化合物、显示面板和显示装置

文档序号:1038335 发布日期:2020-10-30 浏览:23次 >En<

阅读说明:本技术 化合物、显示面板和显示装置 (Compound, display panel and display device ) 是由 张磊 高威 牛晶华 刘营 邓东阳 李杨 肖文静 匡立莲 于 2020-07-31 设计创作,主要内容包括:本发明属于OLED技术领域并提供了用作电子传输材料的化合物,其具有化学式1所示的结构,其中,X&lt;Sub&gt;1&lt;/Sub&gt;、X&lt;Sub&gt;2&lt;/Sub&gt;、X&lt;Sub&gt;3&lt;/Sub&gt;、X&lt;Sub&gt;4&lt;/Sub&gt;、X&lt;Sub&gt;5&lt;/Sub&gt;和X&lt;Sub&gt;6&lt;/Sub&gt;各自独立地选自C原子或N原子;R&lt;Sub&gt;1&lt;/Sub&gt;和R&lt;Sub&gt;2&lt;/Sub&gt;各自独立地选自氢原子、取代或未取代的C6-C60芳基、取代或未取代的C4-C60杂芳基、取代或未取代的C10-C60稠芳基、C8-C30稠杂芳基。本发明的化合物具有合适的HOMO和LUMO值,可以有效提高电子传输能力。本发明的化合物具有高的电子迁移率,优异的热稳定性和薄膜稳定性,有利于提升发光效率。本发明还提供一种显示面板和显示装置。(The present invention belongs to the technical field of OLED and provides a compound used as an electron transport material, which has a structure shown in chemical formula 1, wherein X 1 、X 2 、X 3 、X 4 、X 5 And X 6 Each independently selected from a C atom or a N atom; r 1 And R 2 Each independently selected from a hydrogen atom, a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C4-C60 heteroaryl group, a substituted or unsubstituted C10-C60 fused aryl group, and a C8-C30 fused heteroaryl group. The compound of the invention has proper HOMO and LUMO values, and can effectively improve the electron transport capacity. The compound provided by the invention has high electron mobility, excellent thermal stability and film stability, and is beneficial to improving the luminous efficiency. The invention also provides a display panel and a display device.)

化合物、显示面板和显示装置

技术领域

本发明属于OLED技术领域,具体涉及一种用作电子传输材料的化合物、包括该化合物的显示面板和显示装置。

背景技术

传统电致发光器件中使用的电子传输材料是Alq3,但Alq3的电子迁移率比较低(大约在l0-6cm2/Vs),使得器件的电子传输与空穴传输不均衡。随着电发光器件产品化和实用化,人们希望得到传输效率更高、使用性能更好的电子传输材料。在这一领域,研究人员做了大量的探索性工作。

市场上现有较多使用的电子传输材料像红菲略啉(batho-phenanthroline,BPhen)、浴铜灵(bathocuproine,BCP)和TmPyPB,大体上能符合有机电致发光面板的市场需求,但它们的玻璃化转变温度较低,一般小于85℃,器件运行时,产生的焦耳热会导致分子的降解和分子结构的改变,使面板效率较低和热稳定性较差。同时,这些分子结构对称性很高,长时间后很容易结晶。一旦电子传输材料结晶,分子间的电荷跃迀机制跟正常运作的非晶态薄膜机制就会产生差异,导致电子传输的性能降低,使得整个器件的电子和空穴迀移率失衡,激子形成效率大大降低,并且激子形成会集中在电子传输层与发光层的界面处,导致器件效率和寿命严重下降。

因此,设计开发稳定高效的、同时具有高电子迁移率和高玻璃化温度的电子传输材料来提高器件的发光效率和延长器件寿命,具有很重要的实际应用价值。

发明内容

有鉴于此,本发明提供一种用作电子传输材料的化合物,所述化合物具有化学式1所示的通式结构:

Figure BDA0002613119100000021

其中,X1、X2、X3、X4、X5和X6各自独立地选自C原子或N原子;

R1和R2各自独立地选自氢原子、取代或未取代的C6-C60芳基、取代或未取代的C4-C60杂芳基、取代或未取代的C10-C60稠芳基、C8-C30稠杂芳基。

本发明提供了一种电子传输材料,其具有合适的HOMO和LUMO值,可以有效提高电子传输能力。本发明的化合物具有高的电子迁移率,优异的热稳定性和薄膜稳定性,有利于提升发光效率。

