一种全自动气动控制装置

文档序号:1000482 发布日期:2020-10-23 浏览:2次 >En<

阅读说明:本技术 一种全自动气动控制装置 (Full-automatic pneumatic control device ) 是由 崔利兴 邓永峰 黄森辰 于 2020-08-27 设计创作,主要内容包括:本发明涉及一种全自动气动控制装置,包括壳体、安装在壳体内的执行组件及动力组件、触发动力组件驱动执行组件工作的控制组件;所述执行组件、动力组件及控制组件由上至下依次分布;所述执行组件包括用于实现空气及真空通断的阀芯组件;所述动力组件包括用于实现延时关闭的针阀组件及用于实现快速开启的滑阀组件;所述控制组件包括液位压力传感器、稳压缓冲单元及动能转换单元;本发明主要由三大核心组件构成,包括执行组件、动力组件及控制组件,能够实现结构设计的紧凑性及可靠性;内部形成的空间具有主动的、可靠的、有效的集水和排水技术与结构,且内部合理的流通管路设计,阻力小效率高。(The invention relates to a full-automatic pneumatic control device, which comprises a shell, an execution component and a power component which are arranged in the shell, and a control component which triggers the power component to drive the execution component to work; the execution assembly, the power assembly and the control assembly are sequentially distributed from top to bottom; the execution assembly comprises a valve core assembly for realizing air and vacuum connection and disconnection; the power assembly comprises a needle valve assembly for realizing delayed closing and a slide valve assembly for realizing quick opening; the control assembly comprises a liquid level pressure sensor, a pressure stabilizing buffer unit and a kinetic energy conversion unit; the invention mainly comprises three core components, including an execution component, a power component and a control component, and can realize the compactness and reliability of the structural design; the space formed inside has active, reliable and effective water collecting and draining technology and structure, and reasonable flow pipeline inside, small resistance and high efficiency.)

一种全自动气动控制装置

技术领域

本发明涉及真空污水连续收集、临时储存及周期性运输系统中的真空排污阀控制系统技术领域,其中真空污水连续收集、临时储存及周期性运输系统属于真空井,具有采用真空排污阀进行周期性排污的临时污水收集装置,而且能够将其污水收集装置中的污水输送到下游的真空收集管路网中,并采用压差驱动控制方法,即气动控制方法进行控制,其组成部分主要包括真空排污阀、污水腔、设备腔、井盖、手动球阀、重力污水入口管路、连接下游真空收集管路网的排污管路、污水吸入管路;针对真空井中真空排污阀控制系统而言,本发明则特别涉及一种全自动气动控制装置。

背景技术

在真空生活污水收集、输送和处理技术领域中,真空生活污水收集是最前端的技术领域,其中包括这样的技术应用场景:凭借基于一端吸入空气,而另一端排出空气的真空或者负压气流输送力原理的管子,将来自建筑物(比如农村平房、瓦房、楼房、水泥房、别墅,以及城市住宅楼、高楼、大厦等)的生活污水(比如小便器、马桶等废水来源为代表的黑水,以及以厨房、换洗和洗澡等废水来源为代表的灰水)输送到一个较远的污水池或者真空收集输送管路系统中。

实现该应用场景的典型技术方案是采用一个临时污水储液罐,该污水罐具有与建筑物污水口相连的入口,以及与真空污水输送管路(或真空源、真空污水罐等)相连的排污吸入口,以及将排污吸入口和真空污水输送管路相连的真空排污阀(或真空阀,主阀);该真空排污阀具有一个控制系统或装置,它的基本操作(或工作)流程是当储液罐中是污水水位达到第一预设值(或叫高水位值)控制器对真空排污阀施加真空力而将污水吸走排空,直到污水罐中的污水水位降到另一个预设值(或低水位值)时控制系统关闭真空排污阀,该系统被定义为真空污水连续收集、临时储存和周期性输送系统,简称为真空收集井、或真空井。

通常,在液体或污水收集技术领域,采用真空技术来收集液体或者污水是已公知的技术;在过去的130年里,大量的国外专利文献涉及到这些细分技术领域,尽管国内技术积累时间比较短,但最近几年关于真空排污阀控制系统,尤其是压差式气动控制器的发展也十分迅猛;针对国内外的设计而言,一般将其分为三个主要的核心组件,执行组件、控制组件及动力组件,其中:

(1)执行组件:用于实现将真空和空气连续间歇式地接通至输出接口,使输出接口最终实现间歇式依次接通真空和空气的要求,该结构类似于二位三通换向阀,其中具有两个输入接口,分别连接真空和空气,输出为一个接口,连接真空排污阀;

