全轮驱动混合动力车辆的再生制动控制系统和方法

文档序号:626575 发布日期:2021-05-11 浏览:28次 >En<

阅读说明:本技术 全轮驱动混合动力车辆的再生制动控制系统和方法 (Regenerative braking control system and method for all-wheel drive hybrid vehicle ) 是由 崔榕珏 朴俊植 李昶旻 于 2020-06-22 设计创作,主要内容包括:提供全轮驱动混合动力车辆的再生制动控制系统和方法,混合动力车辆包括前轮HEV(混合动力电动车辆)动力传动系统和后轮EV(电动车辆)动力传动系统。该控制系统包括:安装在方向盘上的操纵仪器,用于通过驾驶员的操纵进行手动变速和再生制动控制;以及控制器,通过接收操纵仪器的(-)或(+)切换操纵信号或保持操纵信号,来调整再生制动量并控制前轮HEV动力传动系统的前轮电动机和后轮EV动力传动系统的后轮电动机中的每一个的变速模式。(Regenerative braking control systems and methods are provided for all-wheel drive hybrid vehicles, including front-wheel HEV (hybrid electric vehicle) powertrains and rear-wheel EV (electric vehicle) powertrains. The control system includes: an operating instrument mounted on a steering wheel for performing manual gear shift and regenerative brake control by a driver&#39;s operation; and a controller for adjusting the amount of regenerative braking and controlling a gear shift mode of each of a front wheel motor of the front wheel HEV power transmission system and a rear wheel motor of the rear wheel EV power transmission system by receiving a (-) or (&#43;) switching manipulation signal or a holding manipulation signal of the manipulation instrument.)

全轮驱动混合动力车辆的再生制动控制系统和方法

技术领域

本发明总体上涉及AWD(全轮驱动)混合动力车辆的再生制动控制系统和方法。

背景技术

汽油和柴油车辆的方向盘装配有用于手动变速的操纵仪器。

如图1所示,可安装包括(-)拨片(paddle)11和(+)拨片12的成对拨片10,作为用于手动变速的操纵仪器的实例。

因此,当操纵成对拨片10的一侧的(+)拨片12时,自动变速器的变速档位通过变速器控制单元的控制信号而增加(例如,在6速变速器的情况下,D1→D2,D2→D3,D3→D4,D4→D5,D5→D6),并且当操纵另一侧的(-)拨片11时,自动变速器的变速档位通过变速器控制单元的控制信号而减少(例如在6速变速器的情况下,D6→D5,D5→D4,D4→D3,D3→D2,D2→D1)。

如图2所示,成对拨片10甚至安装在电动车辆的方向盘上以进行减速控制。当操纵成对拨片10的一侧的(+)拨片12时,用于驱动的电动机的减速通过电动机控制单元的控制信号被控制为减小,并且当操纵另一侧的(-)拨片11时,用于驱动的电动机的减速通过电动机控制单元的控制信号被控制为增大。

图3示出了前轮驱动混合动力车辆的动力传动系统图。

如图3所示,前轮驱动混合动力车辆的动力传动系统被配置为包括:发动机40和电动机42,彼此直接连接;发动机离合器41,布置在发动机40和电动机42之间以传递或断开发动机动力;自动变速器43,用于变速并将动力输出至驱动轮;HSG(混合动力起动器发电动机)44,连接至发动机的曲轴皮带轮以启动发动机并为其提供动力;以及电池45,连接至混合动力起动器发电动机44以进行充电和放电。

前轮驱动混合动力车辆可包括甚至安装在其方向盘上的操纵仪器,该操纵仪器用于通过改变电动机的再生制动量而用于手动变速或用于减速控制。操纵仪器可采用为包括(-)拨片和(+)拨片的成对拨片。

因此,为了提高驾驶员的驾驶便利性,将用于手动变速或减速控制的拨片安装到内燃机车辆、电动车辆和前轮驱动混合动力车辆上,但是目前,该拨片未用于AWD混合动力车辆。

因此,需要一种再生制动控制系统,该系统可通过使用驾驶员直接操纵的板来更直观地控制AWD混合动力车辆的再生制动量。

发明内容

本发明总体上涉及AWD(全轮驱动)混合动力车辆的再生制动控制系统和方法。

具体实施方式

涉及AWD混合动力车辆的再生制动控制系统和方法,其中,具有前轮HEV和后轮EV组合在一起的AWD混合动力车辆的再生制动和变速模式可由驾驶员使用拨片直接控制。

已经考虑到现有技术中出现的问题而做出本发明的实施方式,并且提供了AWD混合动力车辆的再生制动控制系统和方法,其中,包括前轮HEV动力传动系统和后轮EV动力传动系统的AWD混合动力车辆的再生制动量,由驾驶员根据行驶模式和行驶情况通过直接操纵拨片来控制,从而在对前轮电动机和后轮电动机进行连续减速控制的同时执行直观的再生制动。

根据本发明的一个实施方式,存在包括前轮HEV动力传动系统和后轮EV动力传动系统的AWD混合动力车辆的再生制动控制系统,该系统包括:操纵仪器,安装在方向盘上,用于通过驾驶员的操纵进行手动变速和再生制动控制;以及控制器,用于通过接收操纵仪器的(-)或(+)切换操纵信号或保持操纵信号,来调整前轮HEV动力传动系统的前轮电动机和后轮EV动力传动系统的后轮电动机中每一者的再生制动量并控制变速模式。

控制器可包括:HCU(混合动力控制单元),在通过接收操纵仪器的(-)或(+)切换操纵信号或保持操纵信号,来可变地设置前轮HEV动力传动系统的前轮电动机和后轮EV动力传动系统的后轮电动机之间的转矩比之后,输出转矩命令信号和变速模式控制信号,调整前轮电动机和后轮电动机中每一者的再生制动量;MCU(电动机控制单元),用于基于前轮电动机和后轮电动机中每一者的再生制动量调整的转矩命令信号,来调整前轮电动机和后轮电动机中每一者的再生制动量;以及TCU(变速器控制单元),用于基于变速模式控制信号执行自动变速器的变速控制。

