一种减振超材料阻尼板

文档序号:869109 发布日期:2021-03-19 浏览:16次 >En<

阅读说明:本技术 一种减振超材料阻尼板 (Damping metamaterial damping plate ) 是由 孙蓓蓓 李雪梅 王萌 于 2020-11-04 设计创作,主要内容包括:本发明公开了一种减振超材料阻尼板,该超材料阻尼板由负泊松比内凹六边形蜂窝内芯结构与阻尼板复合而成,蜂窝内芯结构上下表面分别由蜂窝上面板和蜂窝下面板封闭,外围阻尼板包括:第一刚性板与第一粘弹阻尼层,第二刚性板与第二粘弹阻尼层,第三刚性板和第三粘弹阻尼层,第四刚性板;刚性板为铝合金材料,各刚性板与阻尼层之间使用粘接剂胶接,蜂窝结构内凹层与刚性板相连。本发明利用超材料的负泊松比力学特性,通过压缩时产生的剪切应力耗损冲击能量,将其嵌入复合阻尼板,叠加多层阻尼减振效应,充分降低冲击强度,能在较宽频带减振,适用于航天领域的减振控制。(The invention discloses a vibration reduction metamaterial damping plate, which is formed by compounding a negative Poisson ratio concave hexagonal honeycomb inner core structure and a damping plate, wherein the upper surface and the lower surface of the honeycomb inner core structure are respectively sealed by a honeycomb upper panel and a honeycomb lower panel, and the peripheral damping plate comprises: the first rigid plate and the first viscoelastic damping layer, the second rigid plate and the second viscoelastic damping layer, the third rigid plate and the third viscoelastic damping layer and the fourth rigid plate; the rigid plates are made of aluminum alloy materials, the rigid plates and the damping layer are bonded through adhesives, and the concave layer of the honeycomb structure is connected with the rigid plates. According to the invention, the negative Poisson ratio mechanical property of the metamaterial is utilized, the impact energy is lost through the shear stress generated during compression, the metamaterial is embedded into the composite damping plate, the multilayer damping vibration attenuation effect is superposed, the impact strength is fully reduced, the vibration can be reduced in a wider frequency band, and the metamaterial is suitable for vibration attenuation control in the aerospace field.)

一种减振超材料阻尼板

技术领域

本发明属于航空航天和减振技术领域,具体而言,涉及一种减振超材料阻尼结构。

背景技术

航天器的发射、运行、降落等各个阶段的操作都会产生不同程度的碰撞振动甚至冲击,对于日趋精密的航天器来说,其结构十分容易受到外界环境及航天器本身干扰而产生振动,从而导致航天器内部结构破坏、失稳或失效,振动抑制是航天器结构设计关心的重要问题之一。粘弹阻尼材料是最为常用的航天减振材料,可以在较宽的频带范围内抑制振动,主要用于控制结构的高频振动,但粘弹材料的动态性能对环境温度和振动频率都较为敏感,从而影响到减振效果,在一定程度上也限制了应用范围。

超材料是一类具有特殊性质的人造材料,并具有天然材料不具备的超常物理性能,是21世纪以来出现的一种新材料。具有负泊松比特性的材料是一类典型的力学超材料,在单轴压力作用下,传统材料在压力作用下发生横向膨胀变形,负泊松比材料则沿横向收缩。减振常用的蜂窝夹层结构多采用一系列连续的六边形、四边形或圆形的网状结构,分散承担各个方向的外力,可以有效吸收振动产生的冲击,其中六边形蜂窝比其他夹层结构具有更高的强度和刚度。负泊松比材料中的内凹六边形多胞结构相比传统蜂窝结构具有更高的能量吸收效率,当负泊松比材料受到冲击载荷时,材料将向冲击区域聚集,抵抗压痕的能力得到提高。

发明内容

技术问题:本发明需要解决的技术问题是:克服现有技术不足,提出一种提高阻尼板抗冲击性能的减振超材料阻尼板。

技术方案:

一种减振超材料阻尼板,其特征在于,包括:

