一种反铁电陶瓷材料及其制备方法

文档序号:1137518 发布日期:2020-10-09 浏览:20次 >En<

阅读说明:本技术 一种反铁电陶瓷材料及其制备方法 (Antiferroelectric ceramic material and preparation method thereof ) 是由 王根水 韩刘洋 郭少波 董显林 于 2019-03-28 设计创作,主要内容包括:本发明涉及一种反铁电陶瓷材料及其制备方法,所述反铁电陶瓷材料的化学组成为:(Pb&lt;Sub&gt;x&lt;/Sub&gt;Ca&lt;Sub&gt;y&lt;/Sub&gt;Sr&lt;Sub&gt;z&lt;/Sub&gt;)TiO&lt;Sub&gt;3&lt;/Sub&gt;,其中,0.3≤x≤0.45,0.25≤y≤0.4,0.2≤z≤0.45,x+y+z=1,且所述反铁电陶瓷材料的容忍因子&lt;Image he="24" wi="231" file="366676DEST_PATH_IMAGE002.GIF" imgContent="drawing" imgFormat="GIF" orientation="portrait" inline="no"&gt;&lt;/Image&gt;≤0.9985。(The invention relates to an antiferroelectric ceramic material and a preparation method thereof, wherein the antiferroelectric ceramic material comprises the following chemical components: (Pb) x Ca y Sr z )TiO 3 Wherein x is more than or equal to 0.3 and less than or equal to 0.45, y is more than or equal to 0.25 and less than or equal to 0.4, z is more than or equal to 0.2 and less than or equal to 0.45, and x &#43; y &#43; z =1, and the tolerance factor of the antiferroelectric ceramic material ≤0.9985。)

一种反铁电陶瓷材料及其制备方法

技术领域

本发明涉及一种反铁电陶瓷材料及其制备方法,具体涉及一种PbTiO3-CaTiO3-SrTiO3三元系反铁电陶瓷材料及其制备方法,属于铁电陶瓷材料技术领域。

背景技术

反铁电材料由于其特殊的电致相变特性,在能量储存领域有巨大的应用前景而得到了迅猛发展。由于陶瓷具有制备简单、成本较低、性能稳定等优点,以反铁电陶瓷为主要储能元件的脉冲功率器件在国防科技和民用领域得到了广泛发展应用。目前,对于反铁电材料的研究集中在锆酸铅(PbZrO3)基、铌酸银(AgNbO3)基、铌酸钠(NaNbO3)基的掺杂固溶体,其中,以锆酸铅(PbZrO3)及其掺杂固溶体为主。

钛酸锶钙(CaTiO3-SrTiO3,CST)的反铁电性在上世纪90年代就得到了报道。Ranjan等人(Journal of Physics:Condensed Matter 1999,11(10):2233;Journal of Physics:Condensed Matter 1999,11(10):2247;Physical review letters 2000,84(16),3726)通过X射线衍射和中子衍射从结构角度揭示了CST的反铁电性,并结合介电性能给出了CST材料体系中的反铁电相区。随后,Lalla等人(Journal of Physics:Condensed Matter 2007,19(43):436210;Solid State Sciences 2008,10(3):307-315;Journal of Physics:Condensed Matter 2008,20(32):325231)也通过选区电子衍射等手段从结构上表征了CST中反铁电相的存在。但是,CST的反铁电性一直停留在结构探索上,没有宏观性能(如双电滞回线)方面的佐证。目前唯一关于CST电滞回线的报道是1996年Mitsui等人(PhysicalReview 1961,124(5):1354)在4.3K时,在Ca0.04Sr0.96TiO3中测得电滞回线:在1.7kV/cm的极低电场下,Ca0.04Sr0.96TiO3的极化强度为1.68μC/cm2。而Ranjan等人(Physical reviewletters 2000,84(16),3726)在Ca含量高于0.12的组分中,施加60kV/cm的电场时仍未观察到电滞回线。参考纯锆酸铅降低转折电场的方法,可将CST与强铁电性材料复合在一起,使材料的反铁电-铁电相变转折电场低于材料的击穿电场,从而观测到材料的双电滞回线。

发明内容

在本公开中,本发明人根据钙钛矿化合物(ABO3)的稳定性可以通过容忍因子(t)来判断,其表达式为:(1);其中,RA表示A位离子的半径,RB表示B位离子的半径,RO表示氧离子半径(其容忍因子计算用的离子半径来自与Shannon的文献报道(Acta Crystallographica 1976,32,751))。进一步发现,当钙钛矿结构能够稳定存在的t值范围为0.88~1.09。而t的减小,有利于反铁电相的稳定性;t的增大有利于铁电相的稳定;t越接近反铁电相与铁电相临界时,转折电场越小。

为此,本发明提供了一种全新的反铁电陶瓷材料,所述反铁电陶瓷材料的化学组成为:(PbxCaySrz)TiO3,其中,0.3≤x≤0.45,0.25≤y≤0.4,0.2≤z≤0.45,且x+y+z=1,且所述反铁电陶瓷材料的容忍因子