目前,实现该功能的膜片式换向阀式结构,主要有两种类型,分别是弹簧在膜片之上的波纹膜片复位式结构以及弹簧在膜片之下的波纹膜片复位式结构;其中,弹簧在膜片之上的波纹膜片复位式结构可参照Foreman等人申请的发明专利,其欧盟专利号EP0519523A2(1992年)、美国专利号US5069243(1989年)等;以及Huisma等人申请的发明专利,其欧盟专利号EP0152386B1(1984年);弹簧在膜片之下的波纹膜片复位式结构可参照Foreman等等人于1981年申请的发明专利,其美国专利号US4373838(1981年);Featheringill等人于1995年申请的发明专利,其美国专利号US5570715(1995年);John等人于1976年申请的发明专利,其美国专利号US3998736(1976年)等;

上述现有技术中存在如下缺陷:

a.腔室内排水效果不佳:例如欧盟专利号EP0519523A2中的腔室内具有积水集中且排水困难的问题,抽气口38是在腔室顶部,尽管为了排除40腔室中的积存的冷凝水,而特别的增加了排水管39,但是由于波纹膜片38动作后其凹槽与排水管39入口距离很近,以便将水排除;同理美国专利号US4373838中也存在上述腔室内排水不佳的问题;

b.腔室内排水不彻底:例如欧盟专利号EP0519523A2波纹膜片38动作后其凹槽与排水管39入口距离很近,以便将水排除;但过近的距离,导致在高速抽气过程中造成排水管39端头将波纹膜片48吸附在一起,造成波纹膜片不能进一步上升,进而影响执行组件的功能实现和空气和真空之间的切换,所以实际使用情况下间隙是比较大的,进而积水会存在残留;而美国专利号US4373838中的输出口122是联通各种阀中的控制腔室的,而真空口96流转或者联通到接口122只进行了两次折弯,相对而言,这个是较佳的方案,但是该控制器的安装方式是水平安装的,即96和122是垂直地面安装的,存在的问题是122管路的空气在控制器关闭的瞬间,其气流对114阀芯的冲击力会将空气中的湿气冷凝成冷凝水,该冷凝水在与空气中的灰尘等杂质的混合并附着在114阀芯密封接触边上,导致密封不良,从而又出现漏气现象;

c.真空通入不迅速:例如欧盟专利号EP0519523A2中出口51与真空管路(密封圈43下面的管路)之间经过多次弯折,从真空排污阀气动控制器真空入口(位于侧面)到达出口51,经过了4次90度的气路拐弯,后果就是气路管道流通阻力大,导致输出口联通的各种阀中的控制腔室中的空气不能迅速、彻底地经真空接入口排出;而美国专利号US4373838的输出口122是联通各种阀中的控制腔室的,而真空口96流转或者联通到接口122只进行了两次折弯,相对而言,其工作效果得到了进一步的改善;

d.无法实现与其它功能部件结构合并:例如欧盟专利号EP0519523A2中集水和排水功能模块或者零件(简称为集排水或集排水零件)是与气动控制器独立配置的,占地方不说,而且需要的零件比集成式更多,因为需要更多的安装件、连接件等零件;而且真空口位于空气口的下面,不利于集成式设计,因为集水和排水功能需要更大的腔室,在控制器高度不便的情况下,其有效腔室内部高度就显得极为重要了,而空气入口在真空口上面,意味着集排水腔室高度缩短,进而集水效果降低;而美国专利号US4373838波纹膜片阀芯是水平动作的,而且各个腔室也是水平布置的,这样就导致了基于重力集中收集冷凝水的集排水零部件无法实现其功能。

(2)控制组件:用于实现在传感器的控制下,相关腔室容积的改变,进而触发动力装置的执行,其基本功能技术要求是反应灵敏、复位可靠;

目前,实现该功能的控制组件包括以下主要部分:传感器、稳压缓冲器、动能转换单元;其中,传感器是基于液位变化引起的气压压力变化的原理设计的;稳压缓冲器是用于液位波动引起的气压压力突变,避免该突变压力对控制器造成误操作;动能转换单元是指将液位压力能转换为位移的零部件,进而为动力装置提供控制信号;

由于液位传感器的工作原理是一致的,故动能转换装置,也大同小异,均为基于膜片式结构的动能转换装置;但很多方面的细节是不同的,最具代表性的技术主要有两种结构类型,分别是Foreman等人申请的发明专利,其美国专利号US5069243(1989年)、Foreman等等人申请的发明专利,其美国专利号US4373838(1981年);

