一种超景深显微快速测量装置及测量方法

文档序号:1001185 发布日期:2020-10-23 浏览:5次 >En<

阅读说明:本技术 一种超景深显微快速测量装置及测量方法 (Ultra-depth-of-field microscopic rapid measurement device and measurement method ) 是由 李世昌 胡春桃 帅成忠 章则华 赵辰 胡士海 于 2020-08-12 设计创作,主要内容包括:本发明公开了一种超景深显微快速测量装置及测量方法,包括测量架,测量架上连接有光学组件,光学组件的下方设有移动测量平台;所述光学组件中设有变焦镜头。本发明利用电动变焦镜头或液体镜头在不同焦距下对工件在检测范围内进行图像获取,并对获取图像中的清晰部分进行合成得到样品的完整图像;使其可以无需调整镜头高度或对焦位置便能实现对样品的高度检测和图像采集;同时,通过以灰度图的方式对图片进行显示,还可以提高软件对工件的高度值提取及后续三维建模效率,具有测量效率高和成像效果好的特点。(The invention discloses a microscopic rapid measuring device with ultra field depth and a measuring method, comprising a measuring frame, wherein the measuring frame is connected with an optical assembly, and a movable measuring platform is arranged below the optical assembly; the optical assembly is provided with a zoom lens. The invention utilizes the motorized zoom lens or the liquid lens to acquire images of a workpiece in a detection range under different focal lengths, and synthesizes clear parts in the acquired images to obtain a complete image of a sample; the height detection and image acquisition of the sample can be realized without adjusting the height of a lens or the focusing position; meanwhile, the images are displayed in a gray-scale image mode, the efficiency of extracting the height value of the workpiece and performing subsequent three-dimensional modeling by software can be improved, and the method has the characteristics of high measurement efficiency and good imaging effect.)

一种超景深显微快速测量装置及测量方法

技术领域

本发明涉及一种尺寸测量装置和测量方法,特别是一种超景深显微快速测量装置及测量方法。

背景技术

测量显微镜是一种将显微镜看到的图像通过数模转换,使其成像在显微镜自带的屏幕上或计算机上的显微镜设备;同时利用高精度光学聚焦点检测的方式对测量点的表面进行高度测量。目前的测量显微镜普遍采用带有变倍功能的主体镜头或多组不同倍率的物镜实现对测量点的稳定测量,当检测工件的尺寸较大时,主体镜头或物镜通过缩小放大倍数使测量点能够处于镜头的景深内;相应的,当测量点处的成像锐利度及成像尺寸要求在提高时,主体镜头或物镜通过增大放大倍数提高测量点的成像效果。但由于镜头的放大倍数在增加后,其景深范围也会相应的缩小;导致一旦检测工件存在高低差时,图像中的各个区域便无法同时清晰显示。同时,镜头放大倍数的增加会缩小对检测工件的测量范围,导致当检测工件的尺寸较大时,测量显微镜无法一次性将工件的完整图像显示完全;而通过横移工件的方式也会因不同测量点的高度偏差造成图像模糊的问题,需要在测量点改变后重新对焦。

对于这类表面存在高度差的工件,目前的测量方法是利用测量显微镜分多次对工件在不同高度的局部位置进行测量,且每次测量时通过手动或电动调整镜头高度实现对焦,最后将各局部位置的图像合成后得到完整的测量图像;每次对焦时,通过光栅尺测量镜头的Z轴位置,并配合镜头焦距进行计算,从而得到测量点的高度信息。但这种方式由于需要通过调整镜头高度进行对焦,而镜头在每次调高时需要3~5s左右的升降时间,导致该方法对单个测量点的测量时间需要在10秒左右。当测量范围内的工件处于不同高度位置时,测量显微镜还需要在同一测量范围内多次调整镜头高度,从而分别对不同的高度位置进行对焦,进一步降低了对检测工件整体的测量效率;且当测量范围内的工件高度不同时,需要由人工选择相应的对焦点,从而进一步降低了其测量效率;获取到的图片还会存在部分未被选择的模糊位置,降低测量显微镜的成像效果。