优选地,操纵仪器可被配置为成对拨片,包括能够执行切换操纵或保持操纵的(-)拨片和(+)拨片。

本发明的实施方式的再生制动控制系统还可包括用于确定车辆的滑行状态的APS和BPS,并且APS和BPS的关闭检测信号可被发送到HCU。

本发明的实施方式的再生制动控制系统还可包括:行驶模式选择开关,用于将车辆行驶模式选择为环保模式或运动模式,行驶模式选择开关的切换信号被发送至HCU。

此外,当车辆被选择为滑行状态并且其行驶模式被选择为环保模式的同时接收到操纵仪器的(-)切换操纵信号或保持操纵信号时,HCU可被配置成可变地设置前轮电动机和后轮电动机之间的转矩比,然后输出转矩命令信号和变速模式控制信号,以增加对前轮电动机和后轮电动机中每一者的再生制动量的调整。

此外,当车辆被选择为处于滑行状态并且其行驶模式被选择为环保模式的同时接收到操纵装置的(+)切换操纵信号或保持操纵信号时,HCU可被配置成可变地设置前轮电动机和后轮电动机之间的转矩比,然后输出转矩命令信号和变速模式控制信号,以减少对前轮电动机和后轮电动机中每一者的再生制动量的调整。

另外,当车辆被选择为处于滑行状态并且其行驶模式被选择为运动模式时,HCU可被配置为在接收到操纵仪器的(-)切换操纵信号时,将比当前变速档位低的变速档位的更低档位变速器命令信号发送至TCU,并且HCU可被配置为在接收到操纵仪器的(+)切换操纵信号时,将比当前变速档位高的变速档位的更高档位变速器命令信号发送至TCU。

优选地,本发明的实施方式的再生制动控制系统还可包括:AHB(主动液压助力器),用于接收协同控制信号,用于在驾驶员按压制动踏板时从HCU分配总制动力,并且用于除电动机的再生制动力之外还产生液压制动系统的液压制动压力。

根据本发明的另一实施方式,提供了一种包括前轮HEV动力传动系统和后轮EV动力传动系统的AWD混合动力车辆的再生制动控制方法,该控制方法包括:在控制器中确定车辆是处于滑行状态还是当前行驶模式;当在控制器中确定车辆处于滑行状态并且其行驶模式为环保模式时,将操纵仪器的功能改变为调整再生制动量的功能;以及当控制器接收到操纵仪器的(-)或(+)切换操纵信号或保持操纵信号时,调整再生制动量并控制前轮HEV动力传动系统的前轮电动机和后轮EV动力传动系统的后轮电动机中每一者的变速模式。

在调整再生制动量并控制变速模式时,控制器的HCU可以可变地设置前轮HEV动力传动系统的前轮电动机与后轮EV动力传动系统的后轮电动机之间的转矩比,然后输出用于前轮电动机和后轮电动机的再生制动量调整的转矩命令信号以及变速模式控制信号。

优选地,在控制器的HCU接收车速传感器的信号、APS(加速器位置传感器)的信号、以及BPS(制动位置传感器)的信号时,当车速高于0KPH时,APS关闭,并且BPS关闭,可确定车辆处于滑行状态。

当在确定用于执行操纵仪器的(-)操纵的第一操纵信号是初始的一次切换输入信号还是一次保持输入信号之后,确定第一操纵信号为初始的一次切换输入信号时,控制器的HCU可设置车速的目标减速度,并将前轮电动机和后轮电动机之间的可变转矩比设置为满足目标减速度的目标转矩比。

优选地,当HCU在接收到初始的一次切换输入信号后的预定时间内接收用于连续进行操纵仪器的(-)操纵的附加的一次切换输入信号时,每当接收到附加的一次切换输入信号,就执行将前轮电动机和后轮电动机的再生制动转矩增大到预定水平的控制;并且可基于前轮预设的变速模式执行变速控制以增加减速度。

另外,当在确定用于操纵仪器的(-)操纵的第一操纵信号是初始的一次切换输入信号还是一次保持输入信号以后,确定第一操纵信号为一次保持输入信号时,控制器的HCU设置车速的目标减速度,并且将前轮电动机和后轮电动机之间的可变转矩比设置为满足目标减速度的目标转矩比。

优选地,在接收到一次保持输入信号作为在控制器的HCU中执行操纵仪器的(-)操纵的第一操纵信号之后,可执行将前轮电动机的再生制动转矩增加到最大再生制动转矩的控制、将后轮电动机的再生制动转矩增加到预定水平的控制、以及基于为前轮预设的变速模式的变速控制,以增加减速度。

当在确定用于执行操纵仪器的(+)操纵的第二操纵信号是初始的一次切换输入信号还是一次保持输入信号之后,确定第二操纵信号为初始的一次切换输入信号时,控制器的HCU可设置车速的目标减速度释放,并将前轮电动机和后轮电动机之间的转矩比设置为目标减速度释放的转矩比。

当在HCU接收到初始的一次切换输入信号后的预定时间内接收用于连续进行操纵仪器的(+)操纵的附加的一次切换输入信号时,每当接收到附加的一次切换输入信号时,可执行将前轮电动机的再生制动转矩减小到预定水平的控制,并且可基于为前轮预设的变速模式执行变速控制,以减少减速度。

此外,当确定用于执行操纵仪器的(+)操纵的第二操纵信号是一次保持输入信号时,控制器的HCU可设置车速的目标减速度释放,并将前轮电动机和后轮电动机之间的转矩比设定为用于目标减速度释放的转矩比。

