粘附性导电-可注射性联合水凝胶及其制备方法和应用

文档序号:604979 发布日期:2021-05-07 浏览:26次 >En<

阅读说明:本技术 粘附性导电-可注射性联合水凝胶及其制备方法和应用 (Adhesive conductive-injectable combined hydrogel and preparation method and application thereof ) 是由 刘文广 武腾玲 于 2019-11-06 设计创作,主要内容包括:本发明公开粘附性导电-可注射性联合水凝胶及其制备方法和应用,多巴胺接枝的明胶与多巴胺改性聚吡咯混合溶于去离子水中,向上述混合液中加入FeCl-3引发体系形成粘附性导电水凝胶;将氧化后的透明质酸溶液和改性后的透明质酸溶液等体积混合得到可注射水凝胶,再将可注射水凝胶注射至患处,在心肌梗死外部涂抹粘附性导电水凝胶联合治疗心肌梗死。与单一治疗方法相比,心肌内注射可注射水凝胶,然后在心脏表面涂上粘附性导电水凝胶两种水凝胶联用,用于心肌梗死治疗,在超声心动图、组织学方面显示更有助于心脏功能的改善。(The invention discloses an adhesive conductive-injectable combined hydrogel and a preparation method and application thereof 3 Initiating the system to form an adhesive conductive hydrogel; mixing the oxidized hyaluronic acid solution and the modified hyaluronic acid solution in equal volume to obtain injectable hydrogel, injecting the injectable hydrogel to the affected part, and smearing adhesive conductive hydrogel outside the myocardial infarction to treat myocardial infarction. Compared with a single treatment method, the two hydrogels are combined by injecting injectable hydrogel into the myocardium and then coating adhesive conductive hydrogel on the surface of the heart, are used for treating myocardial infarction, and are more beneficial to improving the heart function in the aspects of echocardiogram and histology.)

粘附性导电-可注射性联合水凝胶及其制备方法和应用

技术领域

本发明涉及生物医用水凝胶制备技术领域,更具体地说涉及一种粘附性导电水凝胶与可注射性水凝胶复合水凝胶及其制备方法和应用。

背景技术

冠状动脉阻塞导致的心肌梗死被认为是世界上死亡和致残的主要原因。心肌梗死后大量的心肌细胞死亡导致心室的不良重塑包括心室壁变薄、瘢痕组织的形成最终导致心力衰竭。因为心脏有限的再生能力传统的冠状动脉搭桥手术和药物治疗方法如血管紧张素转换酶抑制剂、β-阻滞剂等可以减少损失但不能恢复心肌功能。并且由于世界范围内心脏供体严重短缺,通过心脏移植来治疗终末期心力衰竭并不现实。

心肌梗死导致细胞外基质(ECM)的破坏,导致梗死心肌和健康心肌的几何和力学改变。近几十年来,组织工程用于心肌修复治疗因其在临产应用上有广阔的前景而备受关注。研究表明,心肌梗死后将心肌贴片用于梗死心肌表面可提供局部机械支持,防止心室不适应性重构,从而有助于维持左心室功能。近年来,可注射生物功能性水凝胶因其能根据拉普拉斯定律补偿受损心脏机械强度不足而在心肌梗死治疗中受到广泛关注。在心肌内注射水凝胶可以作为结构支撑能够降低心肌壁应力,缩小左室腔大小,恢复左室形态,同时为内源性干细胞的招募提供生物活性线索,有利于心肌功能的改善。

发明内容

本发明克服了现有技术中的不足,提供了粘附性导电水凝胶与可注射性水凝胶复合水凝胶及其制备方法和应用,首先利用多巴胺对明胶进行改性,获得多巴胺接枝的明胶(GelDA),接着用多巴胺改性聚吡咯得到多巴胺改性聚吡咯(DA-PPy),将GelDA和DA-PPy混合溶于去离子水中然后加入FeCl3引发体系形成粘附性导电水凝胶(GelDA/DA-PPy);可注射水凝胶的形成,首先是用高碘酸钠氧化透明质酸得到氧化后的透明质酸(HA-CHO),然后用碳酸二酰肼对透明质酸进行改性得到改性后的透明质酸(HHA),将HA-CHO溶液与HHA溶液等体积混合得到可注射水凝胶(HA-CHO/HHA);对制得的凝胶进行力学、粘附强度等测试,并且进行了体内、体外的生物学实验。