附图说明

图1示出本发明化合物的通式结构;

图2是本发明提供的OLED器件的结构示意图;

图3是本发明实施例提供的一种显示装置的示意图。

具体实施方式

下面通过实施例和对比例进一步说明本发明,这些实施例只是用于说明本发明,本发明不限于以下实施例。凡是对本发明技术方案进行修改或者等同替换,而不脱离本发明技术方案的范围,均应涵盖在本发明的保护范围中。

本发明的一方面提供一种用作电子传输材料的化合物,所述化合物具有化学式1所示的通式结构:

其中,X1、X2、X3、X4、X5和X6各自独立地选自C原子或N原子;

R1和R2各自独立地选自氢原子、取代或未取代的C6-C60芳基、取代或未取代的C4-C60杂芳基、取代或未取代的C10-C60稠芳基、C8-C30稠杂芳基。

本发明化合物中的氮杂芳基和亚砜基具有较好的金属化合物掺杂效应,可以有效与金属化合物发生掺杂作用,利于提升电子传输层的电子注入和传输性能,平衡器件中空穴和电子的传输速率,增强器件发光效率。

在化学式1所示的通式结构中,虚线表示砜基与其两侧连接的两个苯环可以由真实的单键形成成环,也可以表示不成环,即,虚线表示连接砜基两侧苯环的单键不存在。

根据本发明所述化合物的一种实施方式,所述化合物具有化学式1-1所示的通式结构:

根据本发明所述化合物的一种实施方式,X1、X2和X3中至少有一个是N原子,且X4、X5和X6中至少有一个是N原子。在这个方案的化合物不仅增加了掺杂金属化合物的位点,而且单纯存在的亚砜基的受电子能力不足以达到电子传输材料所需的LUMO能级值,含有N原子情形会增强本发明化合物的受电子能力。此外,由于X1、X2和X3中至少有一个是N原子,且X4、X5和X6中至少有一个是N原子,X1、X2和X3所在的环为氮杂环以及X4、X5和X6所在的环为氮杂环,芴基上的SP3杂化的碳原子连接在氮杂环中的氮原子的邻位,这种结构相对来说合成简便,同时使得本发明的受电子LUMO能级倾向于核心整体结构而不至于过于分散。另外,本实施例的化合物结构还可以增强材料的受电子能力,不会对***的HOMO基团产生削弱的作用,整体上使本发明的化合物具有更好的载流子接受和传输能力,从而提升器件发光效率。

根据本发明所述化合物的一种实施方式,X1、X2和X3中至少有一个是N原子,且X4、X5和X6中至少有一个是N原子,R1或R2位于氮原子的邻位取代位置上。

根据本发明所述化合物的一种实施方式,所述化合物的结构是对称的。对称结构不仅有利于化合物的合成,并且可以使化合物分子之间具有更好的规整性,从而有利于化合物的蒸镀。

根据本发明所述化合物的一种实施方式,R1和R2各自独立地选自以下基团:

其中,Cy存在或不存在;当Cy存在时,Cy选自芳香环或者芳香稠环;

n选自0、1或2;

#表示连接位置。

根据本发明所述化合物的一种实施方式,R1和R2各自独立地选自以下基团:

Figure BDA0002613119100000042

其中,Cy选自苯环、萘环、菲环。

根据本发明所述化合物的一种实施方式,R1和R2各自独立地选自以下基团中的任意一种:

#表示连接位置。

根据本发明所述化合物的一种实施方式,R1和R2各自独立地选自以下基团:

X选自O、S、N-R01或C(R02R03);

其中,R0、R01、R02和R03各自独立地选自氢原子、C1-C6烷基、C1-C6烷氧基、C6-C12芳基;

m选自0、1或者2;

#表示连接位置。

根据本发明所述化合物的一种实施方式,R1和R2各自独立地选自以下基团中的任意一种:

r1、r2、r3、r4和r5各自独立地选自氢原子、C1-C6烷基、C1-C6烷氧基、C6-C12芳基;

m选自数字0、1或2;

#表示连接位置。

根据本发明所述化合物的一种实施方式,R1和R2各自独立地选自以下基团中的任意一种:

其中,Y、Z1、Z2分别独立地选自O、S、N-R7或C(R04R05);

