一种频率侦测电路与方法

文档序号:632252 发布日期:2021-05-11 浏览:32次 >En<

阅读说明:本技术 一种频率侦测电路与方法 (Frequency detection circuit and method ) 是由 陈培炜 廖芳仁 于 2020-11-06 设计创作,主要内容包括:本发明提供了一种频率侦测电路与方法,于频率侦测时,定电流源输出电流来对可变电容进行多周期的充电。于校准模式下,根据可变电容的跨压与参考电压的比较结果来调整所述可变电容的电容值,以得到所述可变电容的一目标电容值。于监测模式下,根据参考频率、可变电容的跨压来求得待测电路的待测操作频率。(The invention provides a frequency detection circuit and a frequency detection method, wherein a constant current source outputs current to charge a variable capacitor for multiple periods during frequency detection. In the calibration mode, the capacitance value of the variable capacitor is adjusted according to the comparison result of the voltage across the variable capacitor and the reference voltage, so as to obtain a target capacitance value of the variable capacitor. And in the monitoring mode, the to-be-detected operating frequency of the to-be-detected circuit is obtained according to the reference frequency and the voltage across the variable capacitor.)

一种频率侦测电路与方法

技术领域

本发明涉及一种频率侦测电路与方法,特别是一种可实时、动态侦测电路操作频率的适用于光纤收发器的频率侦测电路与方法。

背景技术

数字数据在高速传输时可能容易出现噪声。因此,收发器通常需要频率数据恢复电路(Clock and Data Recovery Circuit,CDR),来重新产生低抖动频率以及回复出低噪声数据。所以,频率数据恢复电路对于数据和频率的传输与接收扮演重要角色。

频率数据恢复电路所产生的频率最好能满足:1.频率频率必须和数据速率相同。2.频率和数据间必须要有正确的相位关系。3.频率本身必须要有小的抖动。

在使用频率数据恢复电路时,如果能够侦测出频率数据恢复电路的操作频率,对于后续操作将会有帮助

发明内容

本发明提出一种频率侦测电路与方法,可实时、动态侦测电路的操作频率。

根据本案一实施例,提出一种频率侦测电路,用以侦测一待测电路的一待测频率,该频率侦测电路包括:一误差放大器,用以比较一第一参考电压与一节点电压,并输出一第一比较结果;一电流镜,耦接于该误差放大器,根据该第一比较结果而输出一参考电流,其中,该参考电流用以产生该节点电压,且该电流镜更根据该参考电流而输出一输出电流;一可变电容,耦接至该电流镜,该电流镜的该输出电流对该可变电容进行充电;一比较器,耦接至该可变电容,用以比较一第二参考电压与该可变电容的一跨压以产生一第二比较结果;以及一控制电路,耦接至该比较器与该可变电容,该控制电路根据该比较器的该第二比较结果来输出一控制信号,以控制该可变电容的一电容值,该控制电路更重设该可变电容的该跨压,该控制电路接收一参考频率与该待测电路的该待测频率。于一校准模式下,该控制电路接收该参考频率,于多个校准周期内,该电流镜的该输出电流对该可变电容充电,于各该些校准周期结束时,该控制电路重设该可变电容的该跨压,于各该些校准周期结束时,该控制电路根据该比较器所输出的该第二比较结果来控制该控制信号以控制于一下一校准周期的该可变电容的该电容值。在该校准模式结束后,该控制电路决定该可变电容的一目标电容值。于一监测模式下,于一第一监测周期内,该控制电路接收该参考频率,于该第一监测周期结束时,测量该可变电容的该跨压为一第一跨压。于一第二监测周期内,该控制电路接收由该待测电路所提供的该待测频率,于该第二监测周期结束时,测量该可变电容的该跨压为一第二跨压,该控制电路根据该参考频率、该第一跨压与该第二跨压而决定该待测频率。