本发明的技术目的通过下述技术方案予以实现。

粘附性导电-可注射性联合水凝胶,由多巴胺接枝的明胶和多巴胺改性聚吡咯组成粘附性导电水凝胶,由氧化透明质酸和酰肼化透明质酸组成可注射性水凝胶,粘附性导电水凝胶和可注射性水凝胶进行联合使用,可注射性水凝胶注射进入心脏梗死部位,粘附性导电水凝胶设置在心肌梗死部位外表面(即心脏梗死部位外表面)。

而且,可注射性水凝胶的用量为80-120μL,粘附性导电水凝胶的用量为120-180μL。

粘附性导电水凝胶(GelDA/DA-PPy),按照下述步骤进行制备:将多巴胺接枝的明胶和多巴胺改性聚吡咯在PBS缓冲溶液中进行混合均匀,加入FeCl3水溶液以形成反应体系并引发多巴胺接枝的明胶和多巴胺改性聚吡咯进行反应,以得到粘附性导电水凝胶。

多巴胺接枝的明胶(GelDA)的合成参考文献“Hong S.;Pirovich D.;KilcoyneA.;Huang C.;Lee H.;Weissleder R.Supramolecular Metallo-Bioadhesive forMinimally Invasive Use.Adv.Mater.2016,28,8675-8680”

多巴胺改性聚吡咯(DA-PPy)的合成参考文献“Zhang W.;Zhou Y.K.;Feng K.;Trinidad J.;Yu A.P.;Zhao B.X.Morphologically Controlled Bioinspired Dopamine-Polypyrrole Nanostructures withTunable Electrical Properties.Adv.Electron.Mater.2015,1,1500205”

在PBS缓冲溶液中,PBS的浓度为0.1mol/L,pH=7.4。

在反应体系中,多巴胺接枝的明胶浓度为20—25%,多巴胺改性聚吡咯浓度为0.3—0.8%,优选多巴胺接枝的明胶浓度为20—22%,多巴胺改性聚吡咯浓度为0.3—0.6%。需要在这里说明的是在本申请中关于反应物质的“浓度”的定义,浓度为溶质(即参与水凝胶制备的反应物质,而非引发剂)的质量与反应体系体积的百分比(即反应体系中溶剂体积),如多巴胺接枝的明胶浓度为质量体积比(m/v),即在加入FeCl3水溶液形成的反应体系中,多巴胺接枝的明胶质量g与反应体系体积ml的百分比(ml)。

在反应体系中,FeCl3浓度为0.03—0.05mol/L,优选0.03—0.04mol/L。

加入FeCl3水溶液以形成反应体系并引发多巴胺接枝的明胶和多巴胺改性聚吡咯进行反应,反应温度为室温20—25摄氏度,引发反应后即形成水凝胶。

可注射性水凝胶(HA-CHO/HHA),按照下述步骤进行制备:将氧化后的透明质酸和酰肼改性化的透明质酸分别均匀分散在磷酸缓冲盐溶液中,分别得到氧化后的透明质酸溶液和酰肼改性后的透明质酸溶液,将氧化后的透明质酸溶液和酰肼改性后的透明质酸溶液进行混合,得到可注射水凝胶(HA-CHO/HHA)

氧化后的透明质酸(HA-CHO)的合成参考文献:Yan S.F.;Wang T.T.;Feng L.;ZhuJ.;Zhang K.X.;Chen X.S.;Cui L.;Yin J.B.Injectable in Situ Self-Cross-LinkingHydrogels Based on Poly(L-glutamic Acid)andAlginate for Cartilage TissueEngineering.Biomacromolecules 2014,15,4495-4508.

酰肼改性化的透明质酸(HHA)的合成参考文献:Grover G.N.;Braden R.L.;Christman K.L.Oxime Cr-oLsisnked Injectable Hydrogels for CatheterDelivery.Adv.Mater.2013,25,2937-2942.

在磷酸缓冲盐溶液中,PBS的浓度为0.1mol/L,pH=7.4。

在氧化后的透明质酸溶液中,氧化后的透明质酸浓度(m/v)为4-6%,优选5—6%;在酰肼改性化的透明质酸溶液中,酰肼改性化的透明质酸浓度(m/v)为0.4—0.8%,优选0.6—0.8%;在进行混合时,氧化后的透明质酸溶液和酰肼改性化的透明质酸溶液体积比为1:1。

本发明的粘附性导电-可注射性联合水凝胶在制备联合治疗心肌梗死药物中的应用。

可注射性水凝胶注射进入心脏梗死部位,粘附性导电水凝胶设置在心肌梗死部位外表面;可注射水凝胶(HA-CHO/HHA)的用量为80-120μL,粘附性导电水凝胶(GelDA/DA-PPy)的用量为120-180μL。

