一种并联机械臂3d打印软骨修复装置及方法

文档序号:642934 发布日期:2021-05-14 浏览:11次 >En<

阅读说明:本技术 一种并联机械臂3d打印软骨修复装置及方法 (Cartilage repair device and method adopting parallel mechanical arm 3D printing ) 是由 宋长辉 李意浓 刘子彬 余家阔 于 2020-12-18 设计创作,主要内容包括:本发明公开了一种并联机械臂3D打印软骨修复装置及方法,其特征在于,包括并联机械臂、聚焦镜、固化光源、一分三光纤接口、光纤、电机、玻璃容器以及固定架;所述一分三光纤接口将固化光源发出的光分成三组,固化光通过聚焦镜聚焦在玻璃容器的挤出口,并联机械臂控制挤出口位置,电机对推压端施加压力,挤出打印原材料,原材料在固化光的照射下凝固,实现3D打印软骨修复。本发明采用数字化精确控制并联机械臂进行3D打印的方式,可以直接在软骨损坏的原位置软骨修复,并在并联机械臂的精确控制下保证打印精度,达到了原位高精度修复组织的目的。(The invention discloses a parallel mechanical arm 3D printing cartilage repair device and a method, which are characterized by comprising parallel mechanical arms, a focusing mirror, a curing light source, a one-to-three optical fiber interface, optical fibers, a motor, a glass container and a fixing frame, wherein the optical fibers are arranged in parallel on the fixing frame; the one-to-three optical fiber interface divides light emitted by the curing light source into three groups, the curing light is focused on an extrusion port of the glass container through a focusing lens, the mechanical arm controls the position of the extrusion port, the motor applies pressure to the pushing end to extrude printing raw materials, and the raw materials are solidified under the irradiation of the curing light, so that the 3D printing cartilage repair is realized. The method adopts a mode of digitally and accurately controlling the parallel mechanical arms to carry out 3D printing, can directly repair the cartilage in situ with damaged cartilage, ensures the printing precision under the accurate control of the parallel mechanical arms, and achieves the purpose of repairing the tissue in situ with high precision.)

一种并联机械臂3D打印软骨修复装置及方法

技术领域

本发明属于増材制造技术领域,具体涉及一种并联机械臂3D打印软骨修复装置及方法。

背景技术

传统软骨修复技术有骨髓刺激术和马赛克成形术,骨髓刺激术通过对软骨下骨的钻孔、磨蚀或微骨折来刺激软骨愈合,马赛克成形术通过挖取非运动关节软骨填充软骨损伤处,达到软骨愈合的目的。传统软骨修复技术是一种破坏性的方式达到软骨修复的目的,对人体有一定的损伤。

新型软骨修复技术为组织工程技术,将接种有软骨细胞的生物材料添加到软骨损伤处,直接植入。现有技术主要是基于手持式3D打印设备的软骨修复方式,其主要过程是临床医生通过手持生物枪直接在软骨破损处添加修复材料以达到治疗目的。但这种通过医生手持生物枪的方法无法保证修复精度要求,且仅能打印修复简单形状的软骨缺损,无法满足人体内环境复杂的情况。

发明内容

本发明的主要目的在于克服现有技术的缺点与不足,提出一种并联机械臂3D打印软骨修复装置及方法,通过数字化手段精确控制并联机械臂以达到精准修复软骨组织的目的。

为了达到上述目的,本发明采用以下技术方案:

一种并联机械臂3D打印软骨修复装置,包括并联机械臂、聚焦镜、固化光源、一分三光纤接口、光纤、电机、玻璃容器以及固定架;

所述聚焦镜通过U形卡槽卡在固定夹内部,所述聚焦镜与光纤通过螺纹连接,所述光纤与固化光源通过螺纹连接,所述一分三光纤接口与光纤通过螺纹连接,所述固化光源与并联机械臂顶部通过螺栓连接,所述电机与固定架通过螺栓连接,所述固定架与并联机械臂通过螺栓连接;