X7、X8、X9、X10、X11分别独立的选自C或者N原子;

R6、R7、R04和R05独立地选自氢原子、C1-C6烷基、C1-C6烷氧基、C6-C12芳基;

p选自数字0、1或者2;

#表示连接位置。

根据本发明所述化合物的一种实施方式,R1和R2各自独立地选自以下基团中的任意一种:

r8选自氢原子、C1-C6烷基、C1-C6烷氧基、C6-C12芳基;

#表示连接位置。

根据本发明所述化合物的一种实施方式,所述化合物选自以下化合物中的一种:

Figure BDA0002613119100000062

Figure BDA0002613119100000071

本发明还提供了一种显示面板,包括有机发光器件,其中,所述有机发光器件包括相对设置的阳极、阴极,位于阳极与阴极之间的电子传输层和发光层,其中电子传输层的材料包括本发明所述的化合物中的一种或多种。

根据本发明所述的显示面板,电子注入层包括本发明所述的化合物和掺杂金属。优选地所述掺杂金属选自金属钠、钾、钙、铯和镱中的一种以上。掺杂金属可以解决现有的有机发光显示面板中电子传输层与阴极之间的界面能障过高,有机发光显示面板性能低的问题。通过在电子注入层中掺杂金属,实现了降低有机发光显示面板的电子传输层与阴极之间的界面能障,提高电子注入能力,以及提高有机发光显示面板性能的目的。

根据本发明所述的显示面板,所述有机发光器件还包括空穴注入层、空穴传输层、电子阻挡层、空穴阻挡层或电子注入层中的一层或多层。

不同器件发光性能需要各发光功能层的合理搭配。因此,可以根据不同的显示要求以及所选的化合物,选择不同的有机发光功能层。

本发明还示例性地描述了化合物A002、A016、A018、A029和A032的合成。

实施例1

化合物A002的合成

Figure BDA0002613119100000091

在250mL圆底烧瓶中,将反应物1(12mmol)、9-溴-9-氯-9H-芴(25mmol)和Na2CO3(80mmol)分别加入到甲苯/EtOH(无水乙醇)/H2O(75/25/50,mL)溶剂中,形成混合溶液,然后将Pd(PPh3)4(0.48mmol)加入到上述混合溶液中,在氮气气氛下进行回流反应20小时得到的中间体冷却到室温,加入水中,然后通过硅藻土垫过滤,同时用二氯甲烷萃取,然后用水洗涤,并采用无水硫酸镁干燥,过滤和蒸发后,用硅胶柱层析纯化粗产物得到中间产物A002-1。

在250mL圆底烧瓶中,将中间产物A002-1(12mmol)、反应物2(25mmol)和Na2CO3(80mmol)分别加入到甲苯/EtOH(无水乙醇)/H2O(75/25/50,mL)溶剂中,形成混合溶液,然后将Pd(PPh3)4(0.48mmol)加入到上述混合溶液中,在氮气气氛下进行回流反应20小时得到的中间体冷却到室温,加入水中,然后通过硅藻土垫过滤,同时用二氯甲烷萃取,然后用水洗涤,并采用无水硫酸镁干燥,过滤和蒸发后,用硅胶柱层析纯化粗产物得到最终产物A002。

产物A002元素分析结果:C70H46O2S,理论值:C,88.39;H,4.87;O,3.36;S,3.37;测试值:C,88.39;H,4.87;O,3.36;S,3.37。

通过液相色谱-质谱联用分析得到ESI-MS(m/z):理论值为950.32,测试值为951.18。

实施例2

化合物A016的合成

在250mL圆底烧瓶中,将反应物1(12mmol)、9-溴-9-氯-9H-芴(25mmol)和Na2CO3(80mmol)分别加入到甲苯/EtOH(无水乙醇)/H2O(75/25/50,mL)溶剂中,形成混合溶液,然后将Pd(PPh3)4(0.48mmol)加入到上述混合溶液中,在氮气气氛下进行回流反应20小时得到的中间体冷却到室温,加入水中,然后通过硅藻土垫过滤,同时用二氯甲烷萃取,然后用水洗涤,并采用无水硫酸镁干燥,过滤和蒸发后,用硅胶柱层析纯化粗产物得到中间产物A016-1。