优选地,当在控制器的HCU中接收一次保持输入信号作为用于操纵仪器的(+)操纵的第二操纵信号时,可执行将前轮电动机的再生制动转矩减小到参考再生制动转矩的控制,并且可基于为前轮预设的变速模式执行变速控制,以减少减速度。

同时,当确定当前的行驶模式为运动模式时,控制器的HCU可将操纵仪器的功能改变为变速器的变速档位调整功能,使得当接收到用于(-)切换操纵的第一操纵信号时,可执行用于变速档位减小的控制,以及当接收用于(+)切换操纵的第二操纵信号时,可执行用于变速档位增加的控制。

另外,当保持操纵仪器的(-)操纵达预定时间以上时,可将电动机转矩限制为最大再生制动转矩,并且可通过AHB(主动液压助力器)或EPB(电动停车制动系统)进行制动协同控制,以产生液压制动力。

此外,当在再生制动操作中的驾驶期间ABS或TCS操作时,在再生制动操作中的驾驶期间转换为N档时,前轮电动机和后轮电动机的再生制动可停止,并且当从N档回到D档,并且当释放ABS或TCS的操作时,前轮电动机和后轮电动机的再生制动可以以前面的再生制动量执行。

本发明的实施方式通过上述问题解决方式提供以下效果。

首先,在具有前轮HEV和后轮EV组合的AWD混合动力车辆中,通过驾驶员的拨片操纵控制前轮电动机的转矩和变速模式来控制前轮减速,并同时通过驾驶员的拨片操纵控制后轮电动机的转矩来控制后轮减速度,因此可恢复最佳的再生制动能量,并可提高燃油效率。

第二,可通过拨片的切换操纵进行再生制动,以及通过拨片的保持操纵进行再生制动,因此可进行更直观的再生制动。

第三,在运动行驶模式下,通过驾驶员的拨片操纵进行手动变速,并且在环保行驶模式下,通过驾驶员的拨片操纵进行再生制动,从而提高了驾驶员的驾驶便利性,并且燃油效率提高。

附图说明

结合附图,从下面的详细描述中,将更清楚地理解本发明的实施方式的上述和其他目的、特征和其他优点,其中:

图1是示出在内燃机车辆的方向盘上提供有用于手动变速的拨片的实例的示图;

图2是示出在电动车辆的方向盘上提供用于减速度调整的拨片的实例的示图;

图3是前轮混合动力车辆的动力传递示意图;

图4是根据本发明实施方式的应用再生制动控制系统的AWD混合动力车辆的动力传递示意图;

图5是示出根据本发明的实施方式的AWD混合动力车辆的再生制动控制系统的框图;

图6、图7、图8是示出根据本发明实施方式的AWD混合动力车辆的再生制动控制方法的流程图;以及

图9是示出作为根据本发明的实施方式的AWD混合动力车辆的再生制动控制过程的曲线图。

具体实施方式

以下,将参考附图详细描述本发明的示例性实施方式。

图4是根据本发明的实施方式的应用再生制动控制系统的AWD混合动力车辆的动力传递示意图,并且示出了具有前轮HEV(混合动力电动车辆)动力传动系统和后轮EV(电动车辆)动力传动系统组合的AWD(全轮驱动)系统的实例。

前轮HEV动力传动系统包括:发动机110和前轮电动机130,彼此直接连接;发动机离合器120,布置在发动机110和前轮电动机130之间以传递或断开发动机动力;自动变速器140,通过切换动力将动力输出至前轮;HSG 150(混合动力起动器发电机),连接至发动机的曲轴皮带轮以起动发动机并为其提供动力;以及电池160,连接至前轮电动机130和HSG150以充电和放电。

后轮EV动力传动系统被配置为包括:后轮电动机170,连接到电池160以便充电和放电;以及减速齿轮(reduction gear,减速装置)180,使后轮电动机170的动力减速以将动力输出到后轮。

根据本发明的实施方式,在具有如上所述组合的前轮HEV和后轮EV的AWD混合动力车辆中,通过驾驶员的拨片操纵而控制前轮电动机的转矩和变速模式来控制前轮减速度,并且同时通过驾驶员的拨片操纵而控制后轮电动机的转矩来控制后轮减速度,从而可恢复最佳的再生制动能量,并可进行更直观的再生制动。

图5是示出根据本发明的实施方式的AWD混合动力车辆的再生制动控制系统和变速控制系统的框图。

一种能够被驾驶员直接操纵的操纵仪器被安装在用于手动变速和再生制动控制的AWD混合动力车辆的方向盘上。

例如,作为手动变速和再生制动控制的操纵仪器,成对拨片210可被安装到AWD混合动力车辆的方向盘200上,成对拨片210包括(-)拨片212和(+)拨片214。

在下文中,为了帮助理解本发明,将以作为操纵仪器的(-)拨片212和(+)拨片214为例进行描述。

将成对拨片210的(-)拨片212的操纵信号或(+)拨片214的操纵信号输入到作为AWD混合动力车辆的高级控制器的HCU(混合动力控制单元)220。

此外,安装在驾驶员座位附近的行驶模式选择开关202连接至HCU220,以确定当前车辆行驶模式是环保模式还是运动模式。

因此,HCU 220可基于从行驶模式选择开关202接收到的切换信号,来确定当前行驶模式是环保模式还是运动模式。

此外,为了确定当前行驶模式是否处于滑行状态,在按压加速器踏板时打开而在未按压加速器踏板时关闭的APS(加速器位置传感器)206的检测信号、以及在按压制动踏板时打开而在未按压制动踏板时关闭的BPS(制动位置传感器)208的检测信号,被输入到HCU220。

