以5℃/min的速率升温至600℃后脱粘预处理2h;(2)在2MPa N2气氛保护下、以5℃/min的速率升温至1650℃后低温热处理2h;(3)在8MPa N2气氛保护下、以3℃/min的速率升温至1950℃后高温烧结8h;(4)随炉冷却至室温。

由本实施例1制得氮化硅陶瓷基板材料的弯曲强度为810MPa,热导率为106W·m-1·K-1,击穿场强为45KV/mm。该材料的XRD图谱如图1所示,仅存在高强度的β-Si3N4衍射峰、且没有明显的馒头峰,这表明所制备材料中的β-Si3N4相的含量大于95wt%、晶界相的含量小于5%。材料的典型SEM微观结构如图2所示,材料具有高致密度,微观结构均匀,Si3N4晶粒(灰黑色区域)呈现典型的双峰分布,由细小的等轴状Si3N4晶粒和大的长柱状Si3N4晶粒相互镶嵌组成;晶界相(灰白色区域)含量低,均匀弥散分布在Si3N4基质中;进一步通过至少10张SEM图片统计分析,并结合原料中烧结助剂的总引入量≤5wt%,可以得出本实施例所制备氮化硅陶瓷材料中晶界相的含量小于5wt%。材料的典型TEM微观结构如图3所示(图3中B为图3中A中虚线方框区域的局部放大图),Si3N4晶粒(灰黑色区域)之间弥散分布着晶界相(灰白色区域),而晶界相由玻璃相(浅色区域)和结晶相(深色区域)组成;通过至少10张TEM图片统计分析,可以得出本实施例所制备氮化硅陶瓷材料的晶界相中结晶相的含量约为54vol%。

实施例2~5

原材料配比、烧结助剂组成、预处理工艺、烧结工艺等具体参数按照表1所示,工艺过程参照实施例1,所制备材料组成和性能如表2所示。

实施例6

首先,将3g Si3N4粉体、55g Si粉体、4.5g烧结助剂粉体(Y2O3:MgO=1.4:2.6,摩尔比)、0.7g蓖麻油、0.6g PEG、50g无水乙醇和130g氮化硅研磨球放入具有气氛保护功能的内衬聚氨酯球磨罐中,封装球磨罐盖后依次抽真空、通入N2保护气氛,球磨混合8h后得到浆料;在上述浆料中进一步添加4g PVB和2.5g DBP,继续在N2气氛保护下球磨6h后得到均匀浆料;其次,对浆料真空脱气处理6h,在N2气氛保护下进行流延成型基片素坯;再次,将成型基片素坯裁剪成所需的形状放入BN坩埚中,并将其装入碳管炉中;然后,按照以下工艺顺序进行热处理:(1)在0.2MPa N2(含有5%H2)气氛保护下、以4℃/min的速率升温至600℃后脱粘预处理3h;(2)在0.2MPa N2(含有5%H2)气氛保护下、以5℃/min的速率升温至1450℃后氮化处理6h;(3)在3MPa N2气氛保护下、以6℃/min的速率升温至1700℃后低温热处理2h;(4)在8MPa N2气氛保护下、以5℃/min的速率升温至1950℃后高温烧结10h;(5)随炉冷却至室温。

由本实施例6制得氮化硅陶瓷基板材料的弯曲强度为710MPa,热导率为110W·m-1·K-1,击穿场强为48KV/mm。该材料经氮化处理工艺(上述工艺过程(2))后的XRD图谱如图4所示,主晶相均为α-Si3N4,同时含有少量的β-Si3N4物相(5~10%)。该材料经高温烧结工艺(上述工艺过程(4))后的XRD图谱如图5所示,仅存在β-Si3N4衍射峰、且没有明显的馒头峰,这表明所制备材料中β-Si3N4相的含量大于95wt%、晶界相的含量小于5wt%;进一步采用上述实施例1相同的方法,测出所制备材料晶界相中的结晶相含量约为60vol%。材料断口的典型SEM微观结构如图6所示,材料具有高致密度,微观结构均匀,由细小的等轴状Si3N4晶粒和大的长柱状Si3N4晶粒相互镶嵌组成。

