涡轮增压器用压缩机壳体及其制造方法

文档序号:1000226 发布日期:2020-10-23 浏览:8次 >En<

阅读说明:本技术 涡轮增压器用压缩机壳体及其制造方法 (Compressor housing for turbocharger and method for manufacturing same ) 是由 矶谷知之 丹羽哲也 大须贺龙 于 2020-03-26 设计创作,主要内容包括:本发明提供一种在降低成本的同时能实现密封性的提高的涡轮增压器用压缩机壳体。涡轮增压器用压缩机壳体(1)被分割为包括涡旋构件(2)和护罩构件(3)的多个构件。涡旋构件(2)和护罩构件(3)通过将设置于护罩构件(3)的压入部(53b)压入设置于涡旋构件(2)的被压入部(53a)而相互组装。进一步地,在设置于涡旋构件(2)和护罩构件(3)中的一方的被压接部(541a、542a)压接设置于涡旋构件(2)和护罩构件(3)中的另一方的压接部(541b、542b)并使压接部(541b、542b)发生塑性流动而形成将两者间密封的密封部(541、542)。(The invention provides a compressor housing for a turbocharger, which can reduce cost and improve sealing performance. A compressor housing (1) for a turbocharger is divided into a plurality of members including a scroll member (2) and a shroud member (3). The scroll member (2) and the shroud member (3) are assembled to each other by press-fitting a press-fitting portion (53b) provided in the shroud member (3) into a press-fitting portion (53a) provided in the scroll member (2). Furthermore, pressure-bonded sections (541a, 542a) provided on one of the scroll member (2) and the shroud member (3) are pressure-bonded to pressure-bonded sections (541b, 542b) provided on the other of the scroll member (2) and the shroud member (3), and the pressure-bonded sections (541b, 542b) are plastically fluidized to form sealing sections (541, 542) that seal between the two.)

涡轮增压器用压缩机壳体及其制造方法

技术领域

本发明涉及涡轮增压器用压缩机壳体及其制造方法。

背景技术

搭载于汽车等的内燃机中的涡轮增压器具有压缩机叶轮(impeller)和涡轮(turbine)叶轮,它们容纳于壳体。压缩机叶轮配置于在压缩机壳体的内部形成的空气流路。在空气流路中具有朝向压缩机叶轮吸入空气的吸气口、供从压缩机叶轮喷出的压缩空气通过的扩散通路、以及供通过了扩散通路的压缩空气流入的喷出涡旋室。喷出涡旋室向内燃机侧喷出压缩空气。

而且,在汽车等的内燃机中,存在具备使在曲轴箱内产生的窜漏气体回流到吸气通路而使曲轴箱内、盖罩内净化的窜漏气体回流装置(以下,称为PCV)的内燃机。在该情况下,窜漏气体中包含的油(油雾)有时会从PCV流出至涡轮增压器中的压缩机的上游侧的吸气通路。

此时,若压缩机的出口空气压力高则其空气温度也变高,因此有时从PCV流出的油因蒸发引起的浓缩、高粘度化而在涡轮增压器用压缩机壳体的扩散面、与其对置的轴承壳体的表面等形成沉积物而产生堆积。而且,因堆积的沉积物而使扩散通路变窄,导致涡轮增压器的性能降低,进而有可能导致内燃机的输出降低。

以往,为了防止上述那样的在扩散通路中的沉积物的堆积而以某种程度抑制压缩机的出口空气温度。因此,无法充分发挥涡轮增压器的性能,另外无法充分提高内燃机的输出。

在专利文献1中公开了如下结构:为了防止在扩散通路中的沉积物的堆积,在涡轮增压器用压缩机壳体内设置冷媒流路来使冷媒在该冷媒流路中流通,由此对通过壳体内的空气流路的压缩空气的温度上升进行抑制。在专利文献1所公开的结构中,构成为将涡轮增压器用压缩机壳体分割为涡旋构件(piece)和护罩构件并通过两个构件的组装来划定冷媒流路。

现有技术文献

专利文献

专利文献1:日本特开2018-184928号公报

发明内容

发明所要解决的问题

在专利文献1所公开的结构中,冷媒流路利用通过将护罩构件压入涡旋构件而形成的密封部来防止冷媒泄漏。而且,为了充分提高密封部的密封性,可以考虑在压入时将密封材料涂布于护罩构件以及涡旋构件中的密封部。然而,为了涂布密封材料,还需要密封材料、脱脂等预处理,因此成本变高,作业性也差。另一方面,为了降低成本和提高作业性,也可以考虑不使用密封材料而仅在将护罩构件压入涡旋构件的压入面形成密封部,但在该情况下,有可能在密封部产生成为冷媒泄漏的原因的细微的间隙而发生泄漏故障。虽然泄漏故障会在组装后的泄漏检查中被检测出来而不会流向市场,但由于成品率降低,结果导致成本变高。

