一种基于下置式光固化成形技术的多工位切换系统及光固化成型加工方法

文档序号:839981 发布日期:2021-04-02 浏览:5次 >En<

阅读说明:本技术 一种基于下置式光固化成形技术的多工位切换系统及光固化成型加工方法 (Multi-station switching system based on underneath type photocuring forming technology and photocuring forming processing method ) 是由 沈理达 刘富玺 吕非 谢德巧 焦晨 晁龙 邱明波 赵剑峰 于 2020-10-22 设计创作,主要内容包括:本发明公开了一种基于下置式面曝光光固化成形技术的多工位切换系统及光固化成型加工方法,包括上层的成形层、中层的多液槽层和下层的多工位层,其中,成形层用于上下升降并通过旋转切换至不同工位,多液槽层用于放置不同种类的液态高分子材料,多工位层用于根据需求对成形件进行不同功能的加工。本发明可实现多材料三维打印,并根据实际需求对成形件进行优化改性,旋转工位结构的采用,结构简单,有效节约了空间,降低成本,整个系统更加紧凑,在医疗与精密电子电器领域有着良好的应用前景。(The invention discloses a multi-station switching system based on a underneath type surface exposure photocuring forming technology and a photocuring forming processing method. The invention can realize multi-material three-dimensional printing, optimally modify a formed part according to actual requirements, and adopt a rotary station structure, so that the structure is simple, the space is effectively saved, the cost is reduced, the whole system is more compact, and the invention has good application prospect in the fields of medical treatment and precise electronic and electrical appliances.)

一种基于下置式光固化成形技术的多工位切换系统及光固化 成型加工方法

技术领域

本发明涉及三维打印技术,具体地说是一种基于下置式光固化成形技术的多工位切换系统及光固化成型加工方法。

背景技术

各类可穿戴医疗器材在健康监测、疾病诊断、病患监护与疾病康复等领域,有着大量的潜在应用和广阔的市场需求。随着人类对材料科学认识的提高,未来新一代关键材料及其制备加工技术需要具有复合化(复合材料)、功能化(多功能材料)、智能化(与感知、反应相结合)和生态环境友好化(可再生资源利用、绿色)等性能,进而满足对可穿戴医疗器械的要求。

近年来,一些研究工作基于仿生理念,由人体皮肤的特性所启发,提出了以高分子材料为核心,发展具有弹性的电子材料和器件研究方向,从而改善器件与人体的贴合能力和测量精度,用于发展新一代的可穿戴传感器件与设备。由于大量采用液态高分子材料,与传统微加工技术无法兼容,大大增加了制备这类器件的技术难度,三维打印技术则可实现医疗器件与材料的宏观一体化制造,并利用微观结构调控材料机械性能,从而满足贴身穿戴的需求。同时,三维打印技术还提供了一种建模、加工、测试至优化的闭环研究模式,通过反复迭代而改进结构设计,将提高所加工医疗器材的穿戴舒适性和可靠性,大大提高研发效率。但是传统的三维打印技术多适用于单材料,且针对柔性材料的三维打印技术应用较少,因此需要一种新型的多材料柔性高分子材料三维打印技术。

发明内容

发明目的:本发明的一个目的是提供一种基于下置式光固化成形技术的多工位切换系统,解决了常规光固化成形只能成形一种材料且成形部件功能单一的问题,本发明系统高效地利用了成形空间,节约面积,降低成本,整个系统结构紧凑。

本发明的另一个目的是提供一种采用上述多工位切换系统的光固化成型加工方法。

技术方案:本发明的一种基于下置式面曝光光固化成形技术的多工位切换系统,包括上层的成形层、中层的多液槽层和下层的多工位层,成形层、多液槽层和多工位层通过机械部件连接呈上中下阶梯配置,其中,成形层用于上下升降并通过旋转切换至不同工位,多液槽层用于放置不同种类的液态高分子材料,多工位层用于根据需求对成形件进行不同功能的加工。