优选地,拨片210的操纵信号和行驶模式选择开关202的切换信号可经由TCU(变速器控制单元)240被发送到HCU 220。

参照图5,当在当前行驶模式被确定为环保模式之后接收到驾驶员的(-)拨片212的切换或保持操纵信号以增加减速度时,HCU 220可变地设置包括车辆减速度的前轮电动机与前轮电动机之间的转矩比,并输出用于控制前轮电动机和后轮电动机中的每一个的再生制动量的增加的信号和变速模式控制信号。

更具体地,当驾驶员在当前行驶模式被确定为环保模式之后执行(-)拨片212的切换或保持操纵以增加减速度和再生制动量时,HCU 220基于操纵信号设置车速的目标减速度,将前轮电动机和后轮电动机之间的可变转矩比设置为满足目标减速度的目标转矩比,将增加前轮电动机和后轮电动机中的每一个的再生制动量的转矩命令信号发送到MCU 230(电动机控制单元),并将用于控制变速模式的命令信号发送到TCU 240。

相反,当在当前行驶模式被确定为环保模式之后驾驶员接收到(+)拨片214的用于减小减速度的切换或保持操纵信号时,HCU 220可变地设置包括车辆减速度的前轮电动机和后轮电动机之间的转矩比,并输出用于控制前轮电动机和后轮电动机中的每一个的再生制动量减小的信号以及变速模式控制信号。

更具体地,当在确定当前行驶模式为环保模式之后驾驶员执行用于减小减速度和再生制动量的(+)拨片214的切换操纵或保持操纵时,HCU 220基于操纵信号设置车速的目标减速度,将前轮电动机和后轮电动机之间的转矩比设置为满足目标减速度的目标转矩比,将用于降低前轮电动机和后轮电动机中的每一个的再生制动量的转矩命令信号发送到MCU 230,并将用于变速模式控制的命令信号发送到TCU 240。

在这种情况下,MCU 230基于从HCU 220发送的用于前轮电动机和后轮电动机的再生制动量控制的转矩命令信号,控制前轮电动机和后轮电动机中的每一个的再生制动量,并且TCU 240基于从HCU 220发送的变速模式控制信号执行自动变速器的变速控制。

参照图5,当当前行驶模式被确定为处于运动模式时,HCU 220不将拨片210的操纵功能感知为调整再生制动量的功能,而是感知为手动控制变速器的变速档位的功能。

因此,当在当前行驶模式被确定为运动模式之后驾驶员接收到(-)拨片212的操纵信号时,HCU 220将低于当前变速档位的变速档位的变速命令信号发送至TCU 240,因此,可根据驾驶员对(-)拨片212的手动操纵来执行更低档位变速。

相反,当在当前行驶模式被确定为运动模式之后驾驶员接收到(+)拨片214的操纵信号时,HCU 220将到高于当前变速档位的变速档位的变速命令信号发送到TCU 240,因此可根据驾驶员对(+)拨片214的手动操纵来执行更高档位变速。

同时,在图5中,附图标记250表示产生液压制动力的AHB(主动液压助力器)250。

当驾驶员按压制动踏板并执行除电动机的再生制动力之外的液压制动系统的液压制动压力的功能时,AHB 250从HCU 220接收用于分配总制动力的协同控制信号。

在此,以下将描述基于上述配置的本发明的实施方式的再生制动控制方法。

图6、图7、图8是示出根据本发明的实施方式的AWD混合动力车辆的再生制动控制方法的流程图。

首先,在S101中,在作为AWD混合动力车辆的高级控制器的HCU220中,确定车辆是否处于滑行状态。

例如,HCU 220通过接收车辆速度传感器204的信号、APS 206的信号和BPS 208的信号,当车速高于0KPH时,APS关闭(加速踏板未按压状态),并且BPS关闭(制动踏板未按压的状态)时,确定车辆处于滑行状态。

接下来,在S102,HCU 220确定当前行驶模式。

即,在S103中,HCU 220基于从安装在驾驶座椅附近的行驶模式选择开关202接收到的切换信号,判断是否当前行驶模式选择为环保模式。

当在HCU 220中当前行驶模式被确定为环保模式时,在将包括(-)拨片212和(+)拨片214的成对拨片210的功能改变为调整再生制动量的功能之后,在S104中,确定驾驶员是否接收到成对拨片210的(-)拨片212的第一操纵信号或(+)拨片214的第二操纵信号。

作为步骤S104的确定结果,当确定接收到(-)拨片212的第一操纵信号时,在S105中,确定第一操纵信号是初始的一次切换输入信号(one-time toggling input signal)还是一次保持输入信号(one-time hold input signal)。

作为参考,切换是指翻转或按压拨片少于预定时间的单触操纵,以及保持是指翻转或按压拨片达预定时间以上的操纵。

作为步骤S105的确定结果,在S106中当将(-)拨片212的第一操纵信号确定为初始的一次切换输入信号时,在S107中HCU 220通过设置用于车辆停止的车速的目标减速度,并且将前轮电动机和后轮电动机之间的转矩比设置为满足目标减速度的目标转矩比。

在S108中,当HCU 220接收用于(-)拨片212的连续操纵的附加的一次操纵信号时(即,在接收到初始的一次切换输入信号之后的预定时间内附加的一次切换输入信号),每当接收到附加的一次切换输入信号就执行将前轮电动机的再生制动转矩增加到预定水平的控制,并且同时由TCU240根据HCU 220的命令基于为前轮预设的变速模式执行变速控制以增加减速度。

此外,每当接收到附加的一次切换输入信号时,HCU 220执行将后轮电动机的再生制动转矩增加到预定水平的控制。在这种情况下,在S109中,以在步骤S107中设置的前轮电动机与后轮电动机之间的目标转矩比,维持后轮电动机的再生制动转矩。

