一种微波介质陶瓷材料及其制备方法

文档序号:1179550 发布日期:2020-09-22 浏览:18次 >En<

阅读说明:本技术 一种微波介质陶瓷材料及其制备方法 (Microwave dielectric ceramic material and preparation method thereof ) 是由 张军志 杨和成 罗超 于 2020-06-28 设计创作,主要内容包括:本发明提供一种微波介质陶瓷材料,涉及信息功能材料领域。该陶瓷材料包括主材与改性添加物。主材的化学式为Mg&lt;Sub&gt;2-3x&lt;/Sub&gt;Ca&lt;Sub&gt;x&lt;/Sub&gt;TiO&lt;Sub&gt;4-2x&lt;/Sub&gt;·yCaSiO&lt;Sub&gt;3&lt;/Sub&gt;,其中0.01≤x≤0.50,0.00&lt;y≤0.20;所述主材在所述微波介质陶瓷材料中所占的质量分数为99.2~99.8wt%;所述改性添加物在所述微波介质陶瓷材料中所占的质量分数为0.2~0.8wt%。改性添加物选自BaCO&lt;Sub&gt;3&lt;/Sub&gt;、SrCO&lt;Sub&gt;3&lt;/Sub&gt;、ZnO、MnCO&lt;Sub&gt;3&lt;/Sub&gt;、Sb&lt;Sub&gt;2&lt;/Sub&gt;O&lt;Sub&gt;3&lt;/Sub&gt;、SiO&lt;Sub&gt;2&lt;/Sub&gt;和MnO&lt;Sub&gt;2&lt;/Sub&gt;中的一种或几种。本发明的陶瓷介质材料是一种无铅环保型材料,采用固相合成方法合成Mg&lt;Sub&gt;2-3x&lt;/Sub&gt;Ca&lt;Sub&gt;x&lt;/Sub&gt;TiO&lt;Sub&gt;4-2x&lt;/Sub&gt;与CaSiO&lt;Sub&gt;3&lt;/Sub&gt;作为主材的成分,掺杂改性添加物,经过合理设计配方,优化合成工艺,制备出粉体平均粒径为0.4-1.0um,利用该粉体制作电子陶瓷器件可在1300~1380℃的温度范围内烧结成瓷,其介电常数ε介于18~23之间,品质因数Qf值≥40000GHz,温度系数τf(-40~85℃):±10ppm/℃。(The invention provides a microwave dielectric ceramic material, and relates to the field of information functional materials. The ceramic material comprises a main material and a modified additive. The main material has a chemical formula of Mg 2‑3x Ca x TiO 4‑2x ·yCaSiO 3 Wherein x is more than or equal to 0.01 and less than or equal to 0.50 and 0.00&lt;y is less than or equal to 0.20; the mass fraction of the main material in the microwave dielectric ceramic material is 99.2-99.8 wt%; the mass fraction of the modified additive in the microwave dielectric ceramic material is 0.2-0.8 wt%. The modifying additive is selected from BaCO 3 、SrCO 3 、ZnO、MnCO 3 、Sb 2 O 3 、SiO 2 And MnO 2 One or more of them. The ceramic dielectric material is a lead-free environment-friendly material, and Mg is synthesized by adopting a solid-phase synthesis method 2‑3x Ca x TiO 4‑2x With CaSiO 3 As the main material, modified additive is doped and reasonably designedThe method optimizes the synthesis process, the average particle size of the prepared powder is 0.4-1.0um, the electronic ceramic device manufactured by the powder can be sintered into ceramic within the temperature range of 1300-1380 ℃, the dielectric constant is 18-23, the quality factor Qf value is more than or equal to 40000GHz, and the temperature coefficient tau f (-40-85 ℃): 10 ppm/DEG C.)

一种微波介质陶瓷材料及其制备方法

技术领域

本发明涉及信息功能材料领域,且特别涉及一种中低介电常数的微波介质陶瓷材料及其制备方法。

背景技术

微波介质陶瓷材料是近年来迅速发展起来的一类新型功能陶瓷材料。它具有低介电损耗、高介电常数ε及介电常数温度系数τf稳定等特点。它是介质谐振器、滤波器、振荡器、双工器、天线、介质基板等在内的新型微波电路和器件的核心基础材料,在现代微波通信和卫星导航系统和设备中有广泛的应用。近年来,由于微波技术设备向小型化、集成化、低功耗,尤其是向民用的大批量、低价格化方向迅速发展,目前已经开发出一大批适用于各个微波频段的微波介质陶瓷材料。但目前的微波介质陶瓷材料介电常数ε较高,一般>23,或者介电常数<23但温度系数τf却>±10ppm/℃,性能不稳定。例如具有钛铁矿结构的偏钛酸镁(MgO·TiO2)因其原料相对廉价、微波性能优异,是一种重要的微波介质陶瓷材料,但其高温温度系数在-50ppm/℃,影响了它的实际应用。

