cBN烧结体及切削工具

文档序号:991083 发布日期:2020-10-20 浏览:21次 >En<

阅读说明:本技术 cBN烧结体及切削工具 (cBN sintered body and cutting tool ) 是由 矢野雅大 小口史朗 宫下庸介 于 2019-03-14 设计创作,主要内容包括:本发明的cBN烧结体由立方晶氮化硼粒子及陶瓷粘结相构成,平均粒径为10nm以上且200nm以下的WSi&lt;Sub&gt;2&lt;/Sub&gt;以其含有比例成为1体积%以上且20体积%以下的方式分散在所述烧结体中。切削工具具有所述cBN烧结体作为工具基体。(The cBN sintered body of the invention is composed of cubic boron nitride particles and a ceramic binder phase, and has an average particle diameter of 10nm to 200nm WSi 2 Is dispersed in the sintered body so that the content ratio thereof is 1 to 20 vol%. A cutting tool has the cBN sintered body as a tool base body.)

cBN烧结体及切削工具

技术领域

本发明涉及一种韧性优异的立方晶氮化硼(以下,用“cBN”表示)基超高压烧结体(以下,称为“cBN烧结体”)及将其作为工具基体的切削工具(以下,称为“CBN工具”)。

本申请主张基于2018年3月14日于日本申请的专利申请2018-047247号的优先权,并将其内容援用于此。

背景技术

以往,已知cBN烧结体的韧性优异,与铁系材料的亲和性低,因此有效活用这些特性,被广泛用作钢、铸铁等铁系工件材料的切削工具材料。

例如,在专利文献1中记载了具有下述构成的cBN烧结体。

(a)含有约60~80体积%的平均粒度约3~6μm的cBN。

(b)含有约40~20体积%的陶瓷粘结剂相,(i)所述陶瓷粘结剂相的约20~60体积%为第IVA族或第VIA族金属的碳化物、氮化物或硼化物的一种以上,(ii)所述陶瓷粘结剂相的约40~80体积%为铝的碳化物、氮化物、硼化物或氧化物的一种以上。

(c)含有约3~15重量%的钨,TiB2的[101]峰和WB的[110]峰的XRD强度比小于约0.4。

并且,专利文献2中记载的cBN烧结体具有20体积%以上且80体积%以下的立方晶氮化硼粒子和粘结材料,所述粘结材料由选自元素周期表第IVB族元素、第VB族元素、第VIB族元素的氮化物、碳化物、硼化物、氧化物及它们的固溶体中的至少一种、选自Zr、Si、Hf、Ge、W、Co的单质、化合物及固溶体中的至少一种及Al的化合物,在所述复合烧结体中含有W和/或Co的情况下,该W和/或Co的总重量小于2.0重量%,且含有所述Zr、Si、Hf、Ge(以下,称为“X”。)中的任意一个以上,所述X的各元素分别为0.005重量%以上且小于2.0重量%,且X/(X+W+Co)满足0.01以上且1.0以下,且Al的重量为2.0重量%以上且20.0重量%以下。

专利文献1:日本特开2004-160637号公报

专利文献2:日本专利第5189504号公报

专利文献1中记载的cBN烧结体由于在烧结体中含有W,因此在烧结时,同时生成Ti硼化物(TiB2)相和W硼化物(WB)相。所生成的W硼化物相抑制cBN粒子-粘结相界面的Ti硼化物相的生成,并且TiB2的[101]峰和WB的[110]峰的XRD强度比被抑制为小于约0.4。因此,cBN粒子-粘结相界面的附着力降低,这成为裂纹产生的起点,从而存在韧性和耐缺损性降低的问题。

在专利文献2中记载的cBN烧结体中,为了提高粘结相的强度和韧性,在粘结相中含有规定量的W和/或Co、Si或Zr,但若W在烧结体中所占的比例多,则烧结体中的韧性降低,若Si多,则粘结材料的扩散反应被过度抑制,cBN粒子与粘结材料、以及粘结材料彼此的粘结力降低,存在烧结体的韧性降低的问题。并且,若混合时的分散性差,则局部产生添加物的浓度高的部分,该部分的粘结材料的韧性降低,在作为工具使用的情况下,存在由于成为破坏的起点而耐缺损性降低的问题。