上述现有技术中存在如下缺陷:

a.腔室内排水的可靠性及有效性差:例如美国专利号US5069243中液位控制器接入口是在顶部的,存在的问题就是连接管路需要经过一次弯折,长时间使用过程中,会导致连接管路弯曲变形,进而会增加接头25的受力,导致损坏;而且上扬的管路接头,不利于管路中冷凝水的回流排出,这个是比较严重的问题;更严重的是,腔室29中的冷凝水井,经波纹膜片30阻尼孔,并经管路32,进入到腔室33中,进而逐渐聚集累积;随着使用时间的持续,以及真空井内外温度差异的增加,冷凝水聚集效应更加明显,更致命的是,积累的冷凝水无法通过原始路径返回或者排出,因为接口25是在顶部配置的,而且液位传感器中液位的波动引起的气压的变化并不显著,特别是波纹膜片阻尼孔30的存在下,进而进一步加剧了冷凝水的排出困难。

而美国专利US4373838中对排水问题进行了一定的探索或者改观,腔室78的冷凝水可以通过控制器上的下端的阻尼孔118而排出联通液位传感器的管路中,更重要的是,液位控制器接头是水平配置的,利于冷凝水的排出;而腔室79中冷凝水经过孔88进入腔室80中,在真空吸管120的作用下,可以将两个腔室中的冷凝水排出控制器之外;但是孔88不是在水平配置控制器的腔室最底部相切处,而是靠近中心方向一点,导致腔室79中会积存一定的冷凝水;与此同时,腔室80中的真空吸管120是垂直配置的,在节流阀120作用下,真空吸入速度已经缩减了,特别是冷凝水在腔室表面,特别是底面的水的吸附作用,而不能彻底的将积存冷凝水彻底有效地排空;

b.液位波动稳压功能可靠性及有效性差:例如美国专利US4373838中液位波动稳压是靠阻尼孔118来实现的,该方案结构简单,但效果不佳,因为液位的突然增加引起的气压的突然增加,会加速空气从阻尼孔118中喷出,进而在一定的压力范围内起到了一定的稳压作用,而且压力升高和压力降低对波纹膜片86的影响是一样的,方向相反;而技术目标是当气压升高时稳压效果好,要慢而稳定;而当气压降低时要快速连续,实际情况则是气压降低时和气压升高时的速率是一样的;

c.节流口的结构设置不合理:例如美国专利US4373838中,需要配置不同的零件118,以应对不同的真空井污水槽高液位差的不同,而且该零件是异形件,而且存放不方便,小孔的存在导致开模费用较大。

(3)动力组件:用于在控制组件的控制下,实现真空和空气间歇式地接通至执行组件,满足快速切换的要求,类似于二位二通换向阀或者二位三通换向阀,其中输入接口具有两个,分别连接真空和/或空气,输出接口具有一个,连接执行组件的输入接口或控制接口;

动力组件主要包括通断空气或真空的开关机构、延时关闭结构等;其中,通断真空或空气的开关机构是由来自执行组件的传感器间接触发的进而为实现产生压力差进行动力驱动的装置;能量-动力转换机构是通过通断真空或空气的开关机构,实现真空和大气之间压力差进而作为动力驱动执行组件的装置,实现快速打开的目的;其可以采用活塞式滑阀结构或者膜片式滑阀结构等工作原理结构,即二位二通换向阀或者二位三通换向阀;考虑到膜片式结构占用空间大,而活塞式滑阀结构紧凑,同时考虑到快速打开和延时关闭机构采用针阀对空气进行延时调节,故能量-动力转换机构采用二位二通活塞式滑阀换向阀,其中输入为一个接口,连接真空管路,输出接口具有一个,连接执行组件的输入接口或控制接口;延时关闭机构是用于延长控制器的关闭时间的机构;延时关闭机构用于排污延时一段时间后再关闭,有助于真空收集井中液位的有效降落至下限位位置,避免液位下降距离过小,引起真空收集井的频繁通断工作,造成设备老化加速,寿命降低。

而现有技术中最具代表性的技术主要有两种结构类型,分别是Foreman等人申请的发明专利,其美国专利号US5069243(1989年)、Foreman等等人申请的发明专利,其美国专利号US4373838(1981年);