也就是说,每当接收到附加的一次切换输入信号时,HCU 220执行将后轮电动机的再生制动转矩增加到预定水平以增加减速度的控制。在步骤S107中,设定前轮电动机与后轮电动机之间的目标转矩比,因此后轮电动机的再生制动转矩的增加水平在目标转矩比内。

作为步骤S105的确定结果,当(-)拨片212的第一操纵信号被确定为一次保持输入信号时,在S110,HCU 220通过设置用于车辆停止的车速的目标减速度,并将前轮电动机和后轮电动机的可变转矩比设置为满足目标减速度的目标转矩比。

接下来,一次保持输入信号是根据驾驶员操作拨片达预定时间以上的信号。因此,在S111,HCU 220执行将前轮电动机的再生制动转矩增加到最大再生制动转矩的控制,并且同时基于为前轮预设的变速模式执行变速控制以增加减速度。

即,当HCU 220向MCU 230发送将前轮电动机的再生制动转矩增加到最大再生制动转矩的命令时,前轮电动机的再生制动转矩通过MCU 230的控制被控制为最大再生制动转矩,并且同时,TCU 240根据HCU 220的命令执行基于为前轮预设的变速模式的变速控制用于增加减速度。

此外,当确定(-)拨片212的第一操纵信号为一次保持输入信号时,HCU 220执行将后轮电动机的再生制动转矩增加到预定水平的控制。在这种情况下,在S112中,以在步骤S110中设置的前轮电动机与后轮电动机之间的目标转矩比,保持后轮电动机的再生制动转矩。

也就是说,当确定(-)拨片212的第一操纵信号为一次保持输入信号时,HCU 220执行增加后轮电动机的再生制动转矩的控制,以将减速度增加到预定水平。在步骤S110中,由于设置了前轮电动机与后轮电动机之间的目标转矩比,所以增加后轮电动机的再生制动转矩的水平在目标转矩比的范围内。

在这种情况下,可由MCU 230根据HCU 220发送的命令信号,来执行将前轮电动机和后轮电动机的再生制动转矩增加到预定水平的控制、以及将前轮电动机的再生制动转矩增加到最大再生制动转矩的控制。可由TCU 240根据HCU 220发送的命令信号,基于为增加减速度而预设的变速模式来执行变速控制。

同时,作为步骤S104的确定结果,当确定未接收到(-)拨片212的第一操纵信号时,在S113中确定是否接收到(+)拨片214的第二操纵信号。

作为步骤S113的确定结果,当确定已在HCU 220中接收到(+)拨片214的第二操纵信号时,在S114中,确定第二操纵信号是初始的一次切换输入信号还是一次保持输入信号。

作为步骤S114的确定结果,当在S115中将(+)拨片214的第二操纵信号确定为初始的一次切换输入信号时,在S116中,HCU 220通过设置用于车辆停止的车速的目标减速度释放,并将前轮电动机和后轮电动机之间的可变转矩比设置为用于目标减速释放的转矩比。

当HCU 220接收到用于连续操纵(+)拨片214的附加的第二操纵信号时(即,在接收到初始的一次切换输入信号之后的预定时间内附加的一次切换输入信号),在S117,每当接收到附加的一次切换输入信号时,执行将前轮电动机的再生制动转矩减小到预定水平的控制,并且同时,基于为前轮预设的变速模式进行变速控制以减小减速度。

此外,每当接收到附加的一次切换输入信号时,HCU 220执行将后轮电动机的再生制动转矩减小到预定水平的控制。在这种情况下,在S118中,以在步骤S116中设置的前轮电动机和后轮电动机之间的转矩比,保持后轮的再生制动转矩。

作为步骤S114的确定结果,当确定(+)拨片214的第二操纵信号为一次保持输入信号时,在S119中,HCU 220通过设置用于车辆停止的车速的目标减速度释放,并将前轮电动机和后轮电动机之间的转矩比设置为用于目标减速度释放的转矩比。

接下来,一次保持输入信号是由驾驶员操纵拨片达预定时间以上的信号。因此,在S120中,HCU 220执行将前轮电动机的再生制动转矩减小到参考再生制动转矩(基本电动机再生制动量)的控制,并且同时,基于为前轮预设的变速模式进行变速控制以减小减速度。

此外,当确定(+)拨片214的第二操纵信号为一次保持输入信号时,HCU 220执行将后轮电动机的再生制动转矩减小至参考再生制动转矩的控制。在这种情况下,在S121中,以在步骤S119中设置的前轮电动机与后轮电动机之间的转矩比,保持后轮电动机的再生制动转矩。

在这种情况下,可由MCU 230根据HCU 220发送的命令信号,来执行将前轮电动机和后轮电动机的再生制动转矩减小到预定水平的控制、以及将前轮电动机和后轮电动机的再生制动转矩减小到参考再生制动转矩的控制。可由TCU 240根据HCU 220发送的命令信号,基于为减小减速度而预设的变速模式来执行变速控制。

同时,作为步骤S103的确定结果,当安装在驾驶员座位附近的行驶模式选择开关202未选择为环保模式,而是从环保模式改变为运动模式时,或者当环保模式关闭时,在S123,HCU 220将拨片210的功能改变为变速器的变速档位调整功能。

因此,为了确定是否控制了变速器的变速档位,在S124中,HCU 220确定是否接收到成对拨片210中的(-)拨片212的切换操纵的第一操纵信号,或者在S125中,确定是否接收到(+)拨片214的切换操纵的第二操纵信号。