另一方面,在不具有冷媒流路的涡轮增压器用压缩机壳体中,在分开地形成涡旋构件和护罩构件并通过压入对两者进行组装的情况下,有时也对两者的压入部要求密封性的提高。在该情况下,若如上述那样使用密封材料,则会导致成本高昂和作业性降低。

本发明是鉴于这样的问题而完成的,其目的在于提供一种在降低成本的同时实现密封性的提高的涡轮增压器用压缩机壳体。

用于解决问题的手段

本发明的一个方式涉及一种涡轮增压器用压缩机壳体,其容纳有压缩机叶轮,所述涡轮增压器用压缩机壳体具备:

吸气口形成部,其形成朝向所述压缩机叶轮吸入空气的吸气口;

护罩部,其沿周向包围所述压缩机叶轮并且具有与该压缩机叶轮对置的护罩面;

扩散部,其沿周向形成于所述压缩机叶轮的外周侧,且形成使从所述压缩机叶轮喷出的压缩空气通过的扩散通路;以及

涡旋室形成部,其形成将通过了所述扩散通路的压缩空气向外部引导的涡旋室,

所述涡轮增压器用压缩机壳体被分割为包括如下构件的多个构件:涡旋构件,其至少具有所述吸气口形成部及所述涡旋室形成部的一部分;以及护罩构件,其至少具有所述涡旋室形成部的一部分、所述扩散部的一部分及所述护罩部,

所述涡旋构件和所述护罩构件通过将设置于所述护罩构件的压入部压入设置于所述涡旋构件的被压入部而相互组装,并且在设置于所述涡旋构件和所述护罩构件中的一方的被压接部压接设置于所述涡旋构件和所述护罩构件中的另一方的压接部并使该压接部发生塑性流动而形成将两者间密封的密封部。

发明效果

根据上述一个方式的涡轮增压器用压缩机壳体,通过在设置于涡旋构件和护罩构件中的一方的被压接部压接设置于涡旋构件和护罩构件中的另一方的压接部并使压接部发生塑性流动而形成涡旋构件与护罩构件之间的密封部。由此,由于在密封部中压接部发生塑性流动而填埋细微的间隙,因此与仅通过两者的压入而形成密封部的情况相比,能够实现密封性的提高。进一步地,由于在密封部不需要另外的密封材料的涂布,因此能够实现成本降低。

如上所述,根据本实施方式,能够提供一种在降低成本的同时能实现密封性的提高的涡轮增压器用压缩机壳体。

附图说明

图1是第一实施例中的涡轮增压器用压缩机壳体的剖视图。

图2是用于说明第一实施例中的涡轮增压器用压缩机壳体的制造方法的概念图。

图3是第一实施例中的涡旋构件的剖视立体图。

图4是第一实施例中的护罩构件的立体图。

图5是第一实施例中的护罩构件的剖视立体图。

图6是用于说明第一实施例中的涡轮增压器用压缩机壳体的制造方法的主要部分放大概念图。

图7是用于说明第一实施例中的涡轮增压器用压缩机壳体的制造方法的主要部分放大概念图。

图8是第一变形例中的涡轮增压器用压缩机壳体的剖视图。

图9是用于说明第一变形例中的涡轮增压器用压缩机壳体的制造方法的概念图。

图10是用于说明第一变形例中的涡轮增压器用压缩机壳体的制造方法的概念图。

图11是用于说明第二实施例中的涡轮增压器用压缩机壳体的制造方法的主要部分放大概念图。

图12是用于说明第二实施例中的涡轮增压器用压缩机壳体的制造方法的主要部分放大概念图。

附图标记说明

1:涡轮增压器用压缩机壳体;

2:涡旋构件;

3:护罩构件;

5:冷媒流路;

51:第一冷媒流路形成部;

52:第二冷媒流路形成部;

53a:被压入部;

53b:压入部;

541:内周密封部;

541a:内周被压接部;

541b:内周压接部;

542:外周密封部;

542a:外周被压接部;

542b:外周压接部;

545、547:始端侧斜面;

546、548:终端侧斜面。

具体实施方式

在本说明书中,“周向”是指压缩机叶轮的旋转方向,“轴向”是指压缩机叶轮的旋转轴的方向,“径向”是指以压缩机叶轮的旋转轴为中心的虚拟圆的半径方向,径向外侧是指从该虚拟圆的中心向圆周延伸的直线的方向。

上述涡轮增压器用压缩机壳体具备沿上述扩散部在周向上形成并且使冷却上述扩散部的冷媒进行流通冷媒流路,

上述冷媒流路形成为由分别在上述涡旋构件以及上述护罩构件中的彼此的对置部形成的第一冷媒流路形成部和第二冷媒流路形成部所构成的环状的空间,

作为上述密封部,包括对上述冷媒流路的内周侧进行密封的内周密封部、以及对上述冷媒流路的外周侧进行密封的外周密封部,

上述内周密封部是通过在形成于上述涡旋构件以及上述护罩构件中的一方的内周被压接部压接形成于上述涡旋构件以及上述护罩构件中的另一方的内周压接部并使该内周压接部发生塑性流动而形成的,