可注射水凝胶(HA-CHO/HHA)的用量为80-100μL,粘附性导电水凝胶(GelDA/DA-PPy)的用量为120-150μL。

与现有技术的单一治疗方法相比,在本发明中,心肌内注射可注射水凝胶(HA-CHO/HHA),然后在心脏表面涂上粘附性导电水凝胶(GelDA/DA-PPy)两种水凝胶联用,用于心肌梗死治疗,在超声心动图、组织学方面显示更有助于心脏功能的改善,本发明为心肌梗死的治疗指明了新的方向,为自粘型导电天然高分子水凝胶和生物可注射水凝胶的设计提供了一条简便的途径。

附图说明

图1是本发明中的多巴胺接枝的明胶(GelDA)的紫外可见谱图和核磁谱图。

图2是本发明的聚吡咯以及多巴胺改性聚吡咯(DA-PPy)的SEM图片及TEM图片。

图3是本发明的氧化后的透明质酸(HA-CHO)、酰肼改性后的透明质酸(HHA)以及可注射水凝胶(HA-CHO/HHA)水凝胶的红外谱图。

图4是本发明的粘附性导电水凝胶(GelDA/DA-PPy)的凝胶时间测定结果柱状图。

图5是本发明的粘附性导电水凝胶(GelDA/DA-PPy)在37℃下的时间扫描流变分析曲线图。

图6是本发明的粘附性导电水凝胶(GelDA/DA-PPy)在37℃下的频率扫描流变分析曲线图。

图7是本发明的粘附性导电水凝胶(GelDA/DA-PPy)对心肌组织及猪皮的粘附强度测试结果柱状图。

图8是本发明的粘附性导电水凝胶(GelDA/DA-PPy)CV曲线图。

图9是本发明的可注射水凝胶(HA-CHO/HHA)的凝胶时间测定结果柱状图。

图10是本发明的可注射水凝胶(HA-CHO/HHA)在37℃下的时间扫描流变分析曲线图。

图11是本发明的可注射水凝胶(HA-CHO/HHA)在37℃下的频率扫描流变分析曲线图。

图12是本发明的可注射水凝胶(HA-CHO/HHA)的可注射性照片。

图13是本发明的联合水凝胶应用于大鼠心肌梗死模型手术28天后对其进行的超声心动图及测试结果柱状图。

图14是本发明的联合水凝胶应用于大鼠心肌梗死模型的Masson三色显示的心脏结构示意图及测试结果柱状图。

具体实施方式

下面通过具体的实施例对本发明的技术方案作进一步的说明,使用原料如下表所示。

原料 纯度 厂商
明胶 Type A来源于猪皮 Sigma-Aldrich
吡咯 99% Aladdin
透明质酸(分子量=50kDa) Heowns
透明质酸(分子量=800-100kDa) Heowns
多巴胺 99% Sigma-Aldrich

首先按照发明内容列出的参考文献进行多巴胺接枝的明胶、多巴胺改性聚吡咯、氧化透明质酸和酰肼改性化透明质酸的制备,并保存进行,以备下一步实验。

导电粘附性水凝胶GelDA/DA-PPy的制备

1.GelDA的制备

将800mg明胶溶解在80mL 50×10-3M的MES缓冲液中,在50℃下用氮气鼓泡1h。然后,依次向溶液中添加845mg EDC、626mg NHS和516mg DOPA,然后用HCl调节溶液的pH值到5。在氮气流下将溶液保持在50℃反应6小时,然后在40℃下在含有20×10-3M NaCl和833×10-6M HCl的蒸馏水中透析2天,然后再用纯蒸馏水透析3h以去除氯化钠,冻干得到产物GelDA。

2.DA-PPy的制备

将0.12mL吡咯单体和0.2g多巴胺溶于20mL 1M HCl溶液,冰浴冷却至8℃,然后将FeCl3/HCl(0.4g/5ml)加至溶液中,反应12h,反应结束后离心收集沉淀,过滤,用去离子水反复洗涤直至溶液为中性获得一定浓度的DA-PPy,采用冷冻干燥称重法测定DA-PPy的浓度。

3.导电粘附性水凝胶GelDA/DA-PPy的制备

将制备的GelDA(0.25g)和B步的DA-PPy(6mg)混合溶于1mL 0.1mol/L PBS中。向其中加入0.2mL 0.2mol/L的FeCl3水溶液在室温下引发体系进行反应,以形成凝胶,通过改变DA-PPy的含量得到不同的水凝胶(如在PBS溶液中,DA-PPy用量为0,3mg,6mg)。