发明内容

本发明的目的在于解决上述现有技术中cBN烧结体无法确保充分的韧性的课题,提供一种韧性高的cBN烧结体及将其作为工具基体的CBN工具。

关于cBN烧结体及将其作为工具基体的CBN工具,为了解决上述课题,本发明人对即使在cBN烧结体中含有W化合物也不会发生cBN粒子-粘结相界面的附着力的降低的分散粒子进行了深入研究。其结果发现,若分散不会与cBN粒子成为反应产物的粒子,则不阻碍在cBN粒子-粘结相界面生成的Ti硼化物相的生成。并且,有了如下新发现:作为该粒子适合WSi2粒子,并且将特定平均粒径范围内的微细的WSi2粒子分散在cBN烧结体的粘结相中,即使在烧结体内产生裂纹的情况下,裂纹的进展也通过WSi2细微地迂回,能够抑制直线式进展,能够获得韧性高的cBN烧结体。并且,还发现在将该cBN烧结体用作切削工具的工具基体的情况下,即使进行对刀尖的负载大的断续切削,刀尖也不易缺损。

本发明是根据上述各见解而完成的,其特征在于下述结构。

(1)本发明的第1方式为cBN烧结体,该cBN烧结体由立方晶氮化硼粒子和陶瓷粘结相构成,在所述cBN烧结体中,以含有比例成为1体积%以上且20体积%以下的方式分散有平均粒径为10nm以上且200nm以下的WSi2

(2)本发明的另一方式为切削工具,该切削工具将所述(1)中记载的cBN烧结体作为工具基体。

在本发明所涉及的cBN烧结体中,由于使与cBN粒子的反应产物,即在其构成成分中不含有B和N的WSi2的微粒分散,因此在cBN粒子-粘结相界面产生的Ti硼化物相的生成不被阻碍,在不降低cBN粒子-粘结相界面的附着力的基础上,使在烧结体内产生的裂纹的进展通过分散在烧结体中的WSi2细微地迂回,由此发挥抑制裂纹的直线式进展而提高韧性的效果。

并且,本发明所涉及的切削工具通过将所述cBN烧结体用作工具基体,即使进行对刀尖负载大的断续切削,刀尖也不易缺损,例如即使在高硬度钢的断续切削加工中,耐磨性也优异,在长期的使用中具有优异的耐缺损性。

附图说明

图1是在本发明所涉及的cBN烧结体的一实施方式中,表示烧结组织中所含有的WSi2的分散的示意图,其中,各组织的形状、尺寸未按照实际的组织。

图2是表示作为本发明所涉及的cBN烧结体的本发明烧结体9的XRD(X-rayDiffraction)的一例的图。

具体实施方式

以下,对本发明进行详细说明。另外,在本说明书中,在使用“~”来表现数值范围的情况下,该范围包含上限及下限的数值。

[cBN粒子的平均粒径]

本发明中使用的cBN粒子的平均粒径并无特别限定,优选为0.2~8.0μm的范围。由此,由于在烧结体内含有硬质的cBN粒子,因此能够获得提高耐缺损性的效果。并且,通过使平均粒径为0.2~8.0μm的cBN粒子分散在烧结体内,抑制在工具使用过程中工具表面的cBN粒子脱落而产生的以刀尖的凹凸形状为起点的缺损、崩刃。而且,通过抑制在工具使用过程中由于施加于刀尖的应力而产生的从cBN粒子和粘结相的界面开始进展的裂纹或者cBN粒子破裂而进展的裂纹的传播,能够具有优异的耐缺损性。

cBN粒子的平均粒径能够如下求出。

利用扫描型电子显微镜(SEM)观察cBN烧结体的截面组织,获得二次电子像。利用图像处理提取所获得的图像内的cBN粒子的部分,根据通过图像分析求出的各粒子的最大长度,计算平均粒径。在利用图像处理提取图像内的cBN粒子的部分时,为了明确判断cBN粒子和粘结相,将图像中的黑色像素的值设为0,将白色像素的值设为255,以256灰度的单色显示,使用cBN粒子部分的像素的值与粘结相部分的像素的值之比成为2以上的值的像素的图像,以cBN粒成为黑色的方式进行二值化处理。