在250mL圆底烧瓶中,将中间产物A016-1(12mmol)、反应物3(25mmol)和Na2CO3(80mmol)分别加入到甲苯/EtOH(无水乙醇)/H2O(75/25/50,mL)溶剂中,形成混合溶液,然后将Pd(PPh3)4(0.48mmol)加入到上述混合溶液中,在氮气气氛下进行回流反应20小时得到的中间体冷却到室温,加入水中,然后通过硅藻土垫过滤,同时用二氯甲烷萃取,然后用水洗涤,并采用无水硫酸镁干燥,过滤和蒸发后,用硅胶柱层析纯化粗产物得到最终产物A016。

产物A016元素分析结果:C62H38N4O4S,理论值:C,79.64;H,4.10;N,5.99;O,6.84;S,3.43;测试值:C,79.64;H,4.10;N,5.99;O,6.84;S,3.43。

通过液相色谱-质谱联用分析得到ESI-MS(m/z):理论值为934.26,测试值为935.05。

实施例3

化合物A018的合成

Figure BDA0002613119100000111

在250mL圆底烧瓶中,将反应物1(12mmol)、9-溴-9-氯-9H-芴(25mmol)和Na2CO3(80mmol)分别加入到甲苯/EtOH(无水乙醇)/H2O(75/25/50,mL)溶剂中,形成混合溶液,然后将Pd(PPh3)4(0.48mmol)加入到上述混合溶液中,在氮气气氛下进行回流反应20小时得到的中间体冷却到室温,加入水中,然后通过硅藻土垫过滤,同时用二氯甲烷萃取,然后用水洗涤,并采用无水硫酸镁干燥,过滤和蒸发后,用硅胶柱层析纯化粗产物得到中间产物A018-1。

在250mL圆底烧瓶中,将中间产物A018-1(12mmol)、反应物4(25mmol)和Na2CO3(80mmol)分别加入到甲苯/EtOH(无水乙醇)/H2O(75/25/50,mL)溶剂中,形成混合溶液,然后将Pd(PPh3)4(0.48mmol)加入到上述混合溶液中,在氮气气氛下进行回流反应20小时得到的中间体冷却到室温,加入水中,然后通过硅藻土垫过滤,同时用二氯甲烷萃取,然后用水洗涤,并采用无水硫酸镁干燥,过滤和蒸发后,用硅胶柱层析纯化粗产物得到最终产物A018。

产物A018元素分析结果:C70H42N4O4S,理论值:C,81.22;H,4.09;N,5.41;O,6.18;S,3.10;测试值:C,81.22;H,4.09;N,5.40;O,6.19;S,3.10。

通过液相色谱-质谱联用分析得到ESI-MS(m/z):理论值为1034.29,测试值为1035.17。

实施例4

化合物A029的合成

在250mL圆底烧瓶中,将反应物1(12mmol)、9-溴-9-氯-9H-芴(25mmol)和Na2CO3(80mmol)分别加入到甲苯/EtOH(无水乙醇)/H2O(75/25/50,mL)溶剂中,形成混合溶液,然后将Pd(PPh3)4(0.48mmol)加入到上述混合溶液中,在氮气气氛下进行回流反应20小时得到的中间体冷却到室温,加入水中,然后通过硅藻土垫过滤,同时用二氯甲烷萃取,然后用水洗涤,并采用无水硫酸镁干燥,过滤和蒸发后,用硅胶柱层析纯化粗产物得到中间产物A029-1。

在250mL圆底烧瓶中,将中间产物A029-1(12mmol)、反应物5(25mmol)和Na2CO3(80mmol)分别加入到甲苯/EtOH(无水乙醇)/H2O(75/25/50,mL)溶剂中,形成混合溶液,然后将Pd(PPh3)4(0.48mmol)加入到上述混合溶液中,在氮气气氛下进行回流反应20小时得到的中间体冷却到室温,加入水中,然后通过硅藻土垫过滤,同时用二氯甲烷萃取,然后用水洗涤,并采用无水硫酸镁干燥,过滤和蒸发后,用硅胶柱层析纯化粗产物得到最终产物A029。

产物A029元素分析结果:C72H46N4O2S,理论值:C,83.86;H,4.50;N,5.43;O,3.10;S,3.11;测试值:C,83.86;H,4.50;N,5.42;O,3.11;S,3.11。