上述现有技术中存在如下缺陷:

a.钣金件可靠性差:例如美国专利号US5069243中通断开关机构有两个方案,分别是鸭嘴阀结构和弹簧杠杆回力夹结构,鸭嘴阀结构是采用橡胶零件制造,尽管结构紧凑,但易堵或易漏气、故环境适应性较差;而弹簧杠杆回力夹结构属于一体式钣金件,虽然灵敏性高,但存在易生锈,污渍影响密封性等缺点,特别是湿度较大含有灰尘的空气进入控制器内部的情况下,加剧了零件腐蚀性和破坏了配合的气密性;美国专利号US4373838中通断开关机构中技术方案为弹簧杠杆回力夹结构,其结构更加复杂,特别的是弹簧杠杆回力夹结构属于合页式钣金件,虽然灵敏性高,但存在转轴易磨损、易生锈等缺点,特别是湿度较大含有灰尘的空气进入控制器内部的情况下,加剧了零件腐蚀性和破坏了配合的气密性;

b.集水和排水功能不可靠:例如美国专利号US5069243中延时关闭机构结构方案是在空气管路上设置调速针阀,而通断真空,美国专利号US4373838中技术中延时关闭机构结构方案正好与前者相反,即是在真空管路上设置调速针阀,而通断空气,由于真空压力会受到很多因素的影响,比如真空排污阀通断的瞬间真空管路上游压力波动,真空排污阀运行结束关闭之后污水吸入管中的污水回流冲击液位传感器,造成其液位波动,进而造成控制用更严重的是,上置式真空控制管路接头是在装置顶部,通过吸管120靠近腔室80底部,因此存在积水和排污不佳的问题。

针对现有技术中存在的一系列问题,例如:腔室内部的凝结积水不易排出或排出不彻底、相关通气管路设计不合理、整体结构设计功能性及可靠性差等问题,本发明研制了一种全自动气动控制装置,以解决现有技术中存在的问题,经检索,未发现与本发明相同或相似的技术方案。

发明内容

本发明目的是:提供一种全自动气动控制装置,以解决现有技术中装置内部存在凝结积水不易排出或排出不彻底、内部管路设计不合理、功能性及可靠性较差等问题。

本发明的技术方案是:一种全自动气动控制装置,包括壳体、安装在壳体内的执行组件及动力组件、触发动力组件驱动执行组件工作的控制组件;所述执行组件、动力组件及控制组件由上至下依次分布;所述执行组件包括用于实现空气及真空通断的阀芯组件;所述动力组件包括用于实现延时关闭的针阀组件及用于实现快速开启的滑阀组件;所述控制组件包括液位压力传感器、稳压缓冲单元及动能转换单元。

优选的,所述壳体包括由上至下依次设置的上壳体、中壳体及下壳体,所述中壳体内部设置有由上至下依次相连通的第一空腔、第二空腔、第三空腔、第四空腔、第五空腔及第六空腔,所述第一空腔与第二空腔之间设置有第一内孔,所述第二空腔与第三空腔之间设置有第二内孔,所述第三空腔与第四空腔之间设置有第三内孔,所述第五空腔与第六空腔之间设置有第四内孔,所述第四内孔侧边设置有两端分别与第四内孔及第六空腔相连通的第一气路通道;所述中壳体内部还设置有空气流道,侧壁上设置有与空气流道相连通的空气入口及阀体空气接口、与第三空腔相连通的阀体气控接口、与第四空腔相连通的真空出入口,所述空气流道还与第二空腔及第六空腔相连通。

优选的,所述阀芯组件包括阀芯本体、第一复位弹簧及第一膜片;所述阀芯本体依次贯穿第一内孔、第二内孔及第三内孔,并延伸至第一空腔、第二空腔、第三空腔及第四空腔内,且第一内孔、第二内孔及第三内孔内壁上均嵌套设置有用于与阀芯本体侧壁形成密封的橡胶密封圈;处在第三空腔内的阀芯本体上呈一体结构设置有密封压板,所述密封压板上下两端的阀芯本体侧壁上均开设有通槽;所述第一复位弹簧套设在第二空腔内的阀芯本体外壁处;所述第一膜片设置在第四空腔内,中部与阀芯本体下端部固定连接,沿周向的外侧端与第四空腔内壁固定连接,并将第四空腔分隔为第一上腔室及第一下腔室。

优选的,与所述第五空腔相对的中壳体侧壁上设置有与第五空腔相连通的节流通道,所述节流通道与真空出入口相连通;所述针阀组件嵌套配合在节流通道内,包括延伸至第五空腔内的针阀本体及固定在针阀本体远离第五空腔一侧的调节旋钮。

优选的,所述滑阀组件包括阀杆、第二复位弹簧及第二膜片;所述阀杆与第四内孔嵌套并滑动配合,侧壁与上端面之间设置有相连通的第二气路通道;所述第二复位弹簧设置在阀杆上端的第四内孔内;所述第二膜片设置在第六空腔内,中部与阀杆下端部固定连接,沿周向的外侧端与第六空腔内壁固定连接,并将第六空腔分隔为第二上腔室及第二下腔室。