压缩蜂窝内芯结构,用于接收冲击,并在冲击作用下产生横向收缩效应;

刚性板,固定在所述压缩蜂窝内芯结构上,在压缩蜂窝内芯结构产生横向收缩效应时同步横向移动;

阻尼层,与所述刚性板接触,用于在刚性板与粘弹阻尼层之间产生剪切变形降低振动能量。

所述压缩蜂窝内芯结构包括上面板、下面板以及固定在上面板与下面板之间的蜂窝多胞胞体,所述蜂窝多胞胞体由多个单胞单元线性排列组成;所述单胞单元为具有内凹六边形截面的内凹六边形胞元;所述刚性板设置在最外侧内凹六边形胞元的外侧凹处。

所述内凹六边形胞元包括上上底边、下底边、两个上斜边和两个下斜边;两个上斜边和两个下斜边分别水平对称;上斜边和下斜边上下对称;上斜边和下斜边的连接处为凹处;水平方向排列的两个内凹六边形胞元之间,一个内凹六边形胞元的上底边位于另一个内凹六边形胞元的凹处。

上下底边长为2~12mm,高为6~20mm。

最下层刚性板与下面板共面。

上面板和下面板与蜂窝多胞胞体之间使用聚氨酯粘结剂胶接。

所述刚性板采用铝合金、钛合金或纤维复合材料制作;压缩蜂窝内芯结采用铝合金、钛合金或其他复合材料制作;刚性板分别与各阻尼层胶接。

所述刚性板为4层,在上下相邻的两层刚性板之间设置一个所述阻尼层。

上面三层刚性板的厚度为0.1~1.5mm;第四层刚性板厚度为0.2~2mm;上面两个阻尼层的厚度为4mm~18mm,第三阻尼层厚度为2mm~8mm。

有益效果:

1、在航空航天领域,现有阻尼板结构大多阻尼性能不佳,主要是由于橡胶等粘弹性阻尼材料受温度、频率影响较大,太空环境中较易失效。复合阻尼板的阻尼性能主要来自于粘弹性阻尼材料与刚性板之间的剪切变形,本发明阻尼板中增加蜂窝内芯结构,利用内凹蜂窝结构的负泊松比特性,可极大增加约束层产生的剪切阻尼,从而缓解阻尼性能不佳的问题。

2、内嵌蜂窝结构可使阻尼板在宽频激励下具有良好的减振性能,蜂窝结构的空腔可形成散射带隙及局域共振带隙从而有效抑制带隙频率范围内的振动传播,能有效降低共振幅值。

3、可以根据实际使用环境对蜂窝胞元截面属性即夹角度数、边长、及整体形状进行调整,从而实现不同频段的抗冲击需求。

4、减振超材料阻尼板使用环保,阻尼效能高。

5、在航空航天领域,结构对重量有严格要求,本发明所设计的减振超材料阻尼板是一种高强度的轻质复合阻尼板,材料简单,质量轻便,尺寸灵活可调。

6、本发明弥补了阻尼材料易受外界因素影响的不足,对于航天器的结构设计和振动控制具有很大实际意义。

附图说明

为进一步阐释本发明实施方式中的具体内容,下面对实施方式中描述的结构和附图进行简单说明。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。

图1 为本发明减振超材料阻尼板的剖面视图。

图2为本发明减振超材料阻尼板的斜剖视图。

图3 为本发明减振超材料阻尼板蜂窝内芯结构示意图。

图4 为本发明减振超材料阻尼板蜂窝内芯元胞空腔截面示意图。

图5为本发明减振超材料阻尼板负泊松比蜂窝元胞受力与相关截面尺寸示意图。

图6为本发明减振超材料阻尼板的整体结构示意图。

图中,各序号代表意义如下:

10-阻尼板;11-第一刚性板;12-第二刚性板;13-第三刚性板;14-第四刚性板;15-第一阻尼层;16-第二阻尼层;17-第三阻尼层;20-蜂窝内芯结构;21-上面板;22-下面板;23-蜂窝多胞胞体;31-阻尼胶接层;32-面板胶接层;40-内凹六边形单胞胞元。