作为步骤S124的确定结果,当确定接收到(-)拨片212的第一操纵信号时,在S126中,HCU 220执行用于变速档位减小的控制。

相反,作为步骤S125的确定结果,当确定接收到用于(+)拨片214的切换操纵的第二操纵信号时,在S127中,HCU 220执行用于变速档位增加的控制。

当然,可由TCU 240根据HCU 220发送的命令信号来执行变速档位的减少或增加。

同时,在执行步骤S109、S112、S118和S121之后,或者作为步骤S113的确定结果,当确定未接收到(+)拨片214的第二操纵信号时,在S122中,确定是否在HCU 220中接收到用于拨片210的功能改变释放信号(例如,将行驶模式选择开关202从环保模式转换为运动模式的操纵信号、或关闭行驶模式选择开关的操纵信号)。

作为步骤S122的确定结果,当确定接收到功能改变释放信号时,在S123中,HCU220将拨片210的功能改变为变速器的变速档位调整功能,并且重复执行步骤S124至S127。

因此,在AWD混合动力车辆中,通过驾驶员的拨片操纵来控制前轮电动机的转矩和变速模式,从而控制前轮减速度,并且同时,通过驾驶员的拨片操纵来控制后轮电动机的转矩,从而控制后轮减速度,因此可恢复最佳的再生制动能量。另外,通过驾驶员对拨片的切换操纵操纵和保持操纵执行再生制动,因此可实现更直观的再生制动。

在此,将参考一个实施方式更详细地描述根据本发明的实施方式的AWD混合动力车辆的再生制动控制过程。

图9是示出作为根据本发明的实施方式的AWD混合动力车辆的再生制动控制过程的曲线图。

基本电动机再生制动量

在图9中,附图标记①表示APS 206的关闭操作。

当驾驶员释放加速踏板时,如图9的①-1所示,将AWD混合动力车辆的电动机再生制动量调整为基本电动机再生制动量(滑行再生)。

更具体地,将APS 206的关闭信号发送到HCU 220,HCU 220将用于基本电动机再生制动量的转矩命令信号发送到MCU 230,并且MCU230以基本电动机再生制动量控制电动机转矩。

优选地,基本电动机再生制动量只能通过前轮电动机的再生制动转矩控制来获得。

在这种情况下,如上所述,当确定车辆处于滑行状态时(例如,当车速大于0KPH时,在车辆的下坡行驶期间,APS关闭,BPS关闭),HCU220可变地设置前轮HEV动力传动系统中包括的前轮电动机和后轮EV动力传动系统中包括的后轮电动机之间的转矩比(例如,前轮电动机7:后轮电动机3)。

例如,如上所述,当在当前行驶模式被确定为环保模式之后,当驾驶员接收到的(-)拨片212的切换或保持操纵信号用于减速度增加时,HCU220可变地设置包括车辆减速度的前轮电动机和后轮电动机之间的转矩比。相反,当接收到(+)拨片214的第二操作信号时,HCU 220通过设置车速的目标减速度的释放并将前轮电动机和后轮电动机之间的可变转矩比设置为用于目标减速度释放的转矩比。

当然,当发生诸如操纵拨片210以控制减速度和再生制动量的特定情况时,可变地控制前轮电动机和后轮电动机之间的转矩比。因此,能够在前轮电动机0%:后轮电动机100%至前轮电动机100%:后轮电动机0%的范围内可变地控制电动机转矩。

切换(-)拨片时的减速度控制

在图9中,附图标记②表示(-)拨片212的切换操作的时间,即,由驾驶员切换(-)拨片212以用于减速的时间。

因此,如图9的②-1所示,在(-)拨片212的第一切换操作期间,除了基本电动机再生制动量之外,还向电动机施加第一附加再生制动量(滑行再生TQ 1)以增加减速度。

此外,如图9的②-2所示,在(-)拨片212的第二切换操作(附加切换操作期间)中,除了第一附加再生制动量(滑行再生TQ 1)以外,还向电动机施加第二附加再生制动量(滑行再生TQ 2)以进一步增加减速度。

此外,如图9的②-3所示,在(-)拨片212的第三切换操作期间(两次附加切换操作期间),除了第二附加再生制动量(滑行再生TQ 2)之外,还向电动机施加第三附加再生制动量(滑行再生TQ 3)以进一步增加减速度。

在这种情况下,除了基本电动机再生制动量之外,还可通过前轮电动机和后轮电动机的再生制动转矩控制来获得附加的再生制动量。如上所述,减速度量(②-1,②-2,②-3)通过操纵(-)拨片可被可变地确定,同时包括在前轮HEV动力传动系统中的前轮电动机与包括在后轮EV动力传动系统中的后轮电动机之间的转矩比可被可变地设置(例如,前轮电动机7:后轮电动机3)。

保持(-)拨片时的减速控制

在图9中,附图标记③表示用于减速的(-)拨片212的保持操纵的起点,附图标记④表示用于减速的(-)桨片212的保持操纵的终点。

如上所述,在(-)拨片的保持操纵的情况下(例如,在几秒钟内进行拨片的按压操纵),HCU 220将用于最大电动机再生制动量的转矩命令信号发送到MCU 230,因此,电动机转矩由MCU 230控制在最大电动机再生制动量中。

因此,如图9的参考标记③-1所述,在(-)拨片212的保持操纵的情况下,通过最大再生制动转矩产生最大的目标减速度。

此外,在电动机以图9的①-1所示的基本电动机再生制动量(滑行再生)进行运转时,在(-)拨片212的保持操纵的情况下,电动机转矩增加到由图9的③-1表示的最大再生制动转矩(拨片再生TQ),同时将减速度增加到最大目标减速度。

另外,在电动机以图9的②-1所示的第一附加再生制动量(滑行再生TQ 1)进行运转时,在(-)拨片212的保持操纵的情况下,电动机转矩同样被控制成增加到图9的③-1所示的最大再生制动转矩,同时减速度增加到最大目标减速度。