上述外周密封部是通过在形成于上述涡旋构件以及上述护罩构件中的一方的外周被压接部压接形成于上述涡旋构件以及上述护罩构件中的另一方的外周压接部并使该外周压接部发生塑性流动而形成的。根据该结构,在具备冷媒流路的涡轮增压器用压缩机壳体中,能够在降低成本的同时提高冷媒流路的内周密封部以及外周密封部的密封性。

优选上述密封部位于上述压入部的压入方向终端侧。在该情况下,在将护罩构件组装于涡旋构件时,由于在压入部被压入后压接部压接于被压接部,因此能够防止密封部中的塑性流动部的分散。由此,能够可靠地提高密封性。

本发明的另一方式是上述涡轮增压器用压缩机壳体的制造方法,其中,

所述制造方法包括:

压铸工序,在该压铸工序中,通过压铸来成形上述涡旋构件以及上述护罩构件;

机械加工工序,在该机械加工工序中,通过机械加工在上述涡旋构件以及上述护罩构件中的一方形成上述被压接部,并在上述涡旋构件以及上述护罩构件中的另一方形成上述压接部;以及

组装工序,在该组装工序中,将上述压入部压入上述被压入部,使上述压接部压接于上述被压接部并发生塑性流动而形成上述密封部,从而将上述护罩构件组装于上述涡旋构件。

由此,能够制造上述的涡轮增压器用压缩机壳体。而且,由于压接部以及被压接部是通过机械加工工序中的机械加工而形成的,因此与基于压铸的铸件表面相比,能够使表面在一定程度上粗糙,因此在组装工序中容易使压接部发生塑性流动,能够进一步提高密封性。

优选为,在上述机械加工工序中,上述压接部被机械加工形成为,在包括上述压缩机叶轮的旋转轴在内的剖面中,呈向径向突出的山形状,并具有位于压入方向始端侧的始端侧斜面和位于压入方向终端侧的终端侧斜面,并且在上述剖面中,上述终端侧斜面与上述旋转轴所成的角的锐角侧的角度大于上述始端侧斜面与上述旋转轴所成的角的锐角侧的角度。在该情况下,通过机械加工工序中的机械加工,使得在压接部中,相对于旋转轴而终端侧斜面比始端侧斜面更加立起,因此能够在维持始端侧斜面的倾斜角度和压接部的突出量的状态下使压接部的宽度变窄。由此,在组装工序中,不会使组装性变差,而容易使压接部发生塑性流动。其结果是,能够在由组装工序形成的各密封部中更可靠地填埋微细的间隙,能够进一步提高密封性。或者,通过在维持压接部中的塑性流动量的状态下使压接部的宽度变窄,能够在机械加工工序中的机械加工中缓和压接部以及被压接部的尺寸公差,因此能够提高生产率,能够实现低成本化。

【实施例】

(第一实施例)

以下,使用图1~图7对上述涡轮增压器用压缩机壳体的实施例进行说明。

如图1所示,在涡轮增压器用压缩机壳体1中容纳有压缩机叶轮13,并具备吸气口形成部10、护罩部20、扩散部30、涡旋室形成部120。

吸气口形成部10形成朝向压缩机叶轮13吸入空气的吸气口11。

护罩部20沿周向包围压缩机叶轮13并且具有与压缩机叶轮13对置的护罩面22。

扩散部30沿周向形成于压缩机叶轮13的外周侧,且形成有使从压缩机叶轮13喷出的压缩空气通过的扩散通路15。

涡旋室形成部120形成将通过了扩散通路15的压缩空气向外部引导的涡旋室12。

而且,涡轮增压器用压缩机壳体1被分割为包括涡旋构件2和护罩构件3的多个构件。

涡旋构件2至少具有吸气口形成部10以及涡旋室形成部120的一部分。

护罩构件3至少具有涡旋室形成部120的一部分、扩散部30的一部分以及护罩部20。

涡旋构件2和护罩构件3通过将设置于护罩构件3的压入部53b压入设置于涡旋构件2的被压入部53a而相互组装。进一步地,在设置于涡旋构件2的被压接部541a、542a压接设置于护罩构件3的压接部541b、542b并使压接部541b、542b发生塑性流动,从而形成将两者间密封的密封部541、542。

以下,对本例的涡轮增压器用压缩机壳体1进行详细说明。

如图1所示,涡轮增压器用压缩机壳体1由作为相互独立的构件而形成的涡旋构件2以及护罩构件3分开形成。而且,涡轮增压器用压缩机壳体1安装于轴承壳体(未图示)的凸缘部或者采用了分割构造的情况下的密封板40,该轴承壳体收纳有对一端安装有压缩机叶轮13的轴14进行轴支承的轴承机构。

如图2、图3所示,涡旋构件2具有吸气口形成部10、第一涡旋室形成部121、外周部125、第一冷媒流路形成部51。如图2所示,护罩构件3具有第二涡旋室形成部122、护罩部20、第一扩散部35以及第二冷媒流路形成部52。