根据本案另一实施例,提出一种频率侦测方法,用以侦测一待测电路的一待测频率。该频率侦测方法包括:比较一第一参考电压与一节点电压,并输出一第一比较结果;根据该第一比较结果而输出一参考电流,其中,该参考电流用以产生该节点电压,且更根据该参考电流而输出一输出电流;以该输出电流对该可变电容进行充电;比较一第二参考电压与该可变电容的一跨压以产生一第二比较结果;以及根据该第二比较结果来输出一控制信号,以控制该可变电容的一电容值,更重设该可变电容的该跨压。于一校准模式下,接收一参考频率,于多个校准周期内,该输出电流对该可变电容充电,于各该些校准周期结束时,重设该可变电容的该跨压,于各该些校准周期结束时,根据该第二比较结果来控制该控制信号以控制于一下一校准周期的该可变电容的该电容值。在该校准模式结束后,决定该可变电容的一目标电容值。于一监测模式下,于一第一监测周期内,接收该参考频率,于该第一监测周期结束时,测量该可变电容的该跨压为一第一跨压。于一第二监测周期内,接收该待测电路所提供的该待测频率,于该第二监测周期结束时,测量该可变电容的该跨压为一第二跨压,根据该参考频率、该第一跨压与该第二跨压而决定该待测频率。

为了对本发明的上述及其他方面有更佳的了解,下文特举实施例,并配合所附图式详细说明。

附图说明

图1显示根据本案一示范性实施例的频率侦测电路的功能方块图。

图2显示根据本案一示范性实施例的频率侦测电路操作于校准(calibration)模式下的波形图。

图3显示根据本案一示范性实施例的频率侦测电路操作于监测模式下的波形图。

图4显示根据本案一示范性实施例的频率侦测方法的流程图。

附图标记

100:频率侦测电路 50:待测电路

110:误差放大器 120:电流镜

R:电阻 C:可变电容

130:比较器 140:控制电路

SW:开关 N1:节点

T1-T7:周期

410-490:步骤

具体实施方式

本说明书的技术用语系参照本技术领域的习惯用语,如本说明书对部分用语有加以说明或定义,该部分用语的解释是以本说明书的说明或定义为准。本揭露的各个实施例分别具有一或多个技术特征。在可能实施的前提下,本技术领域具有通常知识者可选择性地实施任一实施例中部分或全部的技术特征,或者选择性地将这些实施例中部分或全部的技术特征加以组合。

图1显示根据本案一示范性实施例的频率侦测电路的功能方块图。频率侦测电路100用以侦测待测电路50的操作频率。待测电路50例如可以是频率数据恢复电路(Clockand Data Recovery Circuit,CDR),但本案并不受限于此。

频率侦测电路100包括:误差放大器(Error Amplifier,EA)110、电流镜120、电阻R、可变电容C、比较器130、控制电路140与开关SW。

误差放大器110用以比较第一参考电压VREF1与节点N1的电压,其中,节点N1的电压可以表示为:VN1=IREF*R,IREF代表由电流镜120所输出的参考电流,R代表电阻R的电阻值(其为既定值)。误差放大器110的比较结果(也可以称为「第一比较结果」)可以输入至电流镜120,以调整由电流镜120所输出的参考电流IREF,亦即调整节点N1的电压VN1。藉由误差放大器110的操作,节点N1的电压VN1可以接近于第一参考电压VREF1,亦即,VREF=IREF*R,故而,由此可以推出,当节点N1的电压VN1接近于第一参考电压VREF1时,由电流镜120所输出的参考电流IREF可表示为:IREF=VREF/R。

电流镜120耦接于误差放大器110与电阻R。如上述般,当节点N1的电压VN1接近于第一参考电压VREF1时,由电流镜120所输出的参考电流IREF可表示为:IREF=VREF/R。电流镜120更输出一输出电流IOUT,该输出电流IOUT可表示为:IOUT=M*IREF,其中,参数M代表电流镜120的电流放大倍数。电流镜120的电路架构于此可不特别限定之。电流镜120亦可称为定电流源。

电阻R耦接于误差放大器110与电流镜120,参考电流IREF流经电阻R。电阻R上的跨压即为节点N1的电压VN1。

可变电容C耦接至电流镜120。可变电容C可以是电容矩阵。在一充电时期内,电流镜120的输出电流IOUT可以对可变电容C进行充电,以提高可变电容C的跨压VOUT。当充电时期愈长,可变电容C的跨压VOUT自然愈高,反之亦然。另外,如果可变电容C的电容愈大,则可变电容C的跨压VOUT的上升/下降速度自然愈慢,反之亦然。在本案实施例中,可变电容C的跨压VOUT可由测量而得知。