此外,在电动机以图9的②-2所示的第二附加再生制动量(滑行再生TQ 2)进行运转时,在(-)拨片212的保持操纵的情况下,电动机转矩同样被控制成增加到图9的③-1所示的最大再生制动转矩,同时减速度被控制为增加到最大目标减速度。

此外,在电动机以图9的②-3所示的第三附加再生制动量(滑行再生TQ 3)进行运转时,在(-)拨片212的保持操纵的情况下,电动机转矩同样被控制成增加到图9的③-1所示的最大再生制动转矩,同时,减速度控制为增加到最大目标减速度。

在这种情况下,当HCU 220接收到驾驶员对(-)拨片212进行保持操纵的信号以增加减速度时,HCU 220可变地设置包括车辆减速度的前轮电动机和后轮电动机之间的转矩比,将用于增加前轮电动机和后轮电动机的再生制动力的命令信号发送到MCU 230,并将用于变速模式控制的命令信号发送到TCU 240。

因此,如上所述,根据(-)拨片的保持操纵的减速度增加控制、和通过图9的预设变速模式⑦进行的用于减速度增加的变速控制同时执行,因此可轻松地将车辆减速度增加到最大目标减速度。

切换(+)拨片时的减速控制

当切换(+)拨片214时,HCU 220可变地设置包括车辆减速度的前轮电动机和后轮电动机之间的转矩比,将用于减小前轮电动机和后轮电动机的再生制动力的信号输出到MCU 230,并且将变速模式控制信号输出到TCU 240,因此控制减速度以使其逐渐减小。

例如,如图9的②-3所示,通过(-)拨片212的切换操纵,将减速度控制为增加到第三附加再生制动量(滑行再生TQ 3),并且当连续执行两次(+)拨片214的切换操纵时,由图9的②-3表示的第三附加再生制动量(滑行再生TQ 3)被调整为按照由图9的②-2所示的第二附加再生制动量(滑行再生TQ 2)和图9的②-1所示的第一附加再生制动量(滑行再生TQ 1)的顺序进行调整。

保持(+)拨片时的减速控制

在图9中,附图标记⑤表示执行(+)拨片214的保持操纵的时间。

因此,当执行(+)拨片214的保持操纵时,HCU 220可变地设置包括车辆减速度的前轮电动机和后轮电动机之间的转矩比,并将用于前轮电动机和后轮电动机的再生制动力降低的信号输出到MCU 230,并将变速模式控制信号输出到TCU 240。因此,以基本电动机再生制动量控制电动机转矩,因此将减速度控制为减小到基本电动机再生制动量的水平。

即,在(+)拨片214的保持操纵的情况下,电动机转矩减小到由图9的⑤-1表示的预定减速斜率,并且被控制为返回到图9的①-1所示的基本电动机再生制动量(滑行再生)。

例如,在电动机以最大再生制动转矩(拨片再生TQ)运行时,在(+)拨片214的保持操纵的情况下,控制电动机转矩以返回到由图9的①-1表示的基本电动机再生制动量(滑行再生)。

此外,在电动机以第三附加再生制动量(滑行再生TQ 3)运行时,在(+)拨片214的保持操纵的情况下,电动机转矩同样被控制为返回到图9的①-1所示的基本电动机再生制动量(滑行再生)。

此外,在电动机以第二附加再生制动量(滑行再生TQ 2)运行时,在(+)拨片214的保持操纵的情况下,电动机转矩同样被控制为返回到由图9的①-1表示的基本电动机再生制动量(滑行再生)。

此外,在电动机以第一附加再生制动量(滑行再生TQ 1)运行时,在(+)拨片214的保持操纵的情况下,电动机转矩同样被控制为返回至由图9的①-1表示的基本电动机再生制动量(滑行再生)。

通过(-)拨片的保持操纵来停止车辆

在(-)拨片的保持操纵达预定时间以上的情况下,HCU 220可变地设置包括车辆减速度的前轮电动机和后轮电动机之间的转矩比,将转矩比设置为首先减小后轮电动机的转矩并逐渐减小前轮电动机的转矩的转矩比,并且将用于减小前轮电动机和后轮电动机的再生制动力以及车辆停止的信号输出到MCU 230。

因此,在图9的⑥-1所示的减速度斜率中,用于车辆停止的转矩被施加到电动机以增加制动减速度,并且用于车辆停止的转矩被限制为图9的⑥-2所示的最大再生制动转矩(拨片再生TQ)。

在这种情况下,当用于车辆停止的转矩达到由图9的⑥-2表示的最大再生制动转矩(拨片再生TQ)时,如图9的⑥-3所示通过AHB 250或EPB(电动停车制动系统)进行制动协同控制以产生液压制动力,因此车辆停止。

因此,在没有踩下制动踏板的情况下,在进行了(-)拨片的保持操纵的减速度增大之后,通过作为制动系统的AHB 250或EPB进行制动。因此,由于通过减速控制的电动机再生制动,电池的充电效果最大化,并且可容易地执行车辆停止控制。

更改变速模式以进行减速控制

如上所述,执行拨片210的切换操纵的功能、和控制用于前轮的再生制动量控制和减速控制的变速器的变速模式的功能可一起执行。

如上所述,根据(-)拨片的保持操纵的减速度增加控制、和根据如图9的⑦所示的为前轮预设的变速模式的减速度增加的变速控制同时执行,可容易地将车辆减速度增大到最大目标减速度。

在制动踏板操作期间

如上所述,如果驾驶员在通过(-)拨片的切换或保持操纵增加减速度时或在通过(+)拨片的切换或保持操纵减小减速度时按压制动踏板,则执行再生制动力和液压制动力一起使用的制动协同控制。

也就是说,如上所述,如果在(-)拨片的切换或保持操纵增加减速度、或者在(+)拨片的切换或保持操纵减小减速度时驾驶员按压制动踏板,由图9的①-1表示的基本电动机再生制动量(滑行再生)是再生制动量,并且作为制动系统的AHB 250的液压制动力被添加到其上,因此车辆停止。