如图2、图3所示,涡旋构件2中的吸气口形成部10呈筒状,并且沿轴向Y贯通形成。第一涡旋室形成部121构成涡旋室12中的吸气侧Y1的壁面。如图1所示,外周部125位于第一涡旋室形成部121的与吸气侧Y1相反的相反侧Y2,形成涡轮增压器用压缩机壳体1的外周部125。而且,在外周部125的内侧安装有密封板40。

如图1所示,护罩构件3中的第二涡旋室形成部122形成涡旋室12的内周侧的壁面。护罩部20形成与压缩机叶轮13对置的护罩面22。第一扩散部35形成从护罩面22朝向涡旋室12延伸的扩散面34。此外,如图2所示,护罩构件3的吸气侧Y1的前端中的外周缘被倒角而形成第三倒角部591。

如图1、图2所示,在涡旋构件2中的吸气口形成部10的与吸气侧Y1相反的相反侧Y2设置有被压入部53a。如图3所示,被压入部53a形成为圆筒内周面。另外,如图1所示,在护罩构件3中的吸气侧Y1设置有压入部53b。如图4、图5所示,压入部53b形成为圆筒外周面。而且,如图1、图2所示,护罩构件3的压入部53b被压入涡旋构件2的被压入部53a的内侧,从而护罩构件3被组装于涡旋构件2。压入部53b与被压入部53a在周向的整个范围抵接。此外,压入部53b与被压入部53a的过盈量能够设为可获得所需的防脱负载且不会破损的范围。在本例中,涡旋构件2以及护罩构件3为铝合金制成,两者的过盈量为40±20μm的范围。

如图1所示,通过将护罩构件3组装于涡旋构件2,由涡旋构件2中的第一冷媒流路形成部51和护罩构件3的第二冷媒流路形成部52形成冷媒流路5。如图3所示,涡旋构件2中的第一冷媒流路形成部51位于第一涡旋室形成部121的内侧,具有作为冷媒流路5的吸气侧Y1的壁面的第一壁面511。在本例中,第一壁面511形成为与轴向Y垂直的平面,但第一壁面511可以并非一定是平面,可以是向吸气侧Y1凹陷的凹状。此外,如图2所示,将第一壁面511和后述的内周被压接部541a连接的角部被倒角而形成第一倒角部581。

如图1所示,护罩构件3中的第二冷媒流路形成部52设置于第一扩散部35的吸气侧Y1。如图5所示,第二冷媒流路形成部52具有形成为向与吸气侧Y1相反的相反侧Y2凹陷的凹状的第二壁面521。在本例中,第二壁面521在与轴向Y平行的剖面中呈U字型,并且如图5所示形成有在护罩面22的径向外侧沿周向延伸的环状的凹部。如图1所示,第二冷媒流路形成部52在第二壁面521的径向外侧具有作为与径向平行的壁面的第二抵接面562。如图1所示,第二抵接面562与涡旋构件2中的第一抵接面561抵接。而且,作为冷媒流路5,形成有由第一冷媒流路形成部51和第二冷媒流路形成部52构成的环状的空间50。冷媒流路5沿着扩散部30在周向上形成,并且使对扩散部30进行冷却的冷媒流通。此外,如图2所示,将涡旋构件2中的第一抵接面561和后述的外周被压接部542a连接的角部(外周被压接部542a的Y2侧的端部)被倒角而形成第二倒角部582。

如图1所示,在冷媒流路5中,第一冷媒流路形成部51与第二冷媒流路形成部52的边界部由密封部541、542密封。密封部541(542)是通过使压接部541b(542b)压接于被压接部541a(542a)并主要使压接部541b(542b)塑性流动而形成的。在本例中,作为密封部541、542,包括对冷媒流路5的内周侧进行密封的内周密封部541和对冷媒流路的外周侧进行密封的外周密封部542。内周密封部541由内周被压接部541a和内周压接部541b构成,外周密封部542由外周被压接部542a和外周压接部542b构成。

如图3所示,在内周密封部541中,内周被压接部541a形成于涡旋构件2,成为位于被压入部53a的Y2侧且与被压入部53a连续的圆筒内周面。另一方面,如图4、图5所示,内周压接部541b形成于护罩构件3,成为位于压入部53b的压入方向终端侧即Y2侧并与压入部53b连续的圆筒外周面。进一步地,在组装前的状态下,内周压接部541b向径向外侧突出。内周压接部541b的形状没有限定,但在本例中,如图6中的(a)所示,在包含压缩机叶轮13的旋转轴13a在内的剖面中,内周压接部541b向径向外侧突出,并且内周压接部541b的立起部形成为在轴向Y的前后平滑地连接的平缓的山形状。另外,在该剖面中,内周压接部541b中的突出方向的顶点也形成为平缓地弯曲的形状。而且,如图4所示,内周压接部541b在周向上连续而呈环状。