此外,为了保证对样品的测量效率,目前的测量显微镜在采集图像时会通过降低图像的清晰度标准来扩大对图像的清晰部分获得范围,使得测量显微镜只需少量图片便能得到样品的完整二维图片。而这就造成了合成图片清晰度的严重下降,成像效果较差。同时,图像清晰度的降低会导致测量显微镜在获取高度信息时,会将部分存在微小高度差的工件表面记录为同一高度,从而造成对工件检测精度的降低,并降低后续三维建模时的模型准确度。

因此,现有测量显微镜存在测量效率低和成像效果差的问题。

发明内容

本发明的目的在于,提供一种超景深显微快速测量装置及测量方法。它具有测量效率高和成像效果好的特点。

本发明的技术方案:一种超景深显微快速测量装置,包括测量架,测量架上连接有光学组件,光学组件的下方设有移动测量平台;所述光学组件中设有变焦镜头。

前述的一种超景深显微快速测量装置中,所述光学组件包括依次连接的相机、变焦镜头、主体镜头和物镜,所述变焦镜头为液体镜头或电动变焦镜头。

前述的一种超景深显微快速测量装置中,所述移动测量平台的下端经减震工作台连接测量架,测量架的底部设有缓冲垫层。

前述的一种超景深显微快速测量装置中,所述测量架经大理石底板连接减震工作台,所述缓冲垫层设置在大理石底板的底部。

前述的一种超景深显微快速测量装置中,所述光学组件一侧设有照明光源,照明光源为100W以上的卤素灯,卤素灯的照射光为环形光或点光源同轴光。

基于前述的一种超景深显微快速测量装置的测量方法,包括以下步骤:

A.将样品放置在光学组件下方的移动测量平台上,并使样品的待测范围位于光学组件的显示中心;

B.根据预设的多个参数值,依次改变变焦镜头的对焦焦距,并使光学组件在每次变焦后获取待测范围的图片,得到待测范围在不同焦距下的多张图片,得A图片;

C.选取每张A图片中的清晰部分,然后将所有A图片中的清晰部分进行合成,得到待测范围的完整清晰图片,得B图片;

D.通过移动测量平台依次改变样品的待测范围,并在每次待测范围改变后按照步骤B和步骤C重新获得该待测范围的完整清晰图片,得到多张不同待测范围的完整清晰图片,得C图片;

E.将B图片和C图片进行合成,得到样品的二维图片;

F.根据步骤E中样品的二维图片得到样品的三维模型。

前述的测量方法中,所述步骤B中每张A图片在获取时根据当前变焦镜头的参数值记录该图片的高度值;所述步骤C中的各清晰部分在合成时,根据各清晰部分对应图片的高度值将各清晰部分以对应的灰度值对进行显示,得到D灰度图;所述步骤E对不同待测范围的D灰度图进行合成,得到E灰度图;所述步骤F中根据E灰度图的灰度值得到样品在不同位置的高度信息,再以高度信息为基础对E灰度图进行拉伸,得到样品的三维模型。

前述的测量方法中,所述步骤B中图片的高度值根据变焦镜头的参数值及换算函数计算得到,换算函数的获取方式包括以下步骤:

B1.以测试样品在不同高度下的待测表面作为标准平面,使变焦镜头在基准状态下,通过竖直方向移动光学组件实现对测试样品在不同标准平面的聚焦;同时利用光栅尺记录光学组件在不同聚焦位置的高度信息,得到高度信息H;

B2.将光学组件回复至初始位置,然后依次调整变焦镜头的参数值,使光学组件能够对不同高度的标准平面进行聚焦,同时记录在不同聚焦状态时的变焦镜头参数值V;

B3.将记录得到的高度信息H和参数值V进行拟合,得到H=f(V)的换算函数。

前述的测量方法中,所述变焦镜头为电动变焦镜头,电动变焦镜头的参数值为转动角度值,当步骤B1中的转动角度值为0°时变焦镜头为基准状态。

与现有技术相比,本发明具有以下特点:

(1)本发明选用电动变焦镜头或液体镜头作为光学组件中的变焦镜头,并在此基础上通过预设的参数值使变焦镜头在不同焦距下对待测范围内的工件图像进行直接获取,使得本发明无需通过升降镜头对待测范围内的指定位置进行对焦,而是依靠在不同焦距下获取的图片分别得到该待测范围内不同高度的清晰图像,从而相比现有方法能够极大的提高图像的清晰度范围和成像效果;且由于液体镜头的变焦速率能够达到微秒级,而电动变焦镜头的变焦速率能够达到毫秒级,使得本发明能够在0.5秒内获得在同一待测范围内的100张以上的测量图片,从而相比现有方式能够极大的提高对工件的测量效率;

(2)在上述基础上,本发明进一步优化了对图片中清晰部分的高度值获取方法,使得本发明能够通过变焦镜头的参数值直接换算得到图片中不同位置的高度信息,进而实现对工件的高度测量以及后续的三维建模;同时,通过灰度值记录工件的高度信息,还能够有效提高软件对后续图片的处理效率及三模建模时的速率,使本发明在合成样品的二维图片时能够在1秒内完成,三模建模在2秒内完成;并使用本发明在一次检测过程中可以获取更多的图像,提高最终的成像效果;

(3)本发明通过对移动测量平台的安装结构优化,还能够有效提高对工件的减震效果,使得光学组件在图片获取时,不会振动造成获取图片的模糊问题,进而避免软件在合成图像时因清晰度问题而无法正常筛选,使得本发明具有良好的稳定性,能够在放大15~800倍的条件下实现对工件图像的获取和高度检测;

所以,本发明具有测量效率高和成像效果好的特点。

附图说明

图1是本发明的结构示意图;

图2是步骤B中待测范围在任一焦距下的图片;

图3是步骤C中样品在一个待测范围内的清晰图片;

图4是步骤C中样品在一个待测范围内的灰度图;

图5是本发明提取得到的样品三维模型。

附图中的标记为:1-测量架,2-移动测量平台,3-变焦镜头,4-相机,5-主体镜头,6-物镜,7-减震工作台,8-照明光源。

具体实施方式

下面结合附图和实施例对本发明作进一步的说明,但并不作为对本发明限制的依据。

实施例。一种超景深显微快速测量装置,构成如图1所示,包括测量架1,测量架1上连接有光学组件,光学组件的下方设有移动测量平台2;所述光学组件中设有变焦镜头3。

所述光学组件包括依次连接的相机4、变焦镜头3、主体镜头5和物镜6,所述变焦镜头3为液体镜头或电动变焦镜头,电动变焦镜头6可选用市售的STOT-EL-10-30-C型快速电控变焦聚焦镜;液体镜头可选用美国康宁公司(CORNING)的C-S-25H0-026型液体镜头。

所述移动测量平台2可选用高精密电动XY移动平台,移动测量平台2的下端经减震工作台7连接测量架1,测量架1的底部设有缓冲垫层。

所述测量架1经大理石底板连接减震工作台7,所述缓冲垫层设置在大理石底板的底部。

所述光学组件一侧设有照明光源8,照明光源8为100W以上的卤素灯,卤素灯的照射光为环形光或点光源同轴光;卤素灯用一束全反射光纤将光导到镜头下方,小光纤沿环形分布在卤素灯上。

所述一种超景深显微快速测量装置的测量方法,包括以下步骤:

A.将样品放置在光学组件下方的移动测量平台上,并使样品的待测范围位于光学组件的显示中心;

B.根据预设的多个参数值,依次改变变焦镜头的对焦焦距,并使光学组件在每次变焦后获取待测范围的图片,得到待测范围在不同焦距下的多张图片,得A图片;

C.选取每张A图片中的清晰部分,然后基于depth-from-focus方法将所有A图片中的清晰部分进行合成,得到待测范围的完整清晰图片,得B图片;