优选的,所述下壳体下端固定有连接头,所述连接头上端与下壳体下端面之间设置有第七空腔,所述第七空腔与第六空腔之间设置有导流孔,所述第七空腔与侧壁之间设置有相连通的传感器接口;所述液位压力传感器与传感器接口相连接;所述稳压缓冲单元包括连接头及第七空腔形成的区域,所述第七空腔内设置有第三膜片,所述第三膜片沿周向的外侧端与第七空腔内壁固定连接,端面上设置有连通第三膜片上下两端的通孔;所述动能转换单元包括第六空腔及第二膜片所形成的区域。

与现有技术相比,本发明的优点是:

(1)本发明主要由三大核心组件构成,包括执行组件、动力组件及控制组件,能够实现结构设计的紧凑性及可靠性;内部形成的空间具有主动的、可靠的、有效的集水和排水技术与结构,且内部合理的流通管路设计,阻力小效率高。

(2)执行组件用于实现将真空与空气连续间歇式地接通至阀体气控接口,使阀体气控接口最终实现间歇式依次接通真空与空气的要求,类似于二位三通换向阀;同时与其配合连接的第三中壳体能够实现气流的涡旋状流入及射流状流出,便于将结构内部的凝结水汽排出,从而能够有效实现集水与排水功能,实现了执行组件与集水排水功能部件的结构合并,实现了功能集成化,避免独立配置。

(3)动力组件用于实现真空与空气间歇式地接通至执行组件,满足快速切换的要求,本发明是采用活塞式的滑阀组件进行快速打开控制、采用针阀组件进行延时关闭控制,避免采用传统的钣金件进行快速打开控制的技术,大大减少了零件数量,结构更加紧凑,可靠性更强。

(4)控制组件用于在液位压力传感器的控制下实现装置内部第二上腔室及第二下腔室的容积改变,进而触发动力组件驱动执行组件工作,控制组件中具有可靠的液位波动稳压功能,即采用了具有通孔的第三膜片,能够实现升压时稳压,降压时快速泄压;同时传感器接口位于全自动气动控制装置的底部,第六空腔内凝结的水汽能够依次顺着导流孔、通孔及传感器接口排出,有效实现了集水排水功能;且第三膜片上的通孔既起到排水作用,又起到通气作用,也实现了功能集成,可靠性高。

附图说明

下面结合附图及实施例对本发明作进一步描述:

图1为本发明所述的一种全自动气动控制装置安装在真空井内的结构示意图;

图2为本发明所述的一种全自动气动控制装置的局部剖面主视图;

图3为本发明所述壳体的局部剖面主视图;

图4为本发明所述第三中壳体俯视图;

图5为本发明所述执行组件/阀芯组件的安装剖面主视图;

图6为本发明所述阀芯本体的结构示意图;

图7为本发明所述动力组件的安装剖面主视图;

图8为本发明所述导流环上端部的结构示意图;

图9为本发明所述导流环下端部的结构示意图;

图10为本发明所述控制组件的局部结构剖视图;

图11为本发明所述第一中壳体、第二中壳体及第三中壳体的1/4侧边剖视结构***图及空气流通路线图;

图12为本发明所述空气入口与空气流道之间的连通线路图;

图13为本发明所述第四中壳体的底部结构示意图;

图14为本发明所述第四中壳体的1/2剖视结构图及密封条的结构示意图;

图15为本发明所述节流通道与真空出入口连通的线路图;

图16为本发明所述控制组件内的排水线路图;

图17为本发明所述动力组件非工作状态下的剖视图;

图18为本发明所述动力组件工作状态下的剖视图;

图19为本发明所述执行组件的工作原理简图;

图20为本发明所述执行组件非工作状态下的剖视图;

图21为本发明所述执行组件工作状态下的剖视图;

图22为本发明所述第三中壳体上端部排水时的流通线路图;

图23为本发明所述第三中壳体下端部排水时的流通线路图。

其中:01、真空井,02、一种全自动气动控制装置;

1、壳体;

11、上壳体,12、中壳体,13、下壳体,14、空气流道,15、空气入口,16、阀体空气接口,17、阀体气控接口,18、真空出入口;

101、第一空腔,102、第二空腔,103、第三空腔,104、第四空腔,1041、第一上腔室,1042、第一下腔室,105、第五空腔,106、第六空腔,1061、第二上腔室,1062、第二下腔室;

111、第一内孔,112、第二内孔,113、第三内孔,114、第四内孔,115、第一气路通道,116、节流通道;

121、第一中壳体,122、第二中壳体,123、第三中壳体,124、第四中壳体,125、第五中壳体;