优选的,多工位切换系统光源位于液槽下方,成形层为下置式工作台,实现已成形部分的上下移动和旋转。

优选的,多液槽层包括多个液槽,每个液槽内盛放不同种类的液态光固化材料,通过工位的旋转切换液槽从而完成不同材料的光固化成形。

优选的,多液槽层光固化材料为添加陶瓷、金属颗粒或纤维作为强化相的液态高分子材料,强化相添加比例不超过15%。

优选的,多工位层包括光固化成形工位、清洗工位、烘干工位和材料复合工位,各个工位位于同一水平面,且呈环形放置,通过工位旋转完成工位切换,光固化成形工位用于实现部件成形,清洗工位用于对已成形部分进行清洗,烘干工位用于对已成形部分进行干燥,材料复合工位用于实现功能器件嵌入和金属材料拼接。

优选的,光固化成形工位采用微聚焦透镜偏移曝光技术,成形精度0.036mm,成形效率1×106mm3/h,光源为紫外光。

优选的,清洗工位采用超声清洗,清洗时间10-15s;烘干工位采用热风烘干,温度20-30。℃

本发明的一种采用所述多工位切换系统的光固化成型加工方法,包括以下步骤:

(1)在建模软件中建立所需加工的多功能高分子材料部件三维模型,对部件区域针对所需要的功能进行分区;

(2)将完成分区的模型导入切片软件中进行添加支撑,分层切片,路径规划,参数选择,将生成的STL格式文件导入到多工位切换系统中,多工位切换系统根据分区信息选择工位对部件进行加工;

(3)开始加工时,下置式工作台置于液槽A中进行A材料的成形,面曝光系统按照预先设定的模型从液槽下方照射,完成A材料的成形,需要成形B材料时,成形部件随下置式工作台上升,工位切换旋转至清洗、烘干工位后依次对成形件进行清洗、烘干,然后成型件下降至工作高度置于液槽B进行B材料的光固化成形,面曝光系统按照预先设定的模型从液槽下方照射,完成B材料的成形;如此循环完成整个部件的成形;

(4)成形过程结束后,将成形部件取出进行清洗、干燥去除支撑等,即得最终部件。

有益效果:与现有技术相比,本发明具有以下优点:

(1)通过工位切换进行多材料的增材制造一体化成形,解决了传统加工方式难以在结构内部加工三维图形的问题;

(2)本发明利用光固化成形技术,实现了部件基体与内部结构的一体化分层打印,可打印出任意复杂的三维多材料模型;

(3)本发明加工出来的样件可完全摒弃材料拼接、器件融合等复杂工序,优化加工步骤,工艺简单,免装配,生产周期短,尤其适合产品设计研发和小批量生产。

附图说明

图1是本发明的多工位切换系统三层结构示意图;

图2是本发明的多工位切换系统平面示意图;

图3是本发明的多工位切换系统工位切换流程示意图;

图中,1、成形部件下置式工作台,2、A材料液槽,3、面曝光系统,4、热风扇,5、B材料液槽,6清洗槽,7、复合加工平台。

具体实施方式

下面结合实施例与附图对本发明作进一步的说明,实施方式提及的内容并非对本发明的限定。以下所述仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内所作的任何修改、等同替换、改进等,均包含在本发明的保护范围内。

本发明的基于下置式光固化成形技术的多工位切换系统,包括上层的成形层、中层的多液槽层和下层的多工位层,成形层、多液槽层和多工位层呈上中下结构,通过机械结构如桁架等连接并可以转动,其中,成形层可以上下升降并通过旋转切换至不同工位,多液槽层用于放置不同种类的液态高分子材料,多工位层用于根据需求对成形件进行不同功能的加工。多工位系统光源位于液槽下方,成形层为下置式工作台,可以实现已成形部分的上下移动和旋转;多液槽层包括多个液槽,每个液槽内盛放不同种类的液态光固化材料,通过工位的旋转切换液槽从而完成不同材料的光固化成形;多工位层包括光固化成形工位、清洗工位、烘干工位和材料复合工位,各个工位位于同一水平面,且呈环形放置,通过工位旋转完成工位切换;光固化成形工位用于实现部件成形,清洗工位用于对已成形部分进行清洗,烘干工位用于对已成形部分进行干燥,材料复合工位用于实现功能器件嵌入和金属材料拼接。