通过液相色谱-质谱联用分析得到ESI-MS(m/z):理论值为1030.33,测试值为1031.23。

实施例5

化合物A032的合成

在250mL圆底烧瓶中,将反应物1(12mmol)、9-溴-9-氯-9H-芴(25mmol)和Na2CO3(80mmol)分别加入到甲苯/EtOH(无水乙醇)/H2O(75/25/50,mL)溶剂中,形成混合溶液,然后将Pd(PPh3)4(0.48mmol)加入到上述混合溶液中,在氮气气氛下进行回流反应20小时得到的中间体冷却到室温,加入水中,然后通过硅藻土垫过滤,同时用二氯甲烷萃取,然后用水洗涤,并采用无水硫酸镁干燥,过滤和蒸发后,用硅胶柱层析纯化粗产物得到中间产物A032-1。

在250mL圆底烧瓶中,将中间产物A032-1(12mmol)、反应物6(25mmol)和Na2CO3(80mmol)分别加入到甲苯/EtOH(无水乙醇)/H2O(75/25/50,mL)溶剂中,形成混合溶液,然后将Pd(PPh3)4(0.48mmol)加入到上述混合溶液中,在氮气气氛下进行回流反应20小时得到的中间体冷却到室温,加入水中,然后通过硅藻土垫过滤,同时用二氯甲烷萃取,然后用水洗涤,并采用无水硫酸镁干燥,过滤和蒸发后,用硅胶柱层析纯化粗产物得到最终产物A032。

产物A032元素分析结果:C66H42N4O2S,理论值:C,82.99;H,4.43;N,5.87;O,3.35;S,3.36;测试值:C,82.99;H,4.43;N,5.87;O,3.35;S,3.36。

通过液相色谱-质谱联用分析得到ESI-MS(m/z):理论值为954.30,测试值为955.13。

化合物能级的模拟计算:

运用密度泛函理论(DFT),针对本发明实施例提供的有机化合物,以及对比化合物1,通过Guassian 09程序包(Guassian Inc.)在B3LYP/6-31G(d)计算水平下,优化并计算得到了分子前线轨道HOMO和LUMO的分布情况,同时基于含时密度泛函理论(TDDFT)模拟计算了化合物分子的最低三线态能级ET1,结果如下表1所示。

表1

Figure BDA0002613119100000131

Figure BDA0002613119100000141

从表1可以看出,本发明的化合物A002、A010、A016、A018、A024、A029、A031、A032、A037、A038、A046相比于对比化合物1具有更深的LUMO能级,这有利于本发明的化合物与相邻层材料匹配,LUMO能级越深,从阴极产生的电子越容易注入和传输,利于降低器件启亮阈值和工作电压,降低器件功耗。相对于对比化合物1,本发明的化合物A002、A010、A016、A018、A024、A029、A031、A032、A037、A038、A046也具有较低的HOMO能级(<-5.25eV),有利于阻挡空穴。此外,本发明的化合物A002、A010、A016、A018、A024、A029、A031、A032、A037、A038、A046具有较高的最低三线态能级(>2.30eV),有利于阻挡激子,将激子限制在发光层中,提高器件发光效率。

器件实施例1

蓝色有机发光器件(本发明的化合物用作电子传输层材料)

本实施例提供了一种有机发光器件。如图2所示,有机发光器件包括:基板1、ITO阳极2、第一空穴传输层3、第二空穴传输层4、电子阻挡层5、发光层6、第一电子传输层7、第二电子传输层8、阴极9(镁银电极,镁银质量比为9:1)和盖帽层(CPL)10,其中ITO阳极2的厚度是15nm,第一空穴传输层3的厚度是5nm、第二空穴传输层4的厚度是95nm、电子阻挡层5的厚度是30nm、发光层6的厚度是30nm、第一电子传输层7的厚度是30nm、第二电子传输层8的厚度是5nm、镁银电极9的厚度是15nm和盖帽层(CPL)10的厚度是100nm。

本发明的有机发光器件的制备步骤如下:

1)将玻璃基板1切成50mm×50mm×0.7mm的大小,分别在异丙醇和去离子水中超声处理30分钟,然后在臭氧下暴露约10分钟来进行清洁;将所得的具有ITO阳极2的玻璃基板安装到真空沉积设备上;