具体实施方式

以下结合附图进行说明:

本发明中使用的“第一”、“第二”等名词仅用于描述其组成部分的方位,“上”、“下”等特征是基于附图方位命名。

本发明一种减振超材料阻尼板,承受冲击载荷,适应于较宽频段下的高频隔振,可用于航空航天领域,如航天器的冲击减振。

如图1、图2和图6所示,本发明由两大部分组成,包括阻尼板10、蜂窝内芯结构20,其中,蜂窝内芯20内嵌于阻尼板10中心。外围阻尼板10由第一刚性板11、第二刚性板12、第三刚性板13、第四刚性板14及刚性板两两之间包裹的第一阻尼层15、第二阻尼层16和第三阻尼层17。蜂窝内芯20由上面板21、下面板22和蜂窝多胞胞体23构成。

实施例,如图2所示,阻尼板10中,刚性板与阻尼层之间通过阻尼胶料胶接构成固定胶接层31;蜂窝内芯结构20中,上下面板21、22与蜂窝多胞胞体23之间通过聚氨酯粘结剂胶接形成面板胶接层32。

第一刚性板11、第二刚性板12、第三刚性板13和第四刚性板14的材料为铝合金或纤维复合材料等抗高温、刚度大的材料,刚性板11、12、13的厚度可调范围为0.1~1.5mm;第四刚性板材料为铝合金,厚度为0.2~2mm。

如图3、图4、图5所示,蜂窝多胞胞体23具有三行完整胞体,每层最外圈六边形胞体内凹处分别与第一刚性板11、第二刚性板12、第三刚性板13固定。

蜂窝内芯20由上下面板21、22包裹,上下面板21、22采用铝合金材料或碳纤维复合材料制成。上面板21厚度为0.1~1mm,下面板厚度22为0.1~2mm。上面板21高出第一刚性板11半个六边形单胞胞体40的高度,下面板22与第四刚性板14处于同一水平面。

如图4、图5所示,蜂窝内芯内凹六边形胞元40空腔截面壁厚0.01~0.2mm,上下底边长h为2~12mm,整体高2lcosθ为6~20mm。内凹六边形胞元40使用轻合金材料或聚合物泡沫材料制成,在保证结构刚度的前提下,采用轻质材料能提升降冲击效果。

复合阻尼板10中间的阻尼层15、16、17与蜂窝内芯20留有4~12mm的间隙。

如图6所示,减振超材料阻尼板中蜂窝内芯上面板21与受冲击元件接触,下面板22和第四刚性板14处于相同平面,与装置壳体固定。元件释出冲击上面板21,压缩蜂窝内芯结构20,由于负泊松比特性,蜂窝多胞胞体33产生横向收缩效应,使与其凹角处相连的第一刚性板11、第二刚性板12和第三刚性板13受到横向拉力,刚性板与粘弹阻尼层之间产生较大剪切变形降低振动能量;蜂窝内芯20受到冲击使上面板21压缩至与第一刚性板11处于同一水平面时,第一阻尼层15、第二阻尼层16和第三阻尼层17中的粘弹材料受到挤压,同时受刚性板11、12、13、14作用,产生切向变形,有效降低振动幅值,耗散能量。

在实际应用中,本发明中负泊松比材料的特性可以通过改变内凹六边形胞元40截面尺寸中的长度和两个相邻曲边之间的角度进行调节等进行设计,以达到工程要求的设计目的。

本发明结合超材料与粘弹阻尼材料的特性,提出一种减振阻尼板的设计方案,以上描述对本发明实施方式进行了详细说明,任何本领域技术人员在不脱离本发明范围内,都可以利用上述揭示的方法和技术内容对本发明技术方案做出可能的变动和修改。因此,凡是未脱离本发明技术方案的内容,基于本发明中的实施方式,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施方式,都属于本发明保护的范围。

9页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种新型抗菌人造面料

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类