发明内容

本发明的目的在于提供一种微波介质陶瓷材料及其制备方法,以解决目前的微波介质陶瓷材料介电常数ε较高、性能不稳定的问题。

本发明采用以下方案来实现目的。

本发明提供一种微波介质陶瓷材料,包括主材和改性添加物,所述主材的化学式为Mg2-3xCaxTiO4-2x·yCaSiO3,其中0.01≤x≤0.50,0.00<y≤0.20;所述主材在所述微波介质陶瓷材料中所占的质量分数为99.2~99.8wt%;所述改性添加物在所述微波介质陶瓷材料中所占的质量分数为0.2~0.8wt%。

优选地,所述改性添加物选自BaCO3、SrCO3、ZnO、MnCO3、Sb2O3、SiO2和MnO2中的一种或一种以上混合物。

优选地,各个所述改性添加物在所述微波介质陶瓷材料中所占的质量分数范围是:BaCO3为0~0.35%,SrCO3为0~0.2%,ZnO为0~0.2%,MnCO3为0~0.4%,Sb2O3为0~0.3%,SiO2为0~0.1%,MnO2为0~0.3%。

本发明还提供一种如上所述的微波介质陶瓷材料的制备方法,包括以下步骤:

S1,合成Mg2-3xCaxTiO4-2x:将氢氧化镁、碳酸钙和二氧化钛按配比置于球磨机中,加水混合均匀,进行湿法球磨,再在空气气氛中1050℃~1300℃的温度范围煅烧2~4小时,得到Mg2-3xCaxTiO4-2x;所述氢氧化镁的比表面积大于7.0m2/g,所述二氧化钛的比表面积大于5.0m2/g;

S2,合成CaSiO3:将碳酸钙及二氧化硅按配比置于球磨机中,加水混合均匀,进行湿法球磨,再在空气气氛中1050℃~1100℃的温度范围煅烧1~2小时,得到CaSiO3

S3,将步骤S1获得的Mg2-3xCaxTiO4-2x、步骤S2获得的CaSiO3以及改性添加物按配方要求一并置于球磨机中,加水进行湿法球磨,经过均匀化处理,然后把球磨好的物料进行干燥,获得粉末态的所述微波介质陶瓷材料。

进一步地,步骤S3中,球磨后的物料粒径为0.4-1.0um。

进一步地,上述制备方法还包括以下步骤:

S4,粉末态的所述微波介质陶瓷材料中加入粘合剂、增塑剂、分散剂等,球磨1~2小时,获得浆料,干燥后获得粉料,将粉料压制成生坯;

S5,排胶:将生坯置于500℃~650℃中,保温16~32小时,得到坯体;

S6,烧结:排胶后的坯体,在空气气氛中,1300~1380℃内保温3~5小时;

S7,退火:烧结后,在950℃~1050℃范围内,保温1~2小时,得到成型的微波介质陶瓷材料。

优选地,所述粘合剂为聚乙烯醇,所述增塑剂为聚乙二醇,所述分散剂为羧酸铵盐。

优选地,步骤S5的排胶过程,升温速度小于10℃/小时。

优选地,步骤S6的烧结过程,升温速度为150℃~200℃/小时。

上述得到成型的微波介质陶瓷材料,其温介电常数介于18~23,温度系数τf(-40~85℃):±10ppm/℃,Qf值≥40000GHz。

具有钛铁矿结构的偏钛酸镁(MgO·TiO2)的高温温度系数在-50ppm/℃,根据混合法则,可以通过与其他具有正温度系数的材料进行复合来调节其温度系数。通过Ca的预先掺杂,可与TiO2生成CaTiO3。而CaTiO3是扭曲的正交钙钛矿结构,室温下,其介电常数为170,有着很高的正的温度系数为800ppm/℃,可实现高温温度系数的调节,为实现较低温度下的烧结,合成了CaSiO3,CaSiO3除了是一种具有良好性能的低介电常数陶瓷材料外,同时也是一类助溶剂。将Mg2-3xCaxTiO4-2x与CaSiO3两者按一定比例进行复合可获取在1300-1380℃下烧结,并具有微波性能的陶瓷材料。该陶瓷材料通过调整原材料合成的配比可形成室温介电常数介于18~23之间,Qf值≥40000GHz,温度系数τf(-40~85℃):±10ppm/℃。

本发明的有益效果是:将Mg2-3xCaxTiO4-2x、CaSiO3以及改性添加物复合,制备出材料均匀性好,满足微波器件要求的粉末态的微波介质陶瓷材料。该粉料在1300-1380℃下烧结后得到具有微波性能的微波介质陶瓷材料。该陶瓷材料通过调整原材料合成的配比可形成室温介电常数介于18~23之间,Qf值≥40000GHz,温度系数τf(-40~85℃):±10ppm/℃,满足微波器件的微波性能要求。

具体实施方式

为使本发明实施例的目的、技术方案和优点更加清楚,下面将对本发明实施例中的技术方案进行清楚、完整地描述。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。

