一种无氟环保防水透气面料的制备方法

文档序号:846699 发布日期:2021-03-16 浏览:5次 >En<

阅读说明:本技术 一种无氟环保防水透气面料的制备方法 (Preparation method of fluoride-free environment-friendly waterproof breathable fabric ) 是由 吕维扬 孙继安 姚玉元 王金辉 甄建政 王燕 于 2020-11-21 设计创作,主要内容包括:本发明公开了一种防水透气面料的制备方法,具体为:在不同缓冲液条件下,将盐酸多巴胺与缓冲液混合形成稳定的盐酸多巴胺自聚体系;将面料浸入盐酸多巴胺自聚体系中,在面料表面形成纳米级薄层聚多巴胺;最后通过添加含胺低表面能物质与聚多巴胺产生反应,将含胺低表面能物质覆盖在面料表面,赋予面料防水的特性,而且面料表面形成的疏水改性层厚度调控方便,能够很好地保留面料的多孔结构。该方法反应条件温和、简单易行、耗时短、绿色无污染,合成的防水透气面料防水表面稳定、透气性良好。(The invention discloses a preparation method of a waterproof breathable fabric, which comprises the following steps: under the conditions of different buffers, dopamine hydrochloride and the buffers are mixed to form a stable dopamine hydrochloride self-polymerization system; immersing the fabric into a dopamine hydrochloride self-polymerization system to form a nano-scale thin-layer polydopamine on the surface of the fabric; and finally, amine-containing low-surface-energy substances are added to react with polydopamine, so that the amine-containing low-surface-energy substances cover the surface of the fabric, the fabric is endowed with waterproof property, the thickness of a hydrophobic modified layer formed on the surface of the fabric is convenient to regulate and control, and the porous structure of the fabric can be well maintained. The method has the advantages of mild reaction conditions, simplicity, practicability, short time consumption, greenness, no pollution, stable waterproof surface and good air permeability of the synthesized waterproof breathable fabric.)

一种无氟环保防水透气面料的制备方法

技术领域

本发明涉及防水面料技术领域,具体涉及一种防水透气面料的制备方法。

背景技术

随着经济快速发展和人民生活水平的提高,仅具有亲肤性、柔性等传统性能的面料很难满足人们的需要。为了提升面料的附加值,探索面料在更多方面进行应用的可能性,并赋予面料表面多功能性,具有重要的研发意义,但面料表面易受污染的特点限制了其在更多领域的发展。受到“荷叶效应”的启发,具备疏水表面的材料具有一定的自清洁能力,受到国内外研究学者的关注。因此,研究防水面料是解决其表面易受污染的有效途径,并逐渐成为热门的研究方向。

在面料的防水改性方面,一般采用的涂敷法、浸渍法和溶胶-凝胶法等主要是通过范德华力或氢键作用力的物理结合将低表面能物质负载于面料上,该方法操作简便,但产品的机械耐久性、柔软性较差,而且其透气性也会有较大幅度的下降。基于上述缺点,部分研究者采用高分子接枝改性法,使高分子单体在引入接枝位点的面料表面发生链式聚合反应,形成表面疏水的改性面料。由于面料与功能高分子是以化学键的形式连接,因此该方法得到的疏水改性面料性能较为稳定,耐久性较高,但存在操作繁琐、适用性窄的缺点。因此,提供一种普适且简便的方法,令面料在进行疏水改性的同时,能够保持或者提高其透气性和舒适度,具有重要的应用价值。

发明内容

本发明提供了一种防水透气面料的制备方法,在不同缓冲液条件下,盐酸多巴胺通过自聚在面料表面快速形成纳米级薄层聚多巴胺,在保持其透气性的前提下,通过添加含胺低表面能物质与聚多巴胺产生席夫碱反应,将含胺低表面能物质覆盖在面料表面,赋予面料防水的特性。该方法反应条件温和、简单易行、耗时短、绿色无污染,合成的防水透气面料防水表面稳定、透气性良好。

为解决上述技术问题,本发明的目的是这样实现的:

本发明所涉及的一种无氟环保防水透气面料的制备方法,包括如下步骤:

(1)将盐酸多巴胺溶于pH调节为8.5的不同缓冲溶液中,得到不同的盐酸多巴胺自聚体系;

(2)将清洗干净的面料浸入不同的盐酸多巴胺自聚体系中,25~60℃下混合反应1~6h,在面料表面形成稳定的聚多巴胺层,得到聚多巴胺沉积的面料;