1241、导流槽,1242、密封条,

2、执行组件;

21、阀芯本体,211、密封压板,212、通槽,22、第一复位弹簧,23、第一膜片,24、橡胶密封圈;

3、动力组件;

31、针阀组件,311、针阀本体,312、调节旋钮,313、导流环,314、引流槽,315、凹腔;

32、滑阀组件,321、阀杆,322、第二复位弹簧,323、第二膜片,324、第二气路通道;

4、控制组件;

41、液位压力传感器,42、稳压缓冲单元,43、动能转换单元,44、连接头,45、第七空腔,46、第三膜片,47、导流孔,48、传感器接口;

G01、输入口,G02、输出口,G03、空气管路接口,G04、真空管路接口。

具体实施方式

下面结合具体实施例,对本发明的内容做进一步的详细说明:

如图1所示,一种全自动气动控制装置用于安装在真空井01中,用于实现将真空井01内的污水输送到下游的真空收集管路网中,其为图1中标号为“02”的部件,如图2所示,其结构包括壳体1、安装在壳体1内的执行组件2及动力组件3、触发动力组件3驱动执行组件2工作的控制组件4;执行组件2、动力组件3及控制组件4由上至下依次分布。

如图3所示,壳体1包括由上至下依次设置的上壳体11、中壳体12及下壳体13,为了便于中壳体12内部的各个空间的加工,将中壳体12设计为由上至下依次设置的第一中壳体121、第二中壳体122、第三中壳体123、第四中壳体124及第五中壳体125;中壳体12内部设置有由上至下依次相连通的第一空腔101、第二空腔102、第三空腔103、第四空腔104、第五空腔105及第六空腔106;其中第一空腔101设置在第一中壳体121内部;第二空腔102设置在第二中壳体122内部,并与第一空腔101之间设置有第一内孔111;第三空腔103及第四空腔104设置在第三中壳体123上下两端,且第三空腔103与第二空腔102之间设置有第二内孔112,第三空腔103与第四空腔104之间设置有第三内孔113;第五空腔105设置在第四中壳体124内部,与第四中壳体124侧壁之间还设置有相连通的节流通道116;第六空腔106设置在第五中壳体125下端部,并与第五空腔105之间设置有第四内孔114,第四内孔114侧边设置有两端分别与第四内孔114及第六空腔106相连通的第一气路通道115;中壳体12内部还设置有空气流道14,空气流道14依次贯穿第一中壳体121、第二中壳体122、第三中壳体123、第四中壳体124及第五中壳体125,并与第二空腔102及第六空腔106相连通。

中壳体12侧壁上设置有空气入口15、阀体空气接口16、阀体气控接口17及真空出入口18,其中,空气入口15设置在第四中壳体124侧壁处,并与空气流道14相连通,详细的连通原理参照下文“空气入口15与空气流道14的连通”;阀体空气接口16设置在第一中壳体121侧壁处,用于与真空排污阀连接,并与空气流道14相连通;如图4所示,阀体气控接口17及真空出入口18设置在第三中壳体123上,阀体气控接口17与第三空腔103相连通,真空出入口18与第四空腔104相连通。

执行组件2的主要功能是实现将真空和空气连续间歇式的接通至输出口,即阀体气控接口17,使输出口最终实现间歇式依次接通真空和空气的要求,类似于二位三通换向阀;如图5所示,其结构包括用于实现空气及真空通断的阀芯组件;阀芯组件包括阀芯本体21、第一复位弹簧22及第一膜片23;阀芯本体21依次贯穿第一内孔111、第二内孔112及第三内孔113,并延伸至第一空腔101、第二空腔102、第三空腔103及第四空腔104内,且第一内孔111、第二内孔112及第三内孔113内壁上均嵌套设置有用于与阀芯本体21侧壁形成密封的橡胶密封圈24;处在第三空腔103内的阀芯本体21上呈一体结构设置有密封压板211,如图6所示,密封压板211上下两端的阀芯本体21侧壁上均开设有通槽212;第一复位弹簧22套设在第二空腔102内的阀芯本体21外壁处;第一膜片23设置在第四空腔104内,中部与阀芯本体21下端部固定连接,沿周向的外侧端与第四空腔104内壁固定连接,并将第四空腔104分隔为第一上腔室1041及第一下腔室1042,其中第一膜片23中部的固定方式为:阀芯本体21下端通过锁紧螺钉固定连接一对连接板,第一膜片23中部端固定在一对连接板之间;第一膜片23外侧端的固定方式为:第一膜片23外侧端呈环形设置有凸起,嵌套并夹紧固定在第三中壳体123与第四中壳体124之间。