所述玻璃容器用于保存打印原材料,充当打印喷头,设在固定架内部,包括推压端与挤出口,所述推压端与电机连接;

所述一分三光纤接口将固化光源发出的光分成三组,固化光通过聚焦镜聚焦在玻璃容器的挤出口,并联机械臂控制挤出口位置,电机对推压端施加压力,挤出打印原材料,原材料在固化光的照射下凝固。

进一步的,所述固化光源具体为蓝光源。

进一步的,所述一分三光纤具体将蓝光以120°间隔平均分为三组,并分别通过光纤传入聚焦镜,聚焦镜将蓝光聚焦并从3个方向分别成120°射出照射在所述玻璃容器的挤出口。

进一步的,所述电机具体为贯通电机。

进一步的,所述玻璃容器采用可更换注射器,所述注射器推杆由贯通电机螺杆代替,并且注射器推压端直接连接贯通电机。

进一步的,所述并联机械臂具体为采用步进电机与同步带传送动力,所述步进电机数量为3个。

本发明还包括基于提供的并联机械臂3D打印软骨修复装置的软骨修复方法,包括以下步骤:

使用医学成像设备扫描损坏部分组织得到CT/MRI扫描数据,将得到的扫描数据通过医学三维模型重建软件生成组织损坏部位的物理三维模型,并建出待修复部分模型,切片软件根据不同状况生成相应的打印程序;

将装满修复原材料的注射器通过U形卡槽装到固定架上,并控制贯通电机转动,使贯通电机螺杆接触注射器的推压端;

并联机械臂在打印程序的控制下,精确做出相应动作,将注射器移动到打印的初始位置,同时蓝光通过光纤和聚焦镜从三个不同方向聚焦在注射器顶端;

并联机械臂和贯通电机在打印程序的控制下,相互配合,将修复原材料精确地送到软骨破损位置并在蓝光照射下完成光聚合固化,实现软骨破损的精确修复;

修复打印结束,贯通电机反转工作,使贯通电机螺杆反向拉注射器的推压端。

本发明与现有技术相比,具有如下优点和有益效果:

1、本发明通过使用注射器来贮存原材料,具有方便更换、容易储存、材料可控等优点,打印不同材料只需直接更换注射器而不需要更换打印机其余机构。

2、本发明通过贯通电机来挤出材料,使供给原材料均匀有序,同时使供料系统结构紧凑,同时,使用并联机械臂来带动供料装置取代传统3轴3D打印机,打印精度高,打印速度快,且维修方便。

3、本发明采用一分三光纤接口将蓝光源发出的蓝光分成三股分别通过光纤传入聚焦镜聚焦蓝光,从3个方向分别成120°照射打印材料,使能量密度更高,凝固范围更加精确。

4、通过数字化手段控制的并联机械臂原位3D打印技术,可实现多种生物材料、多种结构的原位3D打印精准修复,并且可通过并联机械臂测试材料的打印可行性,测试成本低,使用方便简洁。

附图说明

图1是本发明装置的整体结构图;

图2是本发明装置的供料局部图;

图3是本发明聚焦镜的安装示意图;

图4是本发明装置的工作流程图;

附图标号说明:1-并联机械臂;2-蓝光源;3-固定架;4-一分三光纤接口;5-光纤;6-贯通电机;7-注射器;8-聚焦镜。

具体实施方式

下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。

实施例

如图1所示,本发明,一种并联机械臂3D打印软骨修复装置,装置包括并联机械臂1、蓝光源2、固定架3、一分三光纤接口4、光纤5、贯通电机6、注射器7以及聚焦镜8;