在本公开中,首次通过将PbTiO3固溶在CaTiO3-SrTiO3(CST)材料中,并可以成功测得其双电滞回线。本发明提供的全新的反铁电陶瓷材料打破了多年来CST反铁电材料无法测得双电滞回线的僵局,为以后研究CST基反铁电材料的应用发展提供了可能。如图4(本发明人首次绘制所得)中所示的,所述陶瓷的相成分受陶瓷组分的容忍因子影响。本公开专利通过加入特定含量的PbTiO3与CaTiO3-SrTiO3形成三元系固溶体,并通过调节PbTiO3、CaTiO3、SrTiO3基质组分含量,使得陶瓷的容忍因子t≤0.9985时,所得反铁电陶瓷材料存在束腰的反铁电双电滞回线。

另一方面,本发明提供了一种上述的反铁电陶瓷材料的制备方法,包括:

选用Pb3O4粉体、TiO2粉体、CaCO3粉体和SrCO3粉体作为原料,按所述反铁电陶瓷材料的组成化学式配比称量并混合,然后在850~900℃下预烧处理,得到陶瓷粉体;

将所得陶瓷粉体压制成型,再经排塑后,得到陶瓷坯体;

将所得陶瓷坯体在1260~1320℃下烧结处理,得到所述反铁电陶瓷材料。

较佳地,所述混合的方式为湿式球磨法混合,按照原料:磨球:去离子水=1:(1.5~2.0):(0.7~1.0)的质量比球磨混合24~48小时。

较佳地,在压制成型之前,将陶瓷粉体和粘结剂混合,经造粒、陈化和过筛。

又,较佳地,所述粘结剂为聚醋酸乙烯酯,粘结剂的加入量为陶瓷粉体重量的6~8wt%;所述陈化的时间为22~26小时。

较佳地,所述预烧处理的时间为1~3小时。

较佳地,所述排塑的温度为750~800℃,时间为1~3小时。

较佳地,所述烧结处理的时间为2~4小时。

较佳地,所述烧结处理的升温速率不高于2℃/分钟;所述预烧处理的升温速率不高于2℃/分钟。

再一方面,本发明还提供了一种反铁电陶瓷元件,其特征在于,将上述的反铁电陶瓷材料加工成所需尺寸,经丝网印银,烘干和烧银后得到所述的铁电陶瓷元件;所述烧银的条件为在650~750℃下保温20~40分钟。

有益效果:

将特定含量的强铁电性的PbTiO3引入CaTiO3-SrTiO3反铁电材料中形成PbTiO3-CaTiO3-SrTiO3三元固溶体(PCST100x/100y/100z),并通过其他组分和容忍因子(t≤0.9985)的调控,制备出PbTiO3-CaTiO3-SrTiO3三元系反铁电陶瓷材料,并成功在室温附近测得双电滞回线。这一发明通过掺入新组元,打破了多年来CST反铁电材料无法测得双电滞回线的僵局,为以后研究CST基反铁电材料的应用发展提供了可能。

附图说明

图1为(Pb0.3Ca0.4Sr0.3)TiO3的电滞回线和电流-电场曲线,从图中可知(Pb0.3Ca0.4Sr0.3)TiO3陶瓷呈束腰双电滞回线,存在四个明显的电流峰,为反铁电相;

图2为(Pb0.4Ca0.35Sr0.25)TiO3的电滞回线和电流-电场曲线,从图中可知(Pb0.4Ca0.35Sr0.25)TiO3陶瓷呈束腰双电滞回线,存在四个明显的电流峰,为反铁电相;

图3为(Pb0.4Ca0.3Sr0.3)TiO3的电滞回线和电流-电场曲线,从图中可知(Pb0.4Ca0.3Sr0.3)TiO3陶瓷呈束腰双电滞回线,存在四个明显的电流峰,为反铁电相;

图4为(PbxCaySrz)TiO3的三元相图,从图中可知在0.3≤x≤0.45,0.25≤y≤0.4,0.2≤z≤0.45的组分范围内,当陶瓷材料的容忍因子t≤0.9985时,可测得反铁电双电滞回线,如蓝色圆点所示位置。

具体实施方式

以下通过下述实施方式进一步说明本发明,应理解,下述实施方式仅用于说明本发明,而非限制本发明。

在本公开中,反铁电陶瓷材料的化学组成为:(PbxCaySrz)TiO3(PCST100x/100y/100z),其中,0.3≤x≤0.45,0.25≤y≤0.4,0.2≤z≤0.45,且x+y+z=1。本发明通过将强铁电性的PbTiO3材料引入CaTiO3-SrTiO3反铁电材料中。利用Shannon离子半径计算容忍因子,当该陶瓷的容忍因子t≤0.9985时,使得反铁电陶瓷材料存在反铁电双电滞回线。