如图6中的(a)所示,在组装前的状态下的包含旋转轴13a的剖面中,内周压接部541b从压入部53b向径向外侧以规定大小的突出量T1相对于压入部53b突出。突出量T1是内周压接部541b能够塑性流动的范围,例如能够设为80~120μm,在本例中设为100μm。内周压接部541b的轴向Y的长度、即轴向Y上的内周压接部541b的形成范围H1没有特别限定,例如能够设为0.5~1.5mm,在本例中设为1.0mm。

如图6中的(a)所示,内周压接部541b相对于压入部53b以规定的突出量T1突出,由此如图6中的(c)所示,通过将护罩构件3的压入部53b压入涡旋构件2的被压入部53a,护罩构件3的内周压接部541b压接于涡旋构件2的内周被压接部541a,如符号M所示,主要使内周压接部541b发生塑性流动。由此,两者之间的微细的间隙被填埋,从而形成内周密封部541。此外,在本例中,在护罩构件3设置内周压接部541b,并且在涡旋构件2设置内周被压接部541a,但也可以取而代之地,在护罩构件3设置内周被压接部541a,并且在涡旋构件2设置内周压接部541b。但是,优选在刚性较高的一方设置内周被压接部541a。

如图7中的(a)所示,在外周密封部542中,外周压接部542b也与内周压接部541b同样地向径向外侧突出。外周压接部542b中的突出量T2以及形成范围H2也能够设为与内周压接部541b的突出量T1以及形成范围H1相当,在本例中也设为相同。此外,在形成有外周压接部542b的壁面中,吸气侧Y1的端部的外周缘被倒角而形成第四倒角部592。而且,通过将护罩构件3的压入部53b压入涡旋构件2的被压入部53a,如图7中的(c)所示,护罩构件3的外周压接部542b压接于涡旋构件2的外周被压接部542a,并主要使外周压接部542b如符号M所示那样发生塑性流动。由此,两者之间的微细的间隙被填埋,从而形成外周密封部542。此外,在本例中,在护罩构件3设置外周压接部542b,并且在涡旋构件2设置外周被压接部542a,但也可以取而代之地,在护罩构件3设置外周被压接部542a,并且在涡旋构件2设置外周压接部542b。但是,优选在刚性较高的一方设置外周被压接部542a。

如图1、图2所示,涡旋构件2具有贯通第一冷媒流路形成部51且由与冷媒流路5连通的贯通孔所构成的冷媒供给部513以及冷媒排出部514。构成为冷媒供给部513向冷媒流路5供给冷媒,冷媒排出部514排出冷媒。在本例中,如图2所示,冷媒供给部513以及冷媒排出部514从第一壁面511起与轴向Y平行地朝向吸气侧Y1形成,并进一步形成于径向外侧。

如图1所示,密封板40具有第三涡旋室形成部123、密封板***部41以及第二扩散部36。第三涡旋室形成部123构成涡旋室12中的外周侧的壁面。密封板***部41***外周部125的内侧。第二扩散部36与第一扩散部35一起形成扩散部30。第二扩散部36具有与第一扩散部35的扩散面34隔开规定距离而对置的对置面37。而且,扩散面34与对置面37之间的空间成为扩散通路15。此外,如图1所示,在涡旋构件2中的第一涡旋室形成部121与密封板40中的第三涡旋室形成部123之间存在些许的间隙C而构成为相互不抵接。由此,密封板40被***至规定位置,扩散通路15被形成为规定的宽度。

接下来,对本例的涡轮增压器用压缩机壳体1的制造方法进行说明。

首先,如图2所示,在压铸工序中,通过压铸单独制作涡旋构件2、以及作为护罩构件3的粗加工材的护罩构件前驱体3a。然后,在机械加工工序中,通过机械加工在涡旋构件2成形被压入部53a、内周被压接部541a以及外周被压接部542a,在护罩构件3形成压入部53b、内周压接部541b以及外周压接部542b。进一步地,切削第二壁面521的底部的切削加工部57。此外,护罩构件前驱体3a未成形护罩面22,护罩构件前驱体3a的内侧面22a形成为圆筒面。

接下来,如图2中箭头P所示,在组装工序中,将护罩构件3组装于涡旋构件2。更详细而言,在内周密封部541中,如图6中的(a)所示,首先,如箭头P所示沿轴向Y将护罩构件3的压入部53b朝向涡旋构件2的内周被压接部541a内进行***,如图6中的(b)所示,将压入部53b压入内周被压接部541a。然后,进一步向箭头P的方向***,如图6中的(c)所示,将压入部53b压入至涡旋构件2的位于比内周被压接部541a靠吸气侧Y1的被压入部53a为止。与此相伴,护罩构件3的内周压接部541b与涡旋构件2的第一倒角部581接触,并主要使内周压接部541b沿着涡旋构件2的内周被压接部541a发生塑性流动。然后,如图6中的(c)所示,形成内周压接部541b与涡旋构件2的内周被压接部541a紧贴的状态。然后,压入护罩构件3的第二抵接面562直至与涡旋构件2的第一抵接面561抵接为止,从而完成内周密封部541。