作为用于求出cBN粒子部分或粘结相部分的像素值的区域,由0.5μm×0.5μm左右的区域内的平均值求出,并且优选至少从同一图像内由不同的3处求出的平均值作为各自的参照。

另外,在二值化处理后,使用将认为cBN粒子彼此接触的部分分开的处理,例如使用分水岭(通过将称为watershed算法/标记的区域的中心向相邻像素扩展来获得区域的算法)将认为接触的cBN粒子彼此分离。

对二值化处理后获得的图像内的对应于cBN粒的部分(黑色部分)进行粒子分析,将求出的最大长度作为各粒子的最大长度,将其作为各粒子的直径。作为求出最大长度的粒子分析,例如将相对于一个cBN粒子计算费雷特直径而获得的两个长度中大的长度的值作为最大长度,将该值作为各粒子的直径。将假定为具有该直径的理想球体而通过计算求出的体积作为各粒子的体积,求出累积体积,根据该累积体积将纵轴作为体积百分率[%],将横轴作为直径[μm],描绘曲线图。在该曲线图上,将体积百分率为50%时的直径作为cBN粒子的平均粒径,对三个观察区域进行该处理,并将其平均值作为cBN的平均粒径[μm]。在进行粒子分析时,使用预先通过SEM已知的标尺的值,设定每个像素的长度(μm)。用于图像处理的观察区域在cBN粒子的平均粒径为3μm时优选为15.0μm×15.0μm左右的视场区域。

[cBN粒子在cBN烧结体中所占的含有比例]

cBN粒子在cBN烧结体中所占的含有比例并无特别限定,在小于40体积%(vol%)时,在烧结体中硬质物质少,在作为工具使用的情况下,会有耐缺损性降低的情况,另一方面,若超过78体积%,则在烧结体中生成成为裂纹的起点的空隙,会有耐缺损性降低的情况。因此,为了进一步发挥本发明的效果,cBN粒子在cBN烧结体中所占的含有比例优选为40~78体积%的范围。

[分散在cBN烧结体中的WSi2]

对分散在cBN烧结体中的WSi2进行说明。

(1)平均粒径

WSi2的平均粒径设为10nm以上且200nm以下。设为该范围的理由是因为,若平均粒径超过200nm,则容易发生以粘结相中的WSi2粒子为起点的裂纹的产生和进展,因此cBN烧结体的韧性降低,若平均粒径小于10nm,则无法使裂纹细微地迂回而充分抑制其进展。WSi2的平均粒径更优选为10nm以上且160nm以下。

(2)含有比例

WSi2在cBN烧结体中以1体积%以上且20体积%以下的含有比例存在。设为该范围的理由是因为,若小于1体积%,则无法使裂纹细微地迂回而充分抑制其进展,对于提高cBN烧结体的韧性并不是足够的量,若超过20体积%,则在烧结体中WSi2彼此接触的概率增加,相邻的WSi2在烧结时粘结而成为肥大的WSi2,容易发生以该肥大的WSi2为起点的裂纹的产生,cBN烧结体的韧性降低。含有比例更优选为3体积%以上且15体积%以下。

[cBN烧结体的制造方法]

以下示出用于制作本发明的韧性优异的cBN烧结体的步骤的一例。

(1)构成粘结相的成分的原料粉末的准备

作为构成粘结相的原料粉末,准备WSi2原料和粘结相的主要原料。作为WSi2原料,准备平均粒径3μm的WSi2粉末。为了制成粉碎成所期望的粒径的WSi2原料粉,WSi2粉末例如与硬质合金制球和丙酮一起填充到利用硬质合金做内衬的容器内,盖上盖后通过球磨机进行粉碎之后,使用离心分离装置进行分级,由此将纵轴为体积百分率、横轴为粒径时的中值粒径D50作为粉碎的WSi2原料粉的平均粒径,获得其值为10~200nm的WSi2原料粉。并且,作为粘结相的主要原料,准备以往已知的粘结相形成原料粉末(TiN粉末、TiC粉末、TiCN粉末、TiAl3粉末、Al2O3粉末)。