实施例7~10

原材料配比、烧结助剂组成、预处理工艺、氮化处理工艺、烧结工艺等具体参数按照表1所示,工艺过程参照实施例6,所制备材料组成和性能如表2所示。

实施例11

本实施例11中氮化硅陶瓷材料的制备过程参照实施例1,主要区别在于:将95gSi3N4粉体、5g烧结助剂粉体(Y2O3:MgO=1.2:2.5,摩尔比)、1g蓖麻油、1g PEG、70g无水乙醇和200g氮化硅研磨球放入具有气氛保护功能的内衬聚氨酯球磨罐中,封装球磨罐盖后依次抽真空、通入N2保护气氛,球磨混合6h后得到浆料。然后在氮气气氛中进行干燥、过筛、干压成型(20MPa)和冷等静压成型(200MPa),得到素坯。

对比例1

原材料配比、烧结助剂组成、预处理工艺、烧结工艺等具体参数与实施例1相同(见表1),工艺过程参照实施例1,区别在于:球磨混料和素坯成型等工艺过程未采用氮气气氛保护措施。所制备材料组成和性能如表1所示。因在材料制备工艺过程中未采用本发明所述的氮气气氛保护措施,原料中的氮化硅粉体发生不同程度的氧化,致使所制备氮化硅陶瓷材料的热导率和击穿场强均明显降低,但弯曲强度基本保持不变。

对比例2

烧结助剂组成比例、预处理工艺、烧结工艺等具体参数与实施例1相同(见表1),区别在于:烧结助剂总量增加。所制备材料组成和性能如表2所示。因烧结助剂含量偏高,由烧结助剂形成的具有较低热导率特性的晶界相含量较高,致使所制备氮化硅陶瓷材料的热导率和击穿场强均明显降低,但弯曲强度基本保持不变。

对比例3

原材料配比、烧结助剂种类和总量、预处理工艺、烧结工艺等具体参数与实施例1相同(见表1),区别在于:烧结助剂配比不同(Y2O3:MgO=1.2:4.0)。所制备材料组成和性能如表2所示。因烧结助剂中MgO比例偏高,由烧结助剂形成的液相共熔点温度相对偏低,高温挥发较严重,致使所制备氮化硅陶瓷材料的热导率和击穿场强均明显降低。

对比例4

原材料配比、烧结助剂种类和总量、预处理工艺、烧结工艺等具体参数与实施例1相同(见表1),区别在于:烧结助剂配比不同(Y2O3:MgO=1.3:2.0)。所制备材料组成和性能如表2所示。因烧结助剂中MgO比例偏低,由烧结助剂形成的液相共熔点温度相对偏高,材料致密化效果相对较差,致使所制备氮化硅陶瓷材料的热导率和击穿场强均明显降低。

对比例5

原材料配比、烧结助剂组成、预处理工艺等具体参数与实施例1相同(见表1),工艺过程与实施例1近似,区别在于:烧结工艺为一步烧结。所制备材料组成和性能如表2所示。因不包含低温热处理过程,在未充分致密化情况下就开始发生较严重的MgO挥发,材料致密化效果相对较差,致使所制备氮化硅陶瓷材料的热导率和击穿场强均明显降低。

对比例6

原材料配比、烧结助剂组成、预处理工艺、烧结工艺等具体参数与实施例1相同(见表1),工艺过程同实施例1,区别在于:低温热处理温度偏低。所制备材料组成和性能如表2所示。因低温热处理温度偏低,材料致密化效果相对较差,致使所制备氮化硅陶瓷材料的热导率和击穿场强均明显降低。

对比例7-8

原材料配比、烧结助剂组成、预处理工艺、烧结工艺等具体参数与实施例8相同(见表1),工艺过程同实施例8,区别在于:氮化处理温度偏低(对比例7)或偏高(对比例8)。所制备材料组成和性能如表2所示。因氮化处理温度偏低(对比例7)或偏高(对比例8),材料中的Si粉氮化不充分(对比例7)或发生部分硅化现象(对比例8),致使所制备氮化硅陶瓷材料的力学、热学和电学性能均明显降低。

表1为氮化硅陶瓷材料的组成及其制备工艺:

表2为氮化硅陶瓷材料的相组成及性能参数:

14页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种高熵硼化物粉末及其制备方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!