D.通过移动测量平台依次改变样品的待测范围,并在每次待测范围改变后按照步骤B和步骤C重新获得该待测范围的完整清晰图片,得到多张不同待测范围的完整清晰图片,相邻待测范围的图片部分重叠,得C图片;

E.将B图片和C图片进行合成,得到样品的二维图片;

F.根据步骤E中样品的二维图片得到样品的三维模型。

所述步骤B中每张A图片在获取时根据当前变焦镜头的参数值记录该图片的高度值;所述步骤C中的各清晰部分在合成时,根据各清晰部分对应图片的高度值将各清晰部分以对应的灰度值对进行显示,形成记录有样品高度信息的8位灰度图,得到D灰度图;所述步骤E对不同待测范围的D灰度图进行合成,得到以灰度值显示的样品完整图片,即E灰度图;所述步骤F中根据E灰度图的灰度值得到样品在不同位置的高度信息,再以高度信息为基础利用现有建模软件对E灰度图进行拉伸,得到样品的三维模型。

所述步骤B中图片的高度值根据变焦镜头的参数值及换算函数计算得到,换算函数的获取方式包括以下步骤:

B1.以一个带有45°斜面的带刻度标准块作为测试样品,测试样品的中间刻度为0位,测试样品的斜面在0位的上下两侧均设有n条刻度线,2n条刻度线沿斜面等高度间隔设置;使变焦镜头在基准状态下,通过竖直方向移动光学组件实现对测试样品在0位及各刻度线的聚焦,聚焦时通过图像锐利度评价函数获得统一的聚焦效果;同时利用光栅尺记录光学组件在不同聚焦位置的高度信息,光学组件在0位聚焦时光栅尺置零,得到高度信息H[2n];

B2.将光学组件回复至光栅尺的0位,然后依次调整变焦镜头的参数值,使光学组件能够对不同刻度线进行聚焦,同时记录在不同刻度时的变焦镜头参数值V[2n];

B3.将记录得到的2*n组数据(H[2n]+V[2n])进行拟合,得到H=f(V)的换算函数。

所述变焦镜头为液体镜头,液体镜头的参数值为输入电压值,当步骤B1中的输入电压值为0时变焦镜头为基准状态。

所述变焦镜头为电动变焦镜头,电动变焦镜头的参数值为转动角度值,当步骤B1中的转动角度值为0°时变焦镜头为基准状态。

所述步骤B中任意一张A图片的显示效果如图2所示,步骤C中B图片的显示效果如图3所示,所述步骤C中样品的D灰度图的显示效果如图4所示,所述步骤F中样品的三维模型的显示效果如图5所示。

本发明的工作原理:本发明在测量时,先手动将工件处于光学组件视野的居中放置,然后通过调整主体镜头5的放大倍率或切换物镜6使工件的待测范围位于镜头的视野范围内;工件的待测范围确认后,由软件根据预设的参数值依次调节变焦镜头的焦距,使光学组件能够分别获取待测范围内工件在不同高度的清晰图片,然后将对图片中的清晰部分进行选取并合成,得到该待测范围的清晰图片;该图片在合成时,单独通过不同的灰度值对变焦镜头在不同焦距获取的清晰部分进行显示,使得每个灰度值能够分别对应样品的高度值,从而得到一张记录有样品高度信息的灰度图(即D灰度图)。由于本发明无需通过升降进行对焦,因此无需手动调整对焦位置,使得本发明能够极大的节省对待测范围的图片获取时间;以640*512像素的照片为例,液体镜头能够在1秒内便能完成对91张图片的采集、分析及合成,从而得到最佳的成型图像。

本发明在对多个测量点的进行依次测量时,通过移动测量平台2对检测工件进行水平移动,能够实现小视野显微照片的无缝拼接,提高其整体成像效果;通过减震工作台7、大理石底板和缓冲垫层的配合,则能够有效减少检测工件在高放大倍率下的图像抖动,从而进一步提高本发明的测量速度及图像的清晰度。

11页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种背光分区尺寸的测量方法、装置及系统

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!