(2)粉碎/混合

将这些原料粉末例如与硬质合金制球和丙酮一起填充到利用硬质合金做内衬的容器内,盖上盖后通过球磨机进行粉碎及混合。然后,添加作为硬质相发挥作用的平均粒径0.2~8.0μm的cBN粉末,进一步进行球磨机混合。

(3)成型、烧结

接下来,将所获得的烧结体原料粉末在规定压力下成型而制作成型体,将其在1000℃下预烧结,然后装入超高压烧结装置中,例如在压力:5GPa、温度:1200~1600℃的范围内的规定温度下进行烧结,由此制作本发明的cBN烧结体。

[CBN工具]

本发明的将韧性优异的cBN烧结体作为工具基体的cBN基超高压烧结体制切削工具例如即使在高硬度钢的断续切削加工中,耐缺损性也优异,在长期的使用中发挥优异的耐磨性。

[各数值的测定方法]

对本发明中确定的各数值的测定方法进行说明。

[WSi2的平均粒径]

为了测定WSi2的平均粒径,对cBN烧结体的截面组织使用俄歇电子能谱法(AugerElectron Spectroscopy:以下,称为AES),获得W元素和Si元素的映射像。在所获得的图像中,利用图像处理提取W元素和Si元素重叠的部分,根据通过图像分析确定的各粒子计算平均粒径。

WSi2的平均粒径的计算是将在一个图像中,根据W元素和Si元素的映射像将W元素和Si元素重叠的部分识别为WSi2的各粒子的费雷特直径作为各粒子的直径。根据由该直径计算求出的各粒子的体积,与cBN同样地求出累积体积,由该累积体积将纵轴作为体积百分率[%],将横轴作为直径[μm]描绘曲线图,将体积百分率为50%时的直径作为测定中使用的一个图像内的WSi2的平均粒径。对三个图像进行该处理,将其平均值作为WSi2的平均粒径[μm]。在进行粒子分析时,使用预先通过AES已知的标尺的值,设定每个像素的长度(μm)。作为用于图像处理的观察区域,优选为5.0μm×3.0μm左右的视场区域。

[烧结体中的WSi2的含有比例]

WSi2在cBN烧结体中所占的含有比例通过AES由W元素和Si元素的映射像计算求出cBN烧结体的截面组织。在观察到的一个图像中,将W元素和Si元素重叠的部分作为WSi2利用图像处理提取,通过图像分析计算WSi2所占的面积,求出WSi2所占的比例。对至少三个图像进行该处理,将计算出的各WSi2的面积比例的平均值作为WSi2在cBN烧结体中所占的含有比例求出。作为用于图像处理的观察区域,优选为5.0μm×3.0μm左右的视场区域。

实施例1

以下,记载本发明的实施例。

在本实施方式的cBN烧结体的制造中,作为用于构成粘结相的原料粉末,准备WSi2粉末,为了控制WSi2的粒径,利用球磨机实施粉碎处理后,使用离心分离法进行分级,由此准备所期望的粒径范围的WSi2原料粉。即,准备平均粒径3μm的WSi2粉末,与硬质合金制球和丙酮一起填充到利用硬质合金做内衬的容器内,盖上盖后使用球磨机实施粉碎后,使混合的浆料干燥,之后使用离心分离装置进行分级,由此能够获得平均粒径为50~200nm的WSi2原料粉。

准备如上所述事先准备的WSi2原料粉、平均粒径为0.3μm~0.9μm的TiN粉末、TiC粉末、TiCN粉末、TiAl3粉末及Al2O3粉末,以将选自这些原料粉末中的几个粘结相构成用原料粉末(将各原料粉末的体积%示于表1中)和作为硬质相用原料的cBN粉末的总量设为100体积%时的烧结后的cBN粒子的含有比例成为40~78体积%的方式进行配合,进行湿式混合,并进行干燥。