在运动模式下

如上所述,当当前行驶模式被确定为运动模式时,HCU 220未将拨片210的操纵功能感知为调整再生制动量的功能,而是感知手动控制变速器的变速档位的功能。

因此,可执行根据(-)拨片212的手动切换操纵的更低档位变速器和根据(+)拨片214的手动切换操纵的更高档位变速器,并且可执行通过手动操纵前轮变速器的变速模式来改变控制减速度的变速模式的控制。

在以再生制动操作的行驶中转换为N档时

如上所述,当在HCU 220中当前行驶模式被确定为环保模式时,包括(-)拨片212和(+)拨片214的成对拨片210的功能改变为再生制动量调整的功能,并且通过操纵(-)拨片212和(+)拨片214来控制再生制动。

当在以再生制动操作行驶期间将变速档位转换为N档时,HCU 220在TCU 240将N档信号发送至HCU 220的同时,将停止所有再生制动的信号发送至MCU 230。因此,电动机的再生制动停止。

在这种情况下,当从N(空挡)档返回到D(驱动)档时,HCU 220在N档操作之前将返回到再生制动量的命令信号发送到MCU 230。因此,在N档操作之前进行再生制动。

例如,当被调整为由图9的①-1表示的基本电动机再生制动量(滑行再生)时,在N档操作之前的再生制动返回与从N档返回到D档时的基本电动机再生制动量相同的基本电动机再生制动量(滑行再生)。

此外,当被调整为图9的②-1所示的第一附加再生制动量(滑行再生TQ 1)时,在N档操作之前的再生制动返回与从N档返回到D档时的第一附加再生制动量相同的第一附加再生制动量(滑行再生TQ 1)。

此外,当被调整为图9的②-2所示的第二附加再生制动量(滑行再生TQ 2)时,在N档操作之前的再生制动返回与从N档返回到D档时的第二附加再生制动量相同的第二附加再生制动量(滑行再生TQ 2)。

此外,当被调整为图9的②-3所示的第三附加再生制动量(滑行再生TQ 3)时,在N档操作之前的再生制动返回与从N档返回到D档时的第三附加再生制动量(滑行再生TQ 3)相同的第三附加再生制动量(滑行再生TQ 3)。

此外,当调整到由图9的③-1表示的最大再生制动转矩(拨片再生TQ)时,在N档操作之前的再生制动返回与从N档返回到D档时的最大再生制动转矩相同的最大再生制动转矩(拨片再生TQ)。

在再生制动操作中,在ABS或TCS操作的情况下

如上所述,当作为紧急制动系统的一种的ABS(防抱死制动系统)或TCS(牵引力控制系统)在行驶过程中通过操纵(-)拨片212和(+)拨片214的再生制动控制下运行时,为了使制动安全,HCU 220将停止所有再生制动的信号发送到MCU 230。因此,电动机的再生制动停止。

在这种情况下,当ABS或TCS的操作停止时,HCU 220在ABS或TCS的操作之前将返回再生制动量的命令信号发送到MCU 230,因此在ABS或TCS的操作之前执行再生制动。

例如,当调整为图9的①-1表示的基本电动机再生制动量(滑行再生)时,在ABS或TCS的操作之前,再生制动返回到与ABS或TCS的操作停止时的基本电动机再生制动量相同的基本电动机再生制动量(滑行再生)。

此外,当被调整为图9的②-1所示的第一附加再生制动量(滑行再生TQ 1)时,在ABS或TCS的操作之前,再生制动返回到与ABS或TCS的操作停止时的第一附加再生制动量相同的第一附加再生制动量(滑行再生TQ 1)。

此外,当被调整为图9的②-2所示的第二附加再生制动量(滑行再生TQ 2)时,在ABS或TCS的操作之前,再生制动返回到与ABS或TCS的操作停止时的第二附加再生制动量相同的第二附加再生制动量(滑行再生TQ 2)。

另外,当被调整为图9的②-3所示的第三附加再生制动量(滑行再生TQ 3)时,在ABS或TCS的操作之前,再生制动返回到与ABS或TCS的操作停止时的第三附加再生制动量相同的第三附加再生制动量(滑行再生TQ 3)。

此外,当调整到由图9的③-1表示的最大再生制动转矩(拨片再生TQ)时,在ABS或TCS的操作之前,再生制动返回与ABS或TCS的操作停止时的最大再生制动转矩相同的最大再生制动转矩(拨片再生TQ)。

通过方向盘操作来控制前后轮的动力分配

如上所述,当在通过操纵(-)拨片212和(+)拨片214进行再生制动控制和减速控制期间,确定方向盘的转向在参考角以上操作时,可控制前轮电动机和后轮电动机之间的转矩比。

即,除了车速和减速度以外,还可根据方向盘的转向角来改变前轮电动机和后轮电动机之间的转矩和功率比。

例如,当转向角传感器检测到方向盘的转向角等于或大于参考角度时,HCU 220将改变前轮电动机和后轮电动机的转矩比和功率比的命令信号发送到MCU。因此,可根据转向角可变地控制前轮电动机和后轮电动机之间的转矩和功率比。

如上所述,在AWD混合动力车辆中,通过驾驶员的拨片操纵控制前轮电动机的转矩和变速模式来控制前轮减速度,并且同时,通过驾驶员的拨片操纵控制后轮电动机的转矩来控制后轮减速度,因此可恢复到最佳再生制动能量。因此,在操纵(-)拨片和(+)拨片的过程中,可提高燃料效率并且可根据车辆行驶状况来可变地控制再生制动,因此可执行更直观的再生制动。

26页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:泊出原始车位创建方法、系统、车辆和存储介质

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!