(3)将含胺低表面能物质与水醇溶液混合均匀,将步骤(2)得到的聚多巴胺沉积的面料浸入其中,25~60℃下混合反应6~12h,得到所述的防水透气面料。

作为优选,所述面料为白坯布、棉布、蚕丝布、羊毛布、涤纶、氨纶以及芳纶中的一种,所述面料的织物结构为针织布、机织布、无纺布中的一种,所述面料的厚度为0.025mm~0.1mm;

所述的盐酸多巴胺在总去离子水中的质量浓度为500~5000mg/L;

所述的缓冲液中缓冲物质在总去离子水中的质量浓度为300~2500mg/L;

所述的含胺低表面能物质与水醇溶液的体积比为1:6.5~20;

所述的水醇溶液的体积比为1:1~24;

所述的总去离子水为步骤(1)所用去离子水总和;

所述的水醇溶液为步骤(3)所用水醇溶液总和。

作为优选,所述的缓冲液为Tris缓冲液、磷酸盐缓冲液以及碳酸氢盐缓冲液。

作为优选,所述的含胺低表面能物质为3-氨丙基三甲氧基硅烷、3-氨丙基三乙氧基硅烷、3-氨丙基甲基二乙氧基硅烷、N-(β-氨乙基-γ氨丙基)甲基二甲氧基硅烷、N-(β-氨乙基-γ氨丙基)三甲氧基硅烷、二乙烯三胺基丙基三甲氧基硅烷、3-脲丙基三甲氧基硅烷、3-脲丙基三乙氧基硅烷、3-二乙胺基丙基三甲氧基硅烷、N-苯基氨基丙基三甲氧基硅烷、正丁氨基丙基三甲氧基硅烷或硬酯胺;

作为优选,所述的水醇溶液中的组分醇为乙醇、正丙醇、正丁醇、1-戊醇和正己醇中的一种。

作为优选,所述的盐酸多巴胺在总去离子水中的质量浓度为1000~5000mg/L;

所述的缓冲液中缓冲物质在总去离子水中的质量浓度为600~1800mg/L;

所述的含胺低表面能物质与水醇溶液的体积比为1:8~15;

所述的水醇溶液的体积比为1:6~12。

作为优选,所述的Tris缓冲溶液中的Tris为三羟甲基氨基甲烷;

所述的磷酸盐缓冲溶液中的磷酸盐为KH2PO4、Na2HPO4、Na2HPO4·12H2O、K2PO4中的一种;

所述的碳酸氢盐缓冲液中的碳酸氢盐为NaHCO3

作为优选,步骤(2)中,所述水浴反应的温度为25~55℃,反应时长为1~5h;步骤(3)中,所述水浴反应的温度为25~45℃,反应时长为6~12h。

与现有技术相比,本发明具有如下优点:

1、本发明所述的防水透气面料的制备过程简单易行、绿色环保。考虑到含氟单体的毒性,发明中所选用的含胺低表面能物质不仅赋予面料防水性能,且对环境较为友好。发明中所涉及的在面料表面沉积的聚多巴胺层,也是可生物降解的材料。

2、本发明在赋予面料防水性能的同时,保持了较好的透气性。通过改变盐酸多巴胺的添加量、水浴反应时间、反应温度以及缓冲液种类等条件,控制了聚多巴胺层在面料表面沉积的厚度、均匀性,保持了面料较好的透气性。

附图说明

图1为未改性面料的水接触角图;

图2为改性后防水透气面料的水接触角图。

具体实施方式

下面结合附图和具体实施例对本发明进一步说明。

实施例1:

将0.2g盐酸多巴胺溶于100mL,0.01mol/L,pH调节为8.5的Tris缓冲溶液中,得到均匀的盐酸多巴胺自聚体系;

将清洗干净的一定面积的白坯布浸入上述的盐酸多巴胺自聚体系中,25℃下混合反应3h,在面料表面形成稳定的聚多巴胺层,得到聚多巴胺沉积的面料;

在50mL(水:乙醇=1:8)的水醇溶液中加入3.5mL的3-氨丙基三乙氧基硅烷,混合均匀,将聚多巴胺沉积的面料浸入其中,25℃下混合反应6h,得到所述的防水透气面料。

实施例2:

将0.2g盐酸多巴胺溶于100mL,0.01mol/L,pH调节为8.5的Tris缓冲溶液中,得到均匀的盐酸多巴胺自聚体系;