接下来,将所获得的烧结体原料粉末在成型压力1MPa下冲压成型为直径:50mm×厚度:1.5mm的尺寸,然后将该成型体保持在压力:1Pa以下的真空气氛中、1000℃的范围内的规定温度进行预烧结,然后装入超高压烧结装置,在压力:5GPa、温度:1400℃的温度下进行烧结,由此制作了表2所示的本发明的cBN烧结体1~12(称为本发明烧结体1~12)。对成型体实施的热处理的主要目的为除去湿式混合时的溶剂。并且,上述制作工序优选如本实施例那样在直到超高压烧结为止的工序中防止原料粉末的氧化,具体而言,优选在非氧化性的保护气氛中实施处理。图2表示本发明烧结体9的XRD图。

[表1]

[表2]

为了比较,分别研究了如下情况:(1)不含有WSi2的情况、(2)使用利用球磨机粉碎WSi2原料,使用离心分离装置进行分级而获得的、在本发明中规定的范围外的平均粒径的WSi2原料粉的情况、(3)使用在本发明中规定的范围内的平均粒径的WSi2原料粉,具有在本发明中规定的范围外的WSi2含有比例的情况。准备了这些WSi2(有时不含有)、平均粒径0.3μm~0.9μm的TiN粉末、TiC粉末、TiCN粉末、TiAl3粉末及Al2O3粉末。将选自这些原料粉末中的几个粘结相构成用的原料粉末(将各原料粉末的体积%示于表3中)和作为硬质相的cBN粉末进行湿式混合,使所获得的混合物干燥。两者的配合率设为将所述混合物的含量设为100体积%时的烧结后的cBN粒子的含有比例成为58~63体积%。

然后,在与本发明烧结体1~12相同的条件下制作成型体,并进行热处理,将这些成型体在与本发明烧结体1~12相同的条件下进行超高压高温烧结,由此制作了表4所示的比较例的cBN烧结体(以下,称为比较例烧结体)1~5。

[表3]

[表4]

接下来,利用金属线放电加工机将上述中制作的本发明烧结体1~12、比较例烧结体1~5切断成规定尺寸。制造具有5质量%的Co、5质量%的TaC、剩余部分为WC的组成及ISO标准CNGA120408的刀片形状的WC基硬质合金制刀片主体,在各刀片主体的钎焊部(角部)使用具有26质量%的Cu、5质量%的Ti、剩余部分为Ag的组成的Ag合金的钎料钎焊本发明烧结体1~12、比较例烧结体1~5,实施上下表面及外周研磨、刃口修磨处理,由此制造了具有ISO标准CNGA120408的刀片形状的本发明的cBN基超高压烧结体切削工具(称为本发明工具)1~12及比较例的cBN基超高压烧结体切削工具(称为比较工具)1~5。

接下来,在以下切削条件下对本发明工具1~12和比较工具1~5实施切削加工,测定了直到缺损为止的工具寿命(断续次数)。

<切削条件>

工件材料:渗碳淬火钢(JIS·SCM415、硬度:HRC58~62)的长度方向等间隔8条带纵槽的圆棒、

切削速度:200m/分钟、

切削深度:0.1mm、

进给:0.1mm/rev

实施在上述条件下的高硬度钢的干式切削加工试验。将各工具的刀尖到崩刃或者缺损为止的断续次数作为工具寿命,在断续次数每到500次时观察刀尖,确认了刀尖的缺损或崩刃的有无。表5示出上述切削加工试验的结果。

[表5]

从表5所示的结果可知,本发明工具与比较工具相比,不会发生突发的刀尖的崩刃,延长了工具寿命,韧性得到提高。即使在高硬度钢的断续切削加工中,本发明工具的耐磨性也优异,发挥在长期使用中具有优异的耐缺损性的优异的效果。

产业上的可利用性

本发明的cBN烧结体在用作CBN工具的工具基体的情况下,不会发生工具基体的缺损,在长期使用中发挥优异的耐缺损性,能够实现工具寿命的延长,能够实现切削加工装置的高性能化、以及切削加工的省力化及节能化、低成本化,因此能够在产业上利用。

11页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:用于制造CMC组件的方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!