可注射水凝胶HA-CHO/HHA的制备

1.HA-CHO的制备

在室温下,将1.5g HA溶解在150mL去离子水中。然后加入8.25mL 0.25M的高碘酸钠溶液,反应3h,然后加入30mL乙二醇搅拌1h终止反应,然后在去离子水中透析3天,冷冻干燥后得到HA-CHO。

2.HHA的制备

408mg HA在室温下溶于50mL去离子水中。然后依次向溶液中加入90mg CDH、135mgHOBT和90mg EDC,并在室温下反应48小时;然后在室温下用含0.1M NaCl和316×10-5MHCl的蒸馏水对产物进行透析2天,然后用蒸馏水透析1天,冷冻干燥后得到HHA。

3.可注射水凝胶HA-CHO/HHA的制备

分别将HA-CHO(0.05g),HHA(0.008g)溶于1mL 0.1mol/L的PBS中,然后将等量的HA-CHO溶液与HHA溶液在室温下混合,得到HA-CHO/HHA水凝胶可以通过改变HHA的含量(在HHA的PBS溶液中,HHA用量为0.004g、0.006g、0.008g)得到不同的水凝胶。

将制备出的各组份的水凝胶用于力学以及生物体内外的基本性能的测试。动物实验过程:在大鼠左前降支冠状动脉结扎成功后,首先在心肌梗死部位内注射100μL HA-CHO/HHA水凝胶,然后在心肌梗死外部涂抹约150μL的GelDA/DA-PPy水凝胶,移植结束后,迅速关胸缝合,大鼠正常活动后单笼饲养,并给大鼠做好标记,在术后28天通过心脏超声心动图测试检测各组心梗老鼠的心脏功能,以及组织学分析。

如图1所示,从A中可以看出多巴胺在紫外可见光谱中280nm位置具有特征峰,同时Gel-DOPA在280nm处明显出峰,证明经Gelatin中成功引入了多巴胺基团。从B中也可以看出邻苯二酚质子特征峰在GelDA上的出现(约6.8ppm)表明多巴胺成功地与明胶结合。如图2所示,从A中可以看出经过DA修饰的PPy形貌发生了很大的改变,且其水分散性得到了很大的提高(B),从C中TEM图像中可以看出DA-PPy的直径为200±10nm,长度为960±10nm。

如图3所示,从A可以看出1620、1415cm-1处分别为HA中羧酸盐离子(-COO-)的反对称伸缩振动和对称伸缩振动吸收峰,1040cm-1处为HA中C-O-C的伸缩振吸收峰;对比HA和HA-CHO的红外光谱,1730cm-1处出现的新的吸收峰为HA部分开环氧化后形成的HA-CHO的醛基中-C=O的伸缩振动吸收峰。对比HA和HA-CDH的红外光谱,1650和1530cm-1处的吸收峰表示酰腙键上的C=N和未反应的N-H伸缩振动峰。由B可知,在HA-CHO/HA-CDH水凝胶的红外光谱图中,1730cm-1处醛基吸收峰几乎消失,而在1 650cm-1处出的吸收峰,归属于亚胺基团(-C=N-)的伸缩振动峰出现,表明HA-CHO/HA-CDH水凝胶在形成过程中消耗了HA-CHO中的醛基与HA-CDH的酰肼基团通过席夫碱反应化学交联形成了水凝胶。

如图4所示,测定凝胶时间采用的是小瓶倒置法,可以看出GelDA/DA-PPy水凝胶凝胶时间在12-25s范围内。如附图5和6所示,使用的仪器为流变仪(DHR-2,America),分别为GelDA/DA-PPy水凝胶的流变力学性能以及对频率稳定性测试,可以看出水凝胶的强度随着DA-PPy含量的增加而升高,其储能模量能够达到13kPa,在1-20Hz范围内水凝胶都能保持稳定性。如图7所示,使用的仪器为拉力机(Time Group Inc.,China),在每一组测试数据中,自左到右依次为GelDA、GelDA/DA-PPy-0.3%、GelDA/DA-PPy-0.6%,GelDA/DA-PPy水凝胶对组织的粘附性测定,可以看出其对猪皮的粘附强度可以达到18kPa,对心肌组织的粘附强度可以达到10kPa。图8及下表明了GelDA/DA-PPy水凝胶的电活性,其电导率能达到2.85*10-4S/cm与正常心肌组织相匹配(使用的仪器为电化学工作站CHI660D,Shanghai Chenhua,China)。四探针法测定不同GelDA/DA-PPy水凝胶的电导率—使用的仪器为四探针测试仪(ST2253,China)