动力组件3的主要功能是在控制组件4的控制下,实现真空和空气间歇式地接通至执行组件2,满足快速切换的要求,类似于二位二通换向阀或者二位三通换向阀;如图7所示,其结构包括用于实现延时关闭的针阀组件31及用于实现快速开启的滑阀组件32;针阀组件31嵌套配合在节流通道116内,包括延伸至第五空腔105内的针阀本体311及固定在针阀本体311远离第五空腔105一侧的调节旋钮312,第五空腔105内侧下端还设置有导流环313,如图8、图9所示,导流环313下端面具有一呈环形设置的凹腔315,上端部均布设置若干由上端面呈弧形延伸至凹腔内的引流槽314,其中凹腔315与节流通道116相连通;节流通道116与真空出入口18相连通,详细的连通原理参照下文“节流通道116与真空出入口18的连通”;滑阀组件32包括阀杆321、第二复位弹簧322及第二膜片323;阀杆321与第四内孔114嵌套并滑动配合,侧壁与上端面之间设置有相连通的第二气路通道324;第二复位弹簧322设置在阀杆321上端的第四内孔114内;第二膜片323设置在第六空腔106内,中部与阀杆321下端部固定连接,沿周向的外侧端与第六空腔106内壁固定连接,并将第六空腔106分隔为第二上腔室1061及第二下腔室1062。

控制组件4包括液位压力传感器41、稳压缓冲单元42及动能转换单元43,主要功能是在液位压力传感器41的控制下,实现内部相关空间容积的改变,进而触发动力组件3工作,最终驱动执行组件2完成动作;如图10所示,下壳体13下端固定有连接头44,连接头44上端与下壳体13下端面之间设置有第七空腔45,第七空腔45与第六空腔106之间设置有导流孔47,第七空腔45与侧壁之间设置有相连通的传感器接口48;如图1所示,液位压力传感器41下端延伸至真空井01下端,上端与传感器接口48相连接;如图10所示,稳压缓冲单元42包括连接头44及第七空腔45形成的区域,第七空腔45内设置有第三膜片46,第三膜片46沿周向的外侧端与第七空腔45内壁固定连接,端面上设置有连通第三膜片46上下两端的通孔;动能转换单元43包括第六空腔106及第二膜片323所形成的区域。

本实施例中,管路连通的结构原理如下:

(1)空气入口15与空气流道14的连通:

如图11所示,第一中壳体121与第二中壳体122之间、第二中壳体122与第三中壳体123之间具有呈弧形设置的气体流道,当空气从空气入口15进入后贯穿第三中壳体123(如图11和图12中所示的A点),并进入两层气体流道之间流通(如图11中的两条弧形流通路线),然后进入第一中壳体121内(如图11和图12中所示的B点),B点处与空气流道14相连通,此时即实现空气入口15与空气流道14的连通,连通路线如图11、图12中的虚线所示。

(2)节流通道116与真空出入口18的连通:

如图13所示,第四中壳体124下端面具有一导流槽1241,导流槽1241的两端分别为C点及D点,其中C点处在偏向节流通道116的一侧,并与节流通道116相连通,D点处贯穿第四中壳体124,如图14所示,该导流槽1241下端具有一与导流槽1241形状相同的密封条1242;如图15所示,第一中壳体121、第二中壳体122及第三中壳体123内部设置有与D点处相连通的第一真空流道,第一中壳体121、第二中壳体122及第三中壳体123上端内部设置有与真空出入口18相连通的第二真空流道,且第一中壳体121上端具有一呈环形的第三真空流道,并用于连通第一真空流道及第二真空流道,最终即能实现节流通道116与真空出入口18的连通,连通路线如图15中的虚线所示。

本实施例中,各组件的工作原理如下:

(1)控制组件4:

a.液位压力传感器41:当真空井01内的液位达到液位压力传感器41设定的高限位时,全自动气动控制装置开始进行排污工作,当液位逐渐降低至最低点时,空气进入液位压力传感器41,则下文涉及的动能转换单元43将迅速复位,由于液位压力传感器41属于现有技术,均为基于膜片式结构的动能转换模式,因此本发明将不对其更详细的工作原理进行赘述。

b.稳压缓冲单元42:如图16所示,当液位压力传感器41到达低液位时,吸污管路中的积水回流冲击液位压力传感器41而引起液位的较大波动,该稳压缓冲单元42的存在可以有效降低其对液位传感器中气压波动的敏感性。

c.动能转换单元43:如图16所示,动能转换单元43由第二膜片323组成,其上方通空气,下方通液位压力传感器41控制压力,及第二上腔室1061通空气,第二下腔室1062通控制压力;当液位为最低点时,空气进入液位压力传感器41,则动能转换单元43迅速复位。

d.排水工作原理:动能转换单元43的出入口位于下方,而且稳压缓冲单元42内的第三膜片46上设置有通孔,可以起到排水作用,因此其下方的导流孔47尽可以作为通气出入口,又可以作为排水口,具体的排水路径如图16中的虚线所示。