另外,在外周密封部542中,也与内周密封部541同样地,伴随着护罩构件3的压入部53b被压入涡旋构件2的被压入部53a,如图7中的(a)、图7中的(b)所示,护罩构件3的外周压接部542b与涡旋构件2的第二倒角部582相接触,并主要使外周压接部542b沿涡旋构件2的外周被压接部542a发生塑性流动,如图7中的(c)所示,形成外周压接部542b与涡旋构件2的外周被压接部542a紧贴的状态。由此,完成外周密封部542。然后,如图1所示,形成由内周密封部541和外周密封部542密封的作为环状的空间50的冷媒流路5。然后,对内侧面22a进行机械加工而形成护罩面22。由此,制造图1所示的涡轮增压器用压缩机壳体1。

而且,在涡轮增压器用压缩机壳体1中,在图1、图2所示的与冷媒流路5连通的冷媒供给部513以及冷媒排出部514上连接未图示的冷媒导入管以及冷媒排出管,经由它们使冷媒向冷媒流路5流通,由此能够对扩散面34进行冷却。

此外,在本例中,在内周密封部541中,在涡旋构件2设置内周被压接部541a,并且在护罩构件3设置内周压接部541b,但也可以在涡旋构件2设置内周压接部541b,并且在护罩构件3设置内周被压接部541a。同样地,在外周密封部542中,在涡旋构件2设置外周被压接部542a,并且在护罩构件3设置外周压接部542b,但也可以在涡旋构件2设置外周压接部542b,并且在护罩构件3设置外周被压接部542a。但是,优选在刚性较高的一方设置被压接部541a、542a。

此外,在本例中,为了防止塑性流动部的分散,将压入部53b设置在护罩构件3中的内周压接部541b的Y1侧,并且将被压入部53a设置在涡旋构件2中的内周被压接部541a的Y1侧,但也可以取而代之地或者与此同时,在护罩构件3的外周压接部542b的Y1侧形成压入部,并且在涡旋构件2中的内周被压接部541a的Y1侧设置被压入部。

接下来,对本例的涡轮增压器用压缩机壳体1的作用效果进行详细说明。

根据本例的涡轮增压器用压缩机壳体1,涡旋构件2与护罩构件3之间的密封部541、542是通过在设置于涡旋构件2和护罩构件3中的一方的被压接部541a、542a压接设置于另一方的压接部541b、542b并主要使该压接部541b、542b发生塑性流动而形成的。由此,由于在密封部541、542中主要使压接部541b、542b发生塑性流动而填埋细微的间隙,因此与仅通过两者的压入来形成密封部的情况相比,能够实现密封性的提高。进一步地,由于在密封部541、542中不需要另外的密封材料的涂布,因此能够实现成本降低。

另外,在本例中,具备沿扩散部30在周向上形成并且使冷却扩散部30的冷媒进行流通的冷媒流路5。冷媒流路5形成为由在涡旋构件2以及护罩构件3中的彼此的对置部分别形成的第一冷媒流路形成部51和第二冷媒流路形成部52构成的环状的空间50。作为密封部541、542,包括对冷媒流路5的内周侧进行密封的内周密封部541、以及对冷媒流路5的外周侧进行密封的外周密封部542,内周密封部541是通过在形成于涡旋构件2以及护罩构件3中的一方的内周被压接部541a压接形成于涡旋构件2以及护罩构件3中的另一方的内周压接部541b并主要使内周压接部541b发生塑性流动而形成的。外周密封部542是通过在形成于涡旋构件2以及护罩构件3中的一方的外周被压接部542a压接形成于涡旋构件2以及护罩构件3中的另一方的外周压接部542b并主要使外周压接部542b发生塑性流动而形成的。由此,在具备冷媒流路5的涡轮增压器用压缩机壳体1中,能够实现成本降低,并且能够提高冷媒流路5的内周密封部541以及外周密封部542的密封性。

另外,在本例中,内周压接部541b位于压入部53b的压入方向终端侧Y2。由此,在将护罩构件3组装于涡旋构件2时,由于在压入部53b被压入后内周压接部541b压接于被压接部541a,因此能够防止内周密封部541中的塑性流动部的分散。由此,能够可靠地提高密封性。

进一步地,涡轮增压器用压缩机壳体1被分开形成,具有涡旋构件2和护罩构件3,涡旋室12是通过至少将两个构件相互组装而形成的。由此,能够使涡旋室12的剖面形状为圆形,并且能够使涡旋室形成部120形成为能够脱模的没有底切的形状。其结果是,能够提高供气的压缩效率,并且能够通过压铸容易地成形。

另外,在本例中,涡轮增压器用压缩机壳体1为由涡旋构件2以及护罩构件3构成的两构件结构,但也可以如图8所示的第一变形例那样,形成为由涡旋构件2、护罩构件3以及外周环状构件4构成的三构件结构。外周环状构件4呈环状,具有第三涡旋室形成部123和外周环状构件***部410。外周环状构件***部410被压入外周部125而形成压入部42。此外,在该第一变形例中,对与第一实施例等同的结构要素标注相同的附图标记并省略其说明。

