超薄封装结构的制作方法

文档序号:953413 发布日期:2020-10-30 浏览:3次 >En<

阅读说明:本技术 超薄封装结构的制作方法 (Manufacturing method of ultrathin packaging structure ) 是由 孔德荣 阙燕洁 于 2019-04-28 设计创作,主要内容包括:本发明提供了一种超薄封装结构的制作方法,在注塑阶段,注入大量液态塑封料,使得液态塑封料充分流动至待封装半导体结构的各个间隙后再固化,避免空气间隙产生;之后再进行固态塑封料的厚度减薄。好处在于,既满足了超薄封装结构中固态塑封料无空气间隙的需求,又成本较低。(The invention provides a manufacturing method of an ultrathin packaging structure, which is characterized in that a large amount of liquid plastic packaging material is injected in an injection molding stage, so that the liquid plastic packaging material is solidified after fully flowing to each gap of a semiconductor structure to be packaged, and air gaps are avoided; and then thinning the solid plastic package material. The method has the advantages of meeting the requirement that the solid plastic package material in the ultrathin packaging structure has no air gap and being low in cost.)

超薄封装结构的制作方法

技术领域

本发明涉及芯片封装技术领域,尤其涉及一种超薄封装结构的制作方法。

背景技术

近年来,随着器件小型化的发展趋势,行业内出现了封装结构封装高度低、即超薄封装的需求。

为满足上述需求,一种解决方案是采用压缩塑封技术。然而,压缩塑封技术所需设备及材料成本都较高,无法大规模应用。

另一种解决方案是采用注塑塑封技术。然而,现有注塑工艺完成超薄封装后,经常在固态封装料中发现空气间隙,这影响封装结构的良率和性能可靠性。

有鉴于此,本发明提供一种新的超薄封装结构的制作方法,以低成本方式制作良率高、性能可靠的超薄封装结构。

发明内容

本发明的发明目的是提供一种超薄封装结构的制作方法,以低成本方式制作良率高、性能可靠的超薄封装结构。

为实现上述目的,本发明提供一种超薄封装结构的制作方法,包括:

提供待封装半导体结构,对所述待封装半导体结构注塑成型形成初始封装结构,所述注塑成型中,所述液态塑封料的注入量大于超薄封装结构中固态塑封料的量,使液态塑封料充分流动后固化;

对所述初始封装结构中的固态塑封料进行厚度减薄,形成所述超薄封装结构。

可选地,所述待封装半导体结构包括键合后的引线框架与芯片;所述引线框架包括外引脚,所述芯片包括焊盘,所述外引脚与所述焊盘通过引线键合。

可选地,所述待封装半导体结构包括键合后的引线框架与芯片;所述引线框架包括外引脚,所述芯片包括焊盘,所述外引脚与所述焊盘通过铜夹键合。

可选地,通过机械研磨进行所述固态塑封料的厚度减薄。

可选地,所述机械研磨为砂轮打磨。

可选地,所述固态塑封料的材质为环氧树脂、聚酰亚胺树脂、苯并环丁烯树脂、聚苯并恶唑树脂、聚对苯二甲酸丁二酯、聚碳酸酯、聚对苯二甲酸乙二醇酯、聚乙烯、聚丙烯、聚烯烃、聚氨酯、聚烯烃、聚醚砜、聚酰胺、聚亚氨酯、乙烯-醋酸乙烯共聚物或聚乙烯醇。

可选地,所述初始封装结构的厚度大于100μm。

可选地,所述注塑成型步骤中,固化用的模具的温度范围为:170℃~180℃,和/或液态塑封料的注入速率范围为:0.1mm/s~5mm/s。

可选地,所述引线的最高点与所述芯片的上表面的距离范围为:20μm~35μm;所述超薄封装结构的上表面与所述芯片的上表面的距离范围为:50μm~80μm。

可选地,所述超薄封装结构的厚度小于100μm。

与现有技术相比,本发明的有益效果在于:

1)本发明在注塑阶段,注入大量液态塑封料,使得液态塑封料充分流动至待封装半导体结构的各个间隙后再固化,避免空气间隙产生;之后再进行固态塑封料的厚度减薄。好处在于:既满足了超薄封装结构中固态塑封料无空气间隙的需求,又成本较低。