将清洗干净的一定面积的白坯布浸入上述的盐酸多巴胺自聚体系中,35℃下混合反应4h,在面料表面形成稳定的聚多巴胺层,得到聚多巴胺沉积的面料;

在50mL(水:乙醇=1:16)的水醇溶液中加入3.5mL的3-氨丙基三甲氧基硅烷,混合均匀,将聚多巴胺沉积的面料浸入其中,30℃下混合反应7h,得到所述的防水透气面料。

实施例3:

将0.2g盐酸多巴胺溶于100mL,0.01mol/L,pH调节为8.5的Tris缓冲溶液中,得到均匀的盐酸多巴胺自聚体系;

将清洗干净的一定面积的白坯布浸入上述的盐酸多巴胺自聚体系中,35℃下混合反应3h,在面料表面形成稳定的聚多巴胺层,得到聚多巴胺沉积的面料;

在50mL(水:乙醇=1:24)的水醇溶液中加入3.5mL的硬酯胺,混合均匀,将聚多巴胺沉积的面料浸入其中35℃下混合反应9h,得到所述的防水透气面料。

实施例4:

将0.2g盐酸多巴胺溶于100mL,0.02mol/L,pH调节为8.5的KH2PO4缓冲溶液中,得到均匀的盐酸多巴胺自聚体系;

将清洗干净的一定面积的棉布浸入上述的盐酸多巴胺自聚体系中,25℃下混合反应3h,在面料表面形成稳定的聚多巴胺层,得到聚多巴胺沉积的面料;

在50mL(水:乙醇=1:16)的水醇溶液中加入1.8mL的3-氨丙基三甲氧基硅烷,混合均匀,将聚多巴胺沉积的面料浸入其中,25℃下混合反应6h,得到所述的防水透气面料。

实施例5:

将0.2g盐酸多巴胺溶于100mL,0.03mol/L,pH调节为8.5的K2PO4缓冲溶液中,得到均匀的盐酸多巴胺自聚体系;

将清洗干净的一定面积的棉布浸入上述的盐酸多巴胺自聚体系中,25℃下混合反应3h,在面料表面形成稳定的聚多巴胺层,得到聚多巴胺沉积的面料;

在50mL(水:乙醇=1:8)的水醇溶液中加入5mL的3-氨丙基三乙氧基硅烷,混合均匀,将聚多巴胺沉积的面料浸入其中,25℃下混合反应6h,得到所述的防水透气面料。

实施例6:

将0.2g盐酸多巴胺溶于100mL,0.02mol/L,pH调节为8.5的NaHCO3缓冲溶液中,得到均匀的盐酸多巴胺自聚体系;

将清洗干净的一定面积的棉布浸入上述的盐酸多巴胺自聚体系中,25℃下混合反应3h,在面料表面形成稳定的聚多巴胺层,得到聚多巴胺沉积的面料;

在50mL(水:乙醇=1:24)的水醇溶液中加入5mL的硬酯胺,混合均匀,将聚多巴胺沉积的面料浸入其中35℃下混合反应9h,得到所述的防水透气面料。

实施例7:

将0.1g盐酸多巴胺溶于100mL,0.01mol/L,pH调节为8.5的Tris缓冲溶液中,得到均匀的盐酸多巴胺自聚体系;

将清洗干净的一定面积的蚕丝布浸入上述的盐酸多巴胺自聚体系中,35℃下混合反应2h,在面料表面形成稳定的聚多巴胺层,得到聚多巴胺沉积的面料;

在50mL(水:正丙醇=1:16)的水醇溶液中加入1.8mL的3-氨丙基三甲氧基硅烷,混合均匀,将聚多巴胺沉积的面料浸入其中,30℃下混合反应7h,得到所述的防水透气面料。

实施例8:

将0.3g盐酸多巴胺溶于100mL,0.01mol/L,pH调节为8.5的K2PO4缓冲溶液中,得到均匀的盐酸多巴胺自聚体系;

将清洗干净的一定面积的蚕丝布浸入上述的盐酸多巴胺自聚体系中,40℃下混合反应3h,在面料表面形成稳定的聚多巴胺层,得到聚多巴胺沉积的面料;

在50mL(水:正丁醇=1:8)的水醇溶液中加入5mL的3-氨丙基三乙氧基硅烷,混合均匀,将聚多巴胺沉积的面料浸入其中,25℃下混合反应6h,得到所述的防水透气面料。