比较器130耦接至可变电容C。比较器130用以比较第二参考电压VREF2与可变电容C的跨压VOUT以产生第二比较结果。比较器130的第二比较结果系输入至控制电路140。

控制电路140耦接至比较器130与可变电容C。控制电路140根据比较器130的输出信号(亦即第二比较结果)来输出控制信号CTRL,以控制可变电容C的电容值。此外,控制电路140可以将重设信号RS输出给开关SW,以重设可变电容C的跨压VOUT。控制电路140接收参考频率FREF与待测频率FTEST。开关SW耦接至可变电容C与控制电路140。

在底下,以控制信号CTRL为4位为例,但当知本案并不受限于此。可变电容C的电容值可表示为:C=CTRL*Cunit,其中,Cunit代表单位电容。当控制信号CTRL为[1111]时,可变电容C的电容值有最大值;当控制信号CTRL为[0000]时,可变电容C的电容值有最小值。其余可依此类推。所以,当控制信号CTRL增加时,可变电容C的电容值随之增加;反之亦然。

开关SW受控于控制电路140。当控制电路140输出重设信号RS给开关SW时,开关SW为导通,以将可变电容C所储存的电压放电(亦即重设可变电容C的跨压VOUT)。

图2显示根据本案一示范性实施例的频率侦测电路操作于校准(calibration)模式下的波形图。每一周期T1-T4(亦可称为校准周期T1-T4)的长度TREF=N/FREF(N为正整数),其中,FREF代表参考频率,该参考频率FREF可以由待测电路50所提供,或者由一外部参考信号源(未显示)所提供。

如图2,于第一周期T1,令控制信号CTRL为[1000]。于充电时期TREF内,电流镜120的输出电流IOUT对可变电容C充电,使得可变电容C的跨压VOUT上升。于充电时期TREF结束时,控制电路140输出重设信号RS给开关SW,以重设可变电容C的跨压VOUT。于第一周期T1结束时,控制电路140可以根据比较器130的比较结果来输出控制信号CTRL给可变电容C,以控制下一周期T2的可变电容C的电容值。亦即,如果于第一周期T1结束时,可变电容C的跨压VOUT高于第二参考电压VREF2,则代表可变电容C的电容值较低。故而,于下一周期,控制电路140增加控制信号CTRL的值(例如从[1000]变为[1100]),以增加可变电容C的电容值,值得注意的是,本发明可视准确度需求而增加(或减少)数字控制信号CTRL的位数。相反地,如果于第一周期T1结束时,可变电容C的跨压VOUT低于第二参考电压VREF2,则代表可变电容C的电容值较高。故而,于下一周期,控制电路140降低控制信号CTRL的值(例如从[1000]变为[0111]),以降低可变电容C的电容值。

以图2为例,于第一周期T1结束后,可变电容C的跨压VOUT高于第二参考电压VREF2(代表可变电容C的电容值较低)。于下一周期T2,控制电路140增加控制信号CTRL的值(从[1000]变为[1100]),以增加可变电容C的电容值。

同样地,以图2为例,于第二周期T2结束后,可变电容C的跨压VOUT低于第二参考电压VREF2(代表可变电容C的电容值较高)。于下一周期T3,控制电路140降低控制信号CTRL的值(从[1100]变为[1010]),以降低可变电容C的电容值。

同样地,以图2为例,于第三周期T3结束后,可变电容C的跨压VOUT高于第二参考电压VREF2(代表可变电容C的电容值较低)。于下一周期T4,控制电路140降低控制信号CTRL的值(从[1010]变为[1011]),以降低可变电容C的电容值。

经过4个周期后,可变电容C的跨压VOUT已较接近第二参考电压VREF2,代表可变电容C的电容值已接近于目标值CREF,其中,VOUT=(IOUT*TREF)/CREF,故而,CREF=(IOUT*TREF)/VOUT。