2)一个可选方案中,待封装半导体结构包括键合后的引线框架与芯片;引线框架包括外引脚,所述芯片包括焊盘,所述外引脚与所述焊盘通过引线键合。另一个可选方案中,所述引线框架包括外引脚,所述芯片包括焊盘,所述外引脚与所述焊盘通过铜夹键合。其它可选方案中,待封装半导体结构还可以包括键合后的基板与芯片。本发明的超薄封装结构的制作方法可以用于各种键合工艺、具有各种外引脚的待封装半导体结构,兼容性强。

3)可选方案中,通过机械研磨进行固态塑封料的厚度减薄。优选地,所述机械研磨为砂轮打磨。机械研磨、尤其是砂轮打磨成本较低。

4)可选方案中,固态塑封料的材质为环氧树脂、聚酰亚胺树脂、苯并环丁烯树脂、聚苯并恶唑树脂、聚对苯二甲酸丁二酯、聚碳酸酯、聚对苯二甲酸乙二醇酯、聚乙烯、聚丙烯、聚烯烃、聚氨酯、聚烯烃、聚醚砜、聚酰胺、聚亚氨酯、乙烯-醋酸乙烯共聚物或聚乙烯醇。换言之,需改变温度固化的任意种类的液态塑封料在封装时均可采用本发明的先大量注入液态塑封料充分流动固化,后减薄固态塑封料的方案。

5)可选方案中,初始封装结构的厚度大于100μm。研究表明,液态塑封料充分流动情况下,固化后形成的初始封装结构的厚度大于100μm。

6)可选方案中,所述注塑成型步骤中,固化用的模具的温度范围为:170℃~180℃。对于环氧树脂或类似材料的塑封料,结合上述模具温度,可保证固化完全。

7)可选方案中,所述注塑成型步骤中,液态塑封料的注入速率范围为:0.1mm/s~5mm/s。上述注入速率,结合170℃~180℃温度范围的模具,可保证环氧树脂或类似材料的液态塑封料在充分流动至芯片与引线框架之间的各个间隙同时或之后固化,避免空气间隙产生。

8)可选方案中,所述引线的最高点与所述芯片的上表面的距离范围为:20μm~35μm;所述超薄封装结构的上表面与所述芯片的上表面的距离范围为:50μm~80μm。50μm~80μm既可以满足不暴露引线,又能对引线充分固定及保护。

9)可选方案中,对于铜夹键合,所述超薄封装结构的上表面与所述芯片的上表面的距离范围为50~80μm。50~80μm既可以满足不暴露铜夹,又能对铜夹充分固定及保护。

10)可选方案中,所述超薄封装结构的厚度小于100μm。上述厚度满足行业内对超薄封装的需求。

附图说明

图1是本发明一实施例的超薄封装结构的制作方法对应的流程图;

图2至图7是图1中的流程对应的中间结构示意图。

为方便理解本发明,以下列出本发明中出现的所有附图标记:

待封装半导体结构10 引线框架11

芯片12 外引脚111

基岛112 焊盘120

铜夹13 引线14

固态塑封料15、15' 初始封装结构1

超薄封装结构2

具体实施方式

发明人经对注塑塑封过程进行研究发现:当封装结构的厚度大于100μm时,注入液态塑封料的量较大,塑封料的流动性能够均匀的覆盖在芯片表面,并能够很好的包覆住金属引线,有效避免了金属引线暴露在外面可能引起的损伤;随着注入液态塑封料的量减少,固态塑封料中会出现空气间隙,封装结构的良率也逐渐降低。

经过分析,发现产生空气间隙的一个原因是:注塑模具由于温度较高,而注入的液态塑封料温度较低,若为了实现超薄封装而注入较少量的液态塑封料,会出现还来不及流动至待封装半导体结构的各个间隙即被固化。

基于上述分析,本发明提出:在注塑阶段,注入大量的液态塑封料,使得液态塑封料充分流动至待封装半导体结构的各个间隙后再固化,避免空气间隙产生;之后再进行固态塑封料的厚度减薄。如此,既满足了封装高度低、固态塑封料无空气间隙的需求,又成本较低。