实施例9:

将0.4g盐酸多巴胺溶于100mL,0.01mol/L,pH调节为8.5的NaHCO3缓冲溶液中,得到均匀的盐酸多巴胺自聚体系;

将清洗干净的一定面积的蚕丝布浸入上述的盐酸多巴胺自聚体系中,45℃下混合反应4h,在面料表面形成稳定的聚多巴胺层,得到聚多巴胺沉积的面料;

在50mL(水:正己醇=1:24)的水醇溶液中加入3.5mL的硬酯胺,混合均匀,将聚多巴胺沉积的面料浸入其中35℃下混合反应9h,得到所述的防水透气面料。

实施例10:

将0.2g盐酸多巴胺溶于100mL,0.01mol/L,pH调节为8.5的Tris缓冲溶液中,得到均匀的盐酸多巴胺自聚体系;

将清洗干净的一定面积的羊毛布浸入上述的盐酸多巴胺自聚体系中,25℃下混合反应3h,在面料表面形成稳定的聚多巴胺层,得到聚多巴胺沉积的面料;

在50mL(水:乙醇=1:24)的水醇溶液中加入3.5mL的3-氨丙基甲基二乙氧基硅烷,混合均匀,将聚多巴胺沉积的面料浸入其中,25℃下混合反应6h,得到所述的防水透气面料。

实施例11:

将0.2g盐酸多巴胺溶于100mL,0.01mol/L,pH调节为8.5的Na2HPO4·12H2O缓冲溶液中,得到均匀的盐酸多巴胺自聚体系;

将清洗干净的一定面积的羊毛布浸入上述的盐酸多巴胺自聚体系中,25℃下混合反应3h,在面料表面形成稳定的聚多巴胺层,得到聚多巴胺沉积的面料;

在50mL(水:1-戊醇=1:24)的水醇溶液中加入3.5mL的3-氨丙基三乙氧基硅烷,混合均匀,将聚多巴胺沉积的面料浸入其中,30℃下混合反应7h,得到所述的防水透气面料。

实施例12:

将0.2g盐酸多巴胺溶于100mL,0.01mol/L,pH调节为8.5的NaHCO3缓冲溶液中,得到均匀的盐酸多巴胺自聚体系;

将清洗干净的一定面积的羊毛布浸入上述的盐酸多巴胺自聚体系中,25℃下混合反应3h,在面料表面形成稳定的聚多巴胺层,得到聚多巴胺沉积的面料;

在50mL(水:乙醇=1:24)的水醇溶液中加入3.5mL的3-二乙胺基丙基三甲氧基硅烷,混合均匀,将聚多巴胺沉积的面料浸入其中,35℃下混合反应9h,得到所述的防水透气面料。

对比例1:

在50mL(水:乙醇=1:8)的水醇溶液中加入3.5mL的3-氨丙基三乙氧基硅烷,混合均匀,将清洗干净的一定面积的白坯布浸入其中,25℃下混合反应8h,用水、乙醇清洗,得到所需面料。

对比例2:

将0.2g盐酸多巴胺溶于100mL,0.01mol/L,pH调节为8.5的Tris缓冲溶液中,得到均匀的盐酸多巴胺自聚体系;

将清洗干净的一定面积的白坯布浸入上述的盐酸多巴胺自聚体系中25℃下混合反应3h,在面料表面形成稳定的聚多巴胺层,得到所需面料。

对实施例1-12及对比例制备的防水透气面料进行相关性能的测试,具体的性能参数见表1。

表1:面料透气性测试结果

结合表1、图1和2对于本发明中实施例及对比例所涉及的防水透气面料的性能评价,可以发现,改性前与改性后面料的接触角对比明显,且保持了较好的透气性。通过实施例的对比可以发现,使用3-氨丙基三乙氧基硅烷、硬酯胺等含胺低表面能物质对面料进行改性得到的防水效果较优于其他含胺低表面能物质。通过对比例的性能评价,可以发现,本发明中所涉及的纳米级薄层聚多巴胺,可以使含胺低表面能物质均匀地覆盖在面料表面,赋予面料防水性能,同时能够提升其防水等级,保持其透气性。

以上详细描述了本发明的较佳具体实施例。应当理解,本领域的普通技术人员无需创造性劳动就可以根据本发明的构思做出诸多修改和变化。因此,凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。

9页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种有机硅涂料及其制备方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!