如图1所示,本发明实施例中下置式工作台用于带动成形部件上升、下降或者旋转,多液槽层包括A材料液槽和B材料液槽,多工位层的光固化成形工位为面曝光系统,清洗工位为清洗槽,烘干工位为热风扇,材料复合工位为复合加工平台。A材料液槽和B材料液槽中的光固化材料为添加陶瓷、金属颗粒或纤维作为强化相的液态高分子材料,强化相添加比例不超过15%,可用于多材料成形的材料种类三种以上。光固化成形工位采用微聚焦透镜偏移曝光技术,成形精度0.036mm,成形效率1×106mm3/h,光源为紫外光。清洗工位采用超声清洗,清洗时间10-15s;烘干工位采用热风烘干,温度20-30。℃材料复合工位包含金属材料拼接、功能器件嵌入等功能。

多工位切换系统的工作原理为:通过对模型中不同材料的分区,系统切换到相应的工位上,完成对应材料的加工成形,切换不同工位时,配置清洗、干燥步骤,并在对应的工作台完成清洗、干燥工序,如此循环往复,从而完成多材料复合。

采用上述多工位切换系统进行光固化成形的加工方法,具体包括以下步骤:

S1、在建模软件中建立所需加工的多功能高分子材料部件三维模型,对部件区域针对所需要的功能进行分区;

S2、将完成分区的模型导入到切片软件中进行添加支撑,分层切片,路径规划,参数选择,将生成的STL格式文件导入到多工位切换系统中,多工位切换系统根据分区信息选择工位对部件进行加工,完成A材料加工后通过编辑切换程序完成工位切换、清洗、烘干等步骤进行下一材料的加工成形;

S3、开始加工时,下置式工作台置入加入A材料的液槽中,面曝光系统按照预先设定的模型从液槽下方照射,完成A材料的成形;需要成形B材料时,根据模型材料分区,按照预先设定切换工位切换程序,成形部件随下置式工作台上升到指定位置,成形部分一次切换至清洗工位、烘干工位,然后下置式工作台移至装有B材料的液槽中,面曝光系统按照预先设定的模型从液槽下方照射,完成B材料的成形;如此循环往复完成整个部件的加工成形。

S4、成形过程结束后,将成形部件取出进行清洗、干燥去除支撑等,即得最终部件。

下面以可穿戴医疗器材加工为例进一步说明该加工方法:

(1)运用计算机中的三维建模软件建立所需加工的可穿戴医疗器材三维模型,建模完成后保存为STL文件。对模型STL文件按照不同材料区域需要满足的要求进行分区,不同区域选择不同的加工方式。

(2)将完成分区的模型STL文件导入多工位切换系统中,多工位切换系统根据预先设定好的分区信息选择对应的加工方式,即多工位切换系统根据分区信息选择工位对部件进行加工;整个过程为多工位切换系统可自动切换工位调整加工位置。

(3)加工过程中,液槽中光固化成形基体时所采用的材料如陶瓷、金属颗粒或纤维作为强化相的液态高分子材料,强化相添加比例不超过15%,可选择的液态高分子材料种类三种以上。面曝光系统采用高效高精度阵列式亚像素扫描大尺寸面成形技术,在微透射阵列聚焦技术基础上实现高效高精度成形。

(4)如图3为多工位切换系统工位切换流程示意图在成形一种类型的液态高分子基材料后,可根据实际需求继续进行该种液态高分子基材料成形或者切换至另一工位进行另外一种液态高分子基材料的材料,切换液槽前,还需要对已成形部分进行清洗、干燥,以防止材料间的相互污染,如此循环往复,实现多材料三维打印。除此之外,可根据实际需要,添加其他工位如功能器件嵌入、金属材料拼接工位,如图2所示,使制备的可穿戴传感器产品能满足不同的需求。

(5)将加工完成地部件实体取出后,对表面进行处理后测试其内部各部分是否能实现相对应的功能,最终完成可穿戴医疗器材的加工制备。

综上所述,本发明基于下置式光固化成形技术的多工位切换系统,采用三层旋转结构设计,搭配多功能工作平台。本方案高效地利用了成型空间,旋转结构的设计,节约了成形空间,降低了成本,整个系统结构紧凑。

8页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种负载药物、活性因子、细胞的可控梯度支架及其3D打印方法和专用多喷头3D打印机

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!