以下示例性地说明本发明提供的反铁电陶瓷材料的制备方法。

以Pb3O4、TiO2、CaCO3和SrCO3的粉体为原料,按所述陶瓷的组成化学式配比称量并混合,得到的混合粉体。其中,混合的方式可为湿式球磨法,按照原料:磨球:去离子水=1:(1.5~2.0):(0.7~1.0)的质量比混合24~48小时,然后烘干。

将混合粉体压制成原料块体,在850~900℃下预烧处理1~3小时,然后湿式球磨法细磨,得到陶瓷粉体。其中,预烧处理的升温速率不高于2℃/min。其中,湿式球磨法包括:按照原料:磨球:去离子水=1:(1.5~2.0):(0.7~1.0)的质量比混合24~48小时,然后烘干。

将陶瓷粉体加入粘结剂中进行造粒,陈化后压制成型,再经排塑,得到陶瓷坯体。其中,排塑的制度包括:温度750~800℃,时间1~3小时。所述粘结剂可为聚醋酸乙烯酯。粘结剂的加入量可为陶瓷粉体重量的6~8wt%。例如,将陶瓷粉体与粘结剂均匀混合后,陈化22~26小时,过筛,再用于制备陶瓷坯体。

将陶瓷坯体放入高温炉中,用与组成成分相同的陶瓷粉体覆盖陶瓷坯体,升至1260~1320℃,保温2~4小时,在密闭条件下进行烧结,随炉冷却即得到所述反铁电陶瓷材料。其中烧结处理的升温速率以不高于2℃/min。

本发明还提供了一种反铁电陶瓷元件,为上所述的反铁电陶瓷材料制成。将烧结好的陶瓷材料加工成所需尺寸,丝网印银,烘干,烧银后得到所述的铁电陶瓷元件。所述的烧银条件为在650~750℃下保温20~40分钟。其中,反铁电陶瓷元件采用德国AixACCT公司的电滞回线测量仪TF Analyzer 2000测试电滞回线,所得电滞回线为双电滞回线,其电流-电场曲线具有四个电流峰值。

下面进一步例举实施例以详细说明本发明。同样应理解,以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。下述示例具体的工艺参数等也仅是合适范围中的一个示例,即本领域技术人员可以通过本文的说明做合适的范围内选择,而并非要限定于下文示例的具体数值。

实施例1:

反铁电陶瓷材料组成为:(Pb0.3Ca0.4Sr0.3)TiO3

(1)按上述化学式组成计算粉体原料中各组成物Pb3O4粉体、SrCO3粉体、CaCO3粉体和TiO2粉体质量并按组成比例配制,采用湿式球磨法混合,按照原料:球:水=1:1.7:0.8的质量比混合24小时,使各组分混合均匀。烘干后,过30目筛,在空气气氛下压块,以2℃/min的升温速度升至900℃,保温2小时合成组成为(Pb0.3Ca0.4Sr0.3)TiO3的陶瓷粉体;

(2)将步骤(1)所得的陶瓷粉体捣碎,过30目筛,再用湿式球磨法精磨24小时,烘干精磨后的陶瓷粉料,然后加入粉料重量的8wt.%PVA粘结剂,造粒,陈化24小时,过20目筛,压制成直径15mm,厚度2.5mm的圆形片,然后升温在800℃下排塑,得到陶瓷坯体;

(3)为了防止铅组分在烧结的过程中挥发,将陶瓷坯体放入氧化铝坩埚,用具有相同组成的陶瓷粉料将坯体覆盖,盖上磨口盖子,以2℃/min的升温速度升至1280℃,保温2小时,随炉冷却后得到陶瓷材料样品;

(4)将烧结好的陶瓷材料样品加工成厚度0.5mm的片子,清洗,烘干,丝网印刷银浆,再烘干,以2℃/min的升温速度升至700℃,保温0.5小时烧银得到陶瓷元件;

(5)对本实施例1制备的陶瓷元件采用德国AixACCT公司的电滞回线测量仪TFAnalyzer2000测试电滞回线进行了室温下的电滞回线的测量,测试频率为1Hz,结果见图1和表1。

实施例2:

材料组成为:(Pb0.4Ca0.35Sr0.25)TiO3

按上述配方重复实施例1的制备方法。对本实施例2制备的陶瓷元件进行了室温下的电滞回线的测量,结果见图2和表1。

实施例3:

材料组成为:(Pb0.4Ca0.3Sr0.3)TiO3

按上述配方重复实施例1的制备方法。对本实施例3制备的陶瓷元件进行了室温下的电滞回线的测量,结果见图3和表1。

表1中分别列出了各实施例的主要测试结果:

表1为实施例1-3中制备的反铁电陶瓷材料的化学组分、容忍因子及是否存在反铁电相总结:

8页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:钐离子掺杂锆钛酸铅基高性能压电陶瓷及其制备方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!