如图2、图3所示,在本实施例中,所述聚焦镜8通过U形卡槽卡在固定架3内部,所述聚焦镜8与光纤5通过螺纹连接,所述光纤5与蓝光源2通过螺纹连接,所述光纤5与一分三光纤接口4通过螺纹连接,所述蓝光源2与并联机械臂1顶部通过螺栓连接,所述贯通电机6与固定架3通过螺栓连接,所述注射器7卡在固定架3内部,所述固定架3与并联机械臂1通过螺栓连接;所述注射器7的推压端与贯通电机6螺杆固定连接;

如图3所示,所述一分三光纤接口将蓝光源发出的蓝光平均分为三组,三组光纤中蓝光通过聚焦镜聚焦从3个方向分别成120°照射在注射器注射针的顶端,与注射针的打印位置相配合,贯通电机螺杆推动注射器平移推压端从而推压注射器挤出修复材料,修复材料在光照下凝固,实现3D打印软骨修复。所述并联机械臂采用步进电机与同步带传送动力,接收主控板信号后,通过三个步进电机之间的密切配合,使打印位置得到保证。

在本实施例中,所述注射器推杆直接由贯通电机螺杆代替;所述并联机械臂动力传输采用步进电机与同步带传送动力,采用同步带传动精度高,结构紧凑,对环境适应性强。

基于上述实施例,本发明还提供一种并联机械臂3D打印软骨修复方法,如图4所示,包括以下步骤:

S1、使用医学成像设备扫描损坏部分组织得到CT/MRI扫描数据,将得到的扫描数据通过医学三维模型重建软件生成组织损坏部位的物理模型,并建出待修复部分模型,切片软件根据不同状况生成相应的打印程序;

S2、将装满修复原材料的注射器通过U形卡槽装到固定架上,并控制贯通电机的转动特定角度,使贯通电机螺杆与注射器的挤压端贴紧,并使注射针流出极少量的修复材料,从而避免打印开始后无材料流出;

S3、所述并联机械臂在打印程序的控制下,精确地做出相应动作,将注射针移动到打印的初始位置,同时蓝光通过光纤和聚焦镜从三个不同方向聚焦在注射器的注射针顶端;

S4、所述并联机械臂和贯通电机在打印程序的控制下,两者精确配合,将修复原材料精确地送到软骨破损位置并在蓝光照射下完成光聚合固化,实现软骨破损的精确修复;

S5、修复打印结束后,注射器离开打印位置,贯通电机反转工作,使贯通电机螺杆反向拉注射器的推压端,从而达到打印结束材料立即停止供应的目的。

为了更好的展示本发明的技术方案,以对新西兰大白兔膝盖骨软骨组织修复为例做进一步说明:

术前采用CT图像呈现大白兔骨组织的情况,采用MRI图像则呈现大白兔韧带、肌肉等软组织的情况。建立大白兔膝盖骨软骨组织精确的三维模型需要同时显示大白兔的骨组织和软组织,将大白兔的CT/MRI图像进行融合,实现CT图像坐标系和MRI图像坐标系关联;最终实现在融合后的图像序列中同时显示大白兔的骨组织和软组织结构。根据供给速率,打印时蓝光光强以及固化速率等因素,调整软骨水凝胶配方,使软骨效果达到最佳。在不同的进给速率、蓝光光强、水凝胶光引发剂成分,基于大白兔CT/MRI影像数据融合的个性化三维模型,开发适合的工艺参数研究,达到大面积软骨缺损和软骨下骨缺损原位修复的目的。3D打印修复过程中可以采用边打边固化或者先打后固化两种方式。边打印边固化,即在生物水凝胶材料注射进入体内的同时插入光纤固化成型,多在直接进行创面修复时使用;此时光纤末端采用锥形、球形、半球形、球形和多面体等方式修饰。先打印后固化,即先向体内注射入生物水凝胶材料,后插入光纤进行固化成型;此时光纤末端采用弥散器方式修饰。

还需要说明的是,在本说明书中,诸如术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。

对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其他实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

10页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种基于等离子体表面改性处理的3D打印方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!