(2)动力组件3:

非工作状态下:动能转换单元43处于复位状态,此时第一气路通道115及第二气路通道324不连通,阀杆321处于空气常闭模式,第二复位弹簧322也处于复位状态;与此同时,第五空腔105内的气体经针阀组件31后排出;由于真空出入口18与节流通道116相连通,并连通第五空腔105,此时第五空腔105则处于通真空状态,内部的流通路线如图17中的虚线所示,而针阀组件31的节流作用,能够实现延时复位关闭执行组件2的功能。

工作状态下:第二下腔室1062的控制压力大于第二上腔室1061的空气压力,如图18所示,阀杆321上移,此时第一气路通道115及第二气路通道324相连通,空气从空气流道14进入第二上腔室1061,经第一气路通道115进入第二气路通道324,并最终进入第五空腔105,此时第五空腔105则处于通空气状态,内部的流通线路如图18中的虚线所示。

(3)执行组件2:

如图19所示,为执行组件的结构简图,图示中为由上而下依次设置的第二空腔102、第三空腔103、第四空腔104及第五空腔105,贯穿第二空腔102、第三空腔103及第四空腔104的阀芯本体21,套设在阀芯本体21外侧的第一复位弹簧22,与阀芯本体21呈一体结构设置的密封压板211,与阀芯本体下端部连接的第一膜片23,其中密封压板211设置在第三空腔103内,第一膜片23设置在第四空腔104与第五空腔105之间;进一步的,第五空腔105连通有输入口G01,该输入口G01受动力组件3的作用,实现真空与空气的间歇式连通,即非工作状态下通真空,工作状态下通空气;第三空腔103连通有输出口G02,即阀体气控接口17;第二空腔102连通有空气管路接口G03,即空气入口15;第四空腔104连通有真空管路接口G04,即真空出入口18。

非工作状态下:即第五空腔105通真空,由于第五空腔105与第一下腔室1042相连通,此时第一下腔室1042通真空,阀芯本体21在第一复位弹簧22的作用下,使密封压板211与第三内孔113中的橡胶密封圈24上端面接触密封,进而导致真空出入口18所在的第一上腔室1041无法连通阀体气控接口17所在的第三空腔103;与此同时,空气流道14内的空气经过第二空腔102以及阀芯本体21侧壁的通槽212与第三空腔103相连通,进而实现空气与阀体气控接口17相连通,此时与之连接的真空排污阀复位关闭,如图20所示,为空气流通路线图。

工作状态下:即第五空腔105通空气,由于第五空腔105与第一下腔室1042相连通,此时第一下腔室1042通空气,第一上腔室1041及第一下腔室1042由于压力差的存在而产生向上移动的力,该力克服第一复位弹簧22后,使密封压板211与第二内孔112中的橡胶密封圈24下端面接触密封,进而导致空气所在的第二空腔102无法连通阀体气控接口17所在的第三空腔103;与此同时,真空出入口18所在的第一上腔室1041经阀芯本体21侧壁的通槽212与第三空腔103相连通,进而连通阀体气控接口17,此时与之连接的真空排污阀打开,实现污水的排放或流通,如图21所示,为真空流通线路图。

集水和排水工作原理:由工作状态下的气流流通方向可知,气流是从上向下流通的,由于阀体气控接口17偏设原因,使得来自阀体气控接口17的气流以逆时针方向进入第三空腔103(逆时针方向以图4为参照),并沿着外周区域逐渐向中间区域流动,进而利于该腔室中积水的排空;由于第三内孔113下端设置有环形槽口,如图22所示,从而使得液体经环形槽口沿逆时针方向流通至第一上腔室1041(逆时针方向以第三中壳体123的俯视方向为参照),如图23所示,经环形槽口的射流作用而向径向和切向方向以顺时针方向抛射(顺时针方向以第三中壳体123的仰视方向为参照),然后沿着第一上腔室1041外周区域经切向排出至真空出入口18,进而进入后续的真空管路系统中,最终确保装置内部以及真空排污阀中气控室内的凝结水汽的排出。

上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明,因此无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内,不应将权利要求中的任何附图标记视为限制所涉及的权利要求。

35页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种浮球式双向截止阀控制系统

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类