2)在ITO阳极2上,通过真空蒸镀方式蒸镀空穴缓冲层材料-化合物a和P-掺杂化合物b,掺杂比例为3%(质量比);厚度为5nm,,该层作为第一空穴传输层3;

3)在第一空穴传输层3上真空蒸镀材料化合物a,得到厚度为95nm的层,该层作为第二空穴传输层4;

4)在第二空穴传输层4上蒸镀化合物c,得到厚度为30nm的层,该层作为电子阻挡层5;

5)在电子阻挡层5上真空共同蒸镀发光主体材料化合物d和掺杂材料化合物e,掺杂比例为3%(质量比),厚度为30nm,作为发光层6;

6)在发光层6上真空蒸镀化合物f,得到厚度为30nm的第一电子传输层7;

7)在第一电子传输层7上真空蒸镀本发明的化合物A002和N-掺杂材料化合物g,掺杂质量比例为1:1;厚度为5nm,作为第二电子传输层8;

8)在第二电子传输层8上真空蒸镀镁银,制得厚度为15nm的阴极9,其中,质量比Mg:Ag为9:1;

9)在阴极9上真空蒸镀高折射率的化合物h,厚度为100nm,作为阴极覆盖层(盖帽层或CPL)10使用。

上述步骤中提到的材料化合物a-化合物h的结构式分别如下所示:

器件实施例2

与器件实施例1相比,器件实施例2的制作过程除了第二电子传输层8中的A002变为A010之外,其他各层材料均相同。

器件实施例3

与器件实施例1相比,器件实施例3的制作过程除了第二电子传输层8中的A002变为A016之外,其他各层材料均相同。

器件实施例4

与器件实施例1相比,器件实施例4的制作过程除了第二电子传输层8中的A002变为A018之外,其他各层材料均相同。

器件实施例5

与器件实施例1相比,器件实施例5的制作过程除了第二电子传输层8中的A002变为A024之外,其他各层材料均相同。

器件实施例6

与器件实施例1相比,器件实施例6的制作过程除了第二电子传输层8中的A002变为A029之外,其他各层材料均相同。

器件实施例7

与器件实施例1相比,器件实施例7的制作过程除了第二电子传输层8中的A002变为A031之外,其他各层材料均相同。

器件实施例8

与器件实施例1相比,器件实施例8的制作过程除了第二电子传输层8中的A002变为A032之外,其他各层材料均相同。

器件实施例9

与器件实施例1相比,器件实施例9的制作过程除了第二电子传输层8中的A002变为A037之外,其他各层材料均相同。

器件实施例10

与器件实施例1相比,器件实施例10的制作过程除了第二电子传输层8中的A002变为A038之外,其他各层材料均相同。

器件实施例11

与器件实施例1相比,器件实施例11的制作过程除了第二电子传输层8中的A002变为A046之外,其他各层材料均相同。

器件对比例

与器件实施例1相比,器件对比例的制作过程除了第二电子传输层8为对比化合物1不同之外,其他各层材料均相同。

Figure BDA0002613119100000181

表2器件实施例与器件对比例的测试结果表

Figure BDA0002613119100000182

注:E/CIEy表示效率(E)与CIEy的比值。

从表2可以看出,相比于器件对比例1相比,器件实施例1至器件实施例5中的有机发光器件具有更低的工作电压、更高的B.I.发光效率和更长的器件寿命;以上参数分别提升4.4%、6.0%、10%左右。这主要是因为本发明化合物具有更低的LUMO能级,与相邻层材料LUMO能级之间带隙差更小,有利于电子的有效注入和传输。

本发明的又一方面还提供一种显示装置,其包括如上文所述的有机发光显示面板。

在本发明中,显示装置可以是手机显示屏、电脑显示屏、电视显示屏、智能手表显示屏、智能汽车显示面板、VR或AR头盔显示屏、各种智能设备的显示屏等。图3是根据本发明实施例提供的一种显示装置的示意图,可选的显示装置为智能手机30。在图3中,显示装置包括本发明实施例提供的有机发光显示面板20。

本申请虽然以较佳实施例公开如上,但并不是用来限定权利要求,任何本领域技术人员在不脱离本申请构思的前提下,都可以做出若干可能的变动和修改,因此本申请的保护范围应当以本申请权利要求所界定的范围为准。

24页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种糠醛的制备工艺

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类