如图9所示,测定凝胶时间采用的是小瓶倒置法,可以看出HA-CHO/HHA水凝胶凝胶时间在13-50s范围内。如附图10和11所示,使用的仪器为流变仪(DHR-2,America),分别为HA-CHO/HHA水凝胶的流变力学性能以及对频率稳定性测试,可以看出水凝胶的强度随着HHA含量的增加而升高,其储能模量能够达到1kPa,在1-20Hz范围内水凝胶都能保持稳定性。图12表明HA-CHO/HHA水凝胶可以从注射器中挤出,具有可注射性。

如附图13所示,A中从上到下依次代表:假性手术组(sham)、心肌梗死组(MI)、可注射水凝胶(仅仅向心肌梗死部位注射HA-CHO/HHA)、不导电粘附性水凝胶(仅仅向心肌梗死部位设置GelDA)、导电粘附性水凝胶(仅仅向心肌梗死部位设置GelDA/DA-PPy)、可注射水凝胶(HA-CHO/HHA)+导电粘附性水凝胶(GelDA/DA-PPy)(HA-CHO/HHA+GelDA/DA-PPy,即向心肌梗死部分注射HA-CHO/HHA,同时向心肌梗死部位设置GelDA/DA-PPy)对心肌梗死的大鼠进行治疗28天时的超声心动图。B纵坐标的含义,EF:射血分数;C纵坐标的含义,FS:短轴缩短率;D纵坐标的含义,LVIDd:左心室舒张末期内径;E纵坐标的含义,LVIDs:左心室收缩末期内径;F纵坐标的含义,EDV:舒张末期容积;G纵坐标的含义,ESV:收缩末期容积,在一组中,从左到右的柱状图依次代表:假性手术组、心肌梗死组、可注射水凝胶(HA-CHO/HHA)、不导电粘附性水凝胶(GelDA)、导电粘附性水凝胶(GelDA/DA-PPy)、可注射水凝胶(HA-CHO/HHA)+导电粘附性水凝胶(GelDA/DA-PPy)大鼠的心脏功能指标。我们发现未进行治疗组(MI组)病情明显恶化,梗死区域扩大。而进行水凝胶处理的射血分数(EF)和短轴缩短分数(FS)值比心肌梗死组高很多,舒张末期直径(LVIDd)、收缩末期直径(LVIDs)、舒张末期容积(EDV)和收缩末期容积(ESV)值与心肌梗死组相比得到了显著改善。在五个不同的水凝胶治疗组中,可涂抹导电贴片与可注射水凝胶联合应用治疗效果最好。

如图14所示,A中1,2,3,4,5,6依次代表假性手术组、心肌梗死组、可注射水凝胶(HA-CHO/HHA)、不导电粘附性水凝胶(GelDA)、导电粘附性水凝胶(GelDA/DA-PPy)、可注射水凝胶(HA-CHO/HHA)+导电粘附性水凝胶(GelDA/DA-PPy)的心脏Masson染色结果;B中从左到右柱状图依次代表:心肌梗死组、可注射水凝胶(HA-CHO/HHA)、不导电粘附性水凝胶(GelDA)、导电粘附性水凝胶(GelDA/DA-PPy)、可注射水凝胶(HA-CHO/HHA)+导电粘附性水凝胶(GelDA/DA-PPy)组的大鼠心脏的梗死面积,因为假性手术组没有梗死所以对应位置是空的;C中从左到右柱状图依次代表:假性手术组、心肌梗死组、可注射水凝胶(HA-CHO/HHA)、不导电粘附性水凝胶(GelDA)、导电粘附性水凝胶(GelDA/DA-PPy)、可注射水凝胶(HA-CHO/HHA)+导电粘附性水凝胶(GelDA/DA-PPy)的组的大鼠左心室的心室壁厚度。本发明应用于大鼠心肌梗死模型后28天取出心脏所做的Masson染色观察心脏结构,以及对其进行梗死面积和心室壁厚度定量化。从图中可以发现两种水凝胶连用得到的治疗效果最好,包括最小的梗死面积以及最大的心室壁厚度。

根据本发明内容进行工艺参数的调整,均可实现本发明水凝胶的制备,经测试表现出与本发明基本一致的性能。以上对本发明做了示例性的描述,应该说明的是,在不脱离本发明的核心的情况下,任何简单的变形、修改或者其他本领域技术人员能够不花费创造性劳动的等同替换均落入本发明的保护范围。

17页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:熔喷布口罩消毒及静电再生盒

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!