为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。

图1是本发明一实施例的超薄封装结构的制作方法对应的流程图。图2至图7是图1中的流程对应的中间结构示意图。

首先,参照图1中的步骤S1与图2至图5所示,提供待封装半导体结构10,对待封装半导体结构10注塑成型形成初始封装结构1;注塑成型中,液态塑封料的注入量大于超薄封装结构2中固态塑封料15'(参照图6与图7所示)的量,使液态塑封料经充分流动后固化。

一个可选方案中,参照图2所示,待封装半导体结构10包括键合后的引线框架11与芯片12。引线框架11包括若干外引脚111。除了外引脚111,引线框架11还包括基岛112。

基岛112的材质可以与外引脚111的材质相同或不同。一个可选方案中,基岛112的材质为铝,可对芯片12起到良好散热效果;外引脚111的材质为铜,以在封装结构与外部电路连接,例如焊接至柔性电路板(FPC)时提供良好支撑性能与导电性能。

芯片12包括正面与背面,焊盘120暴露于正面。焊盘120用于通过若干层金属互连结构电连接各个器件。

芯片12的背面可以承载于基岛112。

在具体实施过程中,待封装半导体结构10中,可以如图2所示,外引脚111与焊盘120通过铜夹13键合;也可以如图3所示,外引脚111与焊盘120通过引线14键合。本发明对外引脚111与焊盘120的键合方式不加以限定。

其它可选方案中,待封装半导体结构10也可以包括键合后的基板与芯片。本发明不限定待封装半导体结构10的具体结构。

接着,参照图4、图5所示,先将待封装半导体结构10置入模具,一个示例中,加热模具至温度范围为:170℃~180℃;之后向模具内注入大量常温下的液态塑封料,注入的液态塑封料可以但不限于环氧树脂。

一个示例中,模具腔的高度大于100μm,上述高度能保证液态塑封料在充分流动至芯片12与引线框架11之间的各个间隙同时或之后再固化,避免在固态塑封料15中产生空气间隙。换言之,对于充分流动的液态塑封料固化后形成的初始封装结构1的厚度优选大于100μm。

一个示例中,液态塑封料的注入速率范围为:0.1mm/s~5mm/s。可以理解的是,对于高度一定的模具腔:若液态塑封料注入过慢,会造成来不及流动至各个间隙就固化;若液态塑封料注入过快,会来不及浸润一些间隙,也会造成固化后的固态塑封料15中出现空气间隙。

对于其它塑封料,例如聚酰亚胺树脂、苯并环丁烯树脂、聚苯并恶唑树脂、聚对苯二甲酸丁二酯、聚碳酸酯、聚对苯二甲酸乙二醇酯、聚乙烯、聚丙烯、聚烯烃、聚氨酯、聚烯烃、聚醚砜、聚酰胺、聚亚氨酯、乙烯-醋酸乙烯共聚物或聚乙烯醇,可选择合适的模具腔高度、模具温度以及注塑速率,使其充分流动后再固化。

之后,参照图1中的步骤S2与图6、图7所示,对初始封装结构1中的固态塑封料15进行厚度减薄,形成超薄封装结构2。

减薄后的固态塑封料15记为固态塑封料15'。

本步骤可以通过机械研磨进行固态塑封料15的厚度减薄,从而精确控制超薄封装结构2的厚度。

一个可选方案中,机械研磨为砂轮打磨。

固态塑封料15的材质可以为环氧树脂,砂轮打磨的工艺参数范围为:5r/s~15r/s。上述转速可对塑封料15进行精细研磨,能精准控制研磨量。

参照图6所示,超薄封装结构2的上表面与芯片12的上表面的距离范围可以为50μm~80μm。上述距离既可以满足不暴露铜夹13,又能对铜夹13充分固定及保护。

参照图7所示,引线14的最高点与芯片12的上表面的距离范围可以为20μm~35μm;超薄封装结构2的上表面与芯片12的上表面的距离范围可以为50μm~80μm。上述距离既可以满足不暴露引线14,又能对引线14充分固定及保护。

步骤S2形成的超薄封装结构的厚度优选小于100μm。

可以看出,本发明在注塑阶段,注入大量液态塑封料,使得液态塑封料充分流动至芯片12与引线框架11之间的各个间隙后再固化,避免固态塑封料15中产生空气间隙;之后再进行固态塑封料15的厚度减薄。好处在于:既满足了封装高度低、固态塑封料无空气间隙的需求,又成本较低。

虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。

10页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:半导体封装方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类