以下对第一变形例的涡轮增压器用压缩机壳体1的制造方法进行说明。首先,如图9所示,与第一实施例同样地对涡旋构件2进行压铸成形。进一步地,对第一实施例中的护罩构件3的外周部与具有外周环状构件4的外形的外周环状构件4的内周部经由连结部4a连结而成为一体的一体构件3b进行压铸成形。然后,通过机械加工在涡旋构件2形成被压入部53a、内周被压接部541a和外周被压接部542a,在护罩构件3形成压入部53b、内周压接部541b以及外周压接部542b。进一步地,切削第二壁面521的底部的切削加工部57。之后,沿箭头P的方向将一体构件3b的压入部53b压入涡旋构件2的被压入部53a,使一体构件3b的内周压接部541b以及外周压接部542b压接于涡旋构件2的内周被压接部541a以及外周被压接部542a并发生塑性流动,从而形成内周密封部541以及外周密封部542。然后,对图10所示的连结部4b进行切削,在护罩构件3和外周环状构件4压入涡旋构件2的状态下将两者分离。由此,制作图8所示的第一变形例的涡轮增压器用压缩机壳体1。

在该第一变形例的涡轮增压器用压缩机壳体1中,也起到与第一实施例等同的作用效果。而且,优选压入外周环状构件4而成的压入部42的过盈量比压入部53b的过盈量小。在该情况下,能够容易地进行将一体构件3b向涡旋构件2压入的作业。另外,能够吸收护罩构件3的压入部53b与外周环状构件4的压入部42的同轴偏离。

另外,在第一变形例的涡轮增压器用压缩机壳体1中,如图8、图10所示,使一体构件3b中的成为外周环状构件4的部分在轴向上不对涡旋构件2进行抵接而形成间隙B。因此,在一体构件3b的压入时,能够使第一抵接面561与第二抵接面562抵接。由此,能够更高精度地决定一体构件3b的轴向压入位置。即,能够更高精度地进行最终的护罩构件3的轴向的定位。

(第二实施例)

在上述第一实施例中,如图6中的(a)所示,在组装前的状态下,内周压接部541b在包含压缩机叶轮13的旋转轴13a在内的剖面中向径向突出而呈山形状,位于压入方向始端侧的始端侧斜面和压入方向终端的终端侧斜面以该山形状的顶点位置为中心而形成对称形状,斜面的倾斜角度彼此相当。另外,在上述第一实施例中,如图7中的(a)所示,在组装前的状态下,外周压接部542b也与内周压接部541b相同。

在本第二实施例中,取而代之地,如图11所示,在组装前的状态下,内周压接部541b在包含压缩机叶轮13的旋转轴13a在内的剖面中向径向X突出而呈山形状,具有位于压入方向始端侧(本例中为吸气侧Y1)的始端侧斜面545和压入方向终端侧(本例中为与吸气侧Y1相反的相反侧Y2)的终端侧斜面546。而且,在该剖面中,终端侧斜面546与旋转轴13a所成的角的锐角侧的角度θ2大于始端侧斜面545与旋转轴13a所成的角的锐角侧的角度θ1。另外,图11所示的内周压接部541b的形成范围H3小于图6中的(a)所示的第一实施例中的形成范围H1。在本例中,图11所示的内周压接部541b的突出量T1与第一实施例的情况相当。此外,图11所示的旋转轴13a在该图上平行移动到了内周压接部541b的附近,并不表示实际的旋转轴13a的位置,但图11中的θ1与始端侧斜面545相对于实际的旋转轴13a的锐角侧的角度一致,图11中的θ2与终端侧斜面546相对于实际的旋转轴13a的锐角侧的角度一致。

图11所示的始端侧斜面545与旋转轴13a所成的角的锐角侧的角度θ1例如能够设为5~15°,在本例中设为10°。另外,图11所示的终端侧斜面546与旋转轴13a所成的角的锐角侧的角度θ2例如能够设为30~60°,在本例中设为45°。θ1、θ2均形成为在整个周向上恒定。

另外,如图12所示,在组装前的状态下,与内周压接部541b同样地,外周压接部542b也在包含旋转轴13a的剖面中向径向X突出而呈山形状,具有位于压入方向始端侧(本例中为吸气侧Y1)的始端侧斜面547和压入方向终端侧(本例中为与吸气侧Y1相反的相反侧Y2)的终端侧斜面548。而且,在该剖面中,终端侧斜面548与旋转轴13a所成的角的锐角侧的角度θ4大于始端侧斜面547与旋转轴13a所成的角的锐角侧的角度θ3。另外,图12所示的外周压接部542b的形成范围H4小于图7中的(a)所示的第一实施例中的形成范围H2。而且,图12所示的外周压接部542b的突出量T2与第一实施例的情况相当。此外,图12所示的旋转轴13a在该图上平行移动到了外周压接部542b的附近,并不表示实际的旋转轴13a的位置,但图12中的θ3与始端侧斜面547相对于实际的旋转轴13a的锐角侧的角度一致,图12中的θ4与终端侧斜面548相对于实际的旋转轴13a的锐角侧的角度一致。