亦即,在校准模式下,用以决定可变电容C的目标电容值(亦即,决定控制信号CTRL的值)。当决定好可变电容C的目标电容值后,频率侦测电路可从校准模式进入监测(monitor)模式。其中,于监测模式下,可变电容C的电容值相同于校准模式下的最后一个周期的可变电容C的电容值。一实施例中,本发明可以视需求,选择性地再进行几轮4个周期的量测循环。

图3显示根据本案一示范性实施例的频率侦测电路操作于监测模式下的波形图。在图3中,于周期T5(周期T5也可称为第一监测周期)内,控制电路140接收参考频率FREF,以据以控制周期T5长度为TREF=N/FREF(N为正整数)。于周期T5结束后,测量可变电容C的跨压VOUT(将其值表示为VOUT_REF,或称为第一跨压),并重设之。

于周期T6(周期T6也可称为第二监测周期)时,控制电路140接收由待测电路50所提供的待测频率FTEST,以据以控制周期T6长度为TTEST=N/FTEST(N为正整数)。于周期T6结束后,测量可变电容C的跨压VOUT(将其值表示为VOUT_TEST,或称为第二跨压),并重设之。

在监测模式下,由于可变电容C的电容值已为固定且已知,且电流镜120的输出电流IOUT也为固定且已知,故而,可变电容C的跨压VOUT将正比于周期长度,也就是说,VOUT_TEST/VOUT_REF=TTEST/TREF。由于TREF=N/FREF且TTEST=N/FTEST,所以推论出VOUT_TEST/VOUT_REF=FREF/FTEST。故而,待测频率FTEST可以表示为:FTEST=FREF/(VOUT_TEST/VOUT_REF)。

如图3所示,如果需要的话,在监测模式下,可以实时监测待测电路50的操作频率(如周期T7所示)。

由上述可知,在本案实施例中,于校准模式下,决定可变电容C的电容值。于监测模式,则可以侦测待测电路50的操作频率。

图4显示根据本案一示范性实施例的频率侦测方法的流程图。于步骤410中,比较一第一参考电压与一节点电压,并输出一第一比较结果。于步骤420中,根据该第一比较结果而输出一参考电流,其中,该参考电流用以产生该节点电压,且更根据该参考电流而输出一输出电流。于步骤430中,以该输出电流对该可变电容进行充电。于步骤440中,比较一第二参考电压与该可变电容的一跨压以产生一第二比较结果。于步骤450中,根据该第二比较结果来输出一控制信号,以控制该可变电容的一电容值,更重设该可变电容的该跨压。于步骤460中,于一校准模式下,接收一参考频率,于复数个校准周期内,该输出电流对该可变电容充电,于各该些校准周期结束时,重设该可变电容的该跨压,于各该些校准周期结束时,根据该第二比较结果来控制该控制信号以控制于一下一校准周期的该可变电容的该电容值。于步骤470中,在该校准模式结束后,决定该可变电容的一目标电容值。于步骤480中,于一监测模式下,于一第一监测周期内,接收该参考频率,于该第一监测周期结束时,测量该可变电容的该跨压为一第一跨压。于步骤490中,于一第二监测周期内,接收该待测电路所提供的该待测频率,于该第二监测周期结束时,测量该可变电容的该跨压为一第二跨压,根据该参考频率、该第一跨压与该第二跨压而决定该待测频率。

此外,于本案实施例中,第一参考电压VREF1与第二参考电压VREF2可以是分压的关系。

本案实施例揭露一种可自动感测电路操作频率的频率侦测电路及其方法,适用于光纤收发器等需要侦测电路操作频率的装置。本案实施例利用电流乘上充电时间等于电容电压的基本原理,对该可变电容进行多周期的充放电程序,且根据预先设好的特定条件,以得到待测电路的操作频率。

综上所述,虽然本发明已以实施例揭露如上,然其并非用以限定本发明。本发明所属技术领域中具有通常知识者,在不脱离本发明的精神和范围内,当可作各种的更动与润饰。因此,本发明的保护范围当视后附的权利要求所界定者为准。

12页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:频率检测电路及频率检测方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!