图12所示的始端侧斜面547与旋转轴13a所成的角的锐角侧的角度θ3与θ1同样地,例如能够设为5~15°,在本例中设为10°。另外,终端侧斜面548与旋转轴13a所成的角的锐角侧的角度θ4与θ2同样地,例如能够设为30~60°,在本例中设为45°。θ3、θ4均形成为在整个周向上恒定。此外,本例中的其他结构与第一实施例的情况等同,标注与第一实施例相同的附图标记并省略其说明。

接下来,对本第二实施例的涡轮增压器用压缩机壳体1的制造方法进行说明。

首先,与图2所示的第一实施例的情况同样地进行压铸工序,通过压铸单独制作涡旋构件2和护罩构件前驱体3a。然后,也与第一实施例的情况同样地进行机械加工工序。但是,在本例的机械加工工序中,如图11、图12所示,内周压接部541b以及外周压接部542b被机械加工形成为,呈向径向突出的山形状,具有位于压入方向始端侧Y1的始端侧斜面545、547以及位于压入方向终端侧Y2的终端侧斜面546、548,并且在该剖面中,终端侧斜面546、548与旋转轴13a所成的角的锐角侧的角度θ2以及θ4大于始端侧斜面545、547与旋转轴13a所成的角的锐角侧的角度θ1以及θ3。而且,在本例中,如上所述,将θ1以及θ3设为10°,将θ2以及θ4设为45°。之后,与第一实施例的情况同样地进行组装工序,使内周压接部541b及外周压接部542b发生塑性流动,形成内周密封部541和外周密封部542。由此,形成冷媒流路5。然后,对内侧面22a进行机械加工而形成护罩面22,从而制造出涡轮增压器用压缩机壳体1。

根据本第二实施例的涡轮增压器用压缩机壳体1,起到与上述第一实施例的情况相同的作用效果。进一步地,在本例的涡轮增压器用压缩机壳体1的制造方法中,在机械加工工序中,压接部541b、542b被机械加工形成为,在包含旋转轴13a的剖面中呈向径向突出的山形状,并具有位于压入方向始端侧的始端侧斜面545、547和位于压入方向终端侧的终端侧斜面546、548,并且在该剖面中,终端侧斜面546、548的锐角侧的角度θ2、θ4大于始端侧斜面545、547的锐角侧的角度θ1、θ3。由此,通过机械加工工序中的机械加工,使得在压接部541b、542b中,相对于旋转轴13a而终端侧斜面546、548比始端侧斜面545、547更加立起,因此,能够在使始端侧斜面545、547的倾斜角度θ1、θ3与压接部541b、542b的突出量T1、T2维持为与第一实施例的情况相当的状态下,使压接部541b、542b的形成范围(即宽度)H3、H4变窄。由此,在组装工序中不会使组装性变差,而容易使压接部541b、542b发生塑性流动。其结果是,能够更可靠地填埋各密封部541、542中的微细的间隙,能够进一步提高密封性。或者,在使压接部541b、542b的塑性流动量与第一实施例相同的情况下,通过使压接部的宽度H3、H4变窄,能够在机械加工工序中的机械加工中缓和压接部541b、542b以及被压接部541a、542a的尺寸公差,因此能够提高生产率,能够实现低成本化。

在本例中,在护罩构件3设置内周压接部541b,并且在涡旋构件2设置内周被压接部541a,但也可以取而代之地,在护罩构件3设置内周被压接部541a,并且在涡旋构件2设置内周压接部541b。另外,在本例中,在护罩构件3设置外周压接部542b,并且在涡旋构件2设置外周被压接部542a,但也可以取而代之地,在护罩构件3设置外周被压接部542a,并且在涡旋构件2设置外周压接部542b。在任一情况下,均优选在刚性较高的构件设置内周被压接部541a、外周被压接部542a。

此外,在本例中,如图11、图12所示,由于在护罩构件3设有内周压接部541b、外周压接部542b,因此始端侧斜面545、547位于吸气侧Y1,并且终端侧斜面546、548位于相反侧Y2。另一方面,在涡旋构件2设有内周压接部541b、外周压接部542b的情况下,吸气侧Y1成为压入方向终端侧,并且相反侧Y2成为压入方向始端侧,因此终端侧斜面546、548位于吸气侧Y1,并且始端侧斜面545、547位于相反侧Y2。

另外,在本例中,始端侧斜面545、547以及终端侧斜面546、548在包含旋转轴13a的剖面中为直线状,但也可以在包含旋转轴13a的剖面中不是严格的直线状而是稍微弯曲的形状。

本发明并不限定于上述实施例以及变形例,能够在不脱离其主旨的范围内应用于各种实施例以及变形例。

25页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:出风格栅及出风装置

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!