本发明提供一种微波介质陶瓷材料,包括主材和改性添加物,所述主材的化学式为Mg2-3xCaxTiO4-2x·yCaSiO3,其中0.01≤x≤0.50,0.00<y≤0.20;所述主材在所述微波介质陶瓷材料中所占的质量分数为99.2~99.8wt%;所述改性添加物在所述微波介质陶瓷材料中所占的质量分数为0.2~0.8wt%。

所述改性添加物选自BaCO3、SrCO3、ZnO、MnCO3、Sb2O3、SiO2和MnO2中的一种或一种以上混合物。

优选地,各个所述改性添加物在所述微波介质陶瓷材料中所占的质量分数范围是:BaCO3为0~0.35%,SrCO3为0~0.2%,ZnO为0~0.2%,MnCO3为0~0.4%,Sb2O3为0~0.3%,SiO2为0~0.1%,MnO2为0~0.3%。

本发明还提供一种如上所述的微波介质陶瓷材料的制备方法,包括以下步骤:

①制备主材其中之一的Mg2-3xCaxTiO4-2x粉末:按化合物中各金属元素的比例,称量相应质量高纯、超细的Mg(OH)2、CaCO3、TiO2,置于球磨机中,按质量比为固体物料:水=1:(1.0~2.0)的比例加入水进行球磨混合均匀,砂磨处理达到一定粒径后,用喷雾干燥塔或其他方法进行干燥,在空气气氛炉中1050℃~1300℃的温度范围煅烧2~4小时,最终得到Mg2-3xCaxTiO4-2x粉末。其中,Mg(OH)2的比表面积要大于7.0m2/g,TiO2的比表面积要大于5.0m2/g。

②制备主材中另一成分的CaSiO3粉末:把高纯、超细的CaCO3及SiO2按1:1的摩尔比称量好,置于球磨机中,按质量比为固体物料:去离子水=1:(1.0~2.0)的比例加入水进行球磨混合均匀,达到一定粒径后,用喷雾干燥塔或其他方法进行干燥,在空气气氛炉中1050℃~1100℃的温度范围煅烧1~2小时,最终得到CaSiO3粉末。

③制备配方粉末:把①、②中获得的两种主材成分与各种改性添加物BaCO3、MnCO3、MnO2、SrCO3、ZnO、SiO2、Sb2O3中的一种或几种,按微波介质陶瓷材料的组成来配方称重,置于球磨机中,按质量比为固体物料:水=1:(0.6~1.0)的比例加入水进行湿法砂磨,要求物料混合均匀,使砂磨后的粉体用激光粒度仪测试平均颗粒径在0.40-1.0um。球磨完毕后用喷雾干燥塔或其他方法进行干燥,得到本发明粉末态的微波介质陶瓷材料。

进一步地,本发明的微波介质陶瓷材料的制备方法还包括以下步骤:

④将上述粉末态的微波介质陶瓷材料加入适当的粘合剂、增塑剂、分散剂等,用氧化锆球为磨介在球磨罐中球磨1~2小时,获得浆料,进行离心喷雾干燥,获得流动性良好的球形颗粒粉料。在一种优选方式中,所述粘合剂为聚乙烯醇,所述增塑剂为聚乙二醇,所述分散剂为羧酸铵盐。

⑤将球形颗粒粉料,压制成生坯器件。

⑥将生坯器件置于500℃~650℃的温度范围内,保温16~32小时,排除生坯片中的有机物,整个排胶过程的升温速度要求小于10℃/小时。

⑦烧结:将排胶好的坯体,在空气中进行烧结,以150℃~200℃/小时的升温速度升温到1300~1380℃,保温时间为3~5小时。烧结温度优选1350℃。烧结能使陶瓷坯体中的粉粒晶界移动,气孔逐步排除,坯体收缩成为具有一定强度的致密陶瓷体。

⑧退火处理:高温烧结后,炉温在950℃~1050℃范围内,保温1~2小时,得到成型的微波介质陶瓷材料。退火可以减小坯体内部应力,细化晶粒,弥合微裂纹,改善材料的组织结构,提高陶瓷的力学性能。

⑨器件测试:采用安捷伦网分,在频率5-8GHz下进行微波性能测试。

根据测试结果:上述得到成型的微波介质陶瓷材料,其温介电常数介于18~23,温度系数τf(-40~85℃):±10ppm/℃,Qf值≥40000GHz。

实施例

本实施例提供一种微波介质陶瓷材料及其制备方法,本发明的方案不局限于实施例。

(1)按照Mg2-3xCaxTiO4-2x组成,其中0.01≤x≤0.50,如表1所示的原料配方,称取三组相应质量的Mg(OH)2、CaCO3和TiO2,依次置于球磨机中,按质量比为每组固体物料:去离子水=1:1.5的比例加入去离子水进行湿法球磨,球磨后用喷雾干燥塔进行干燥,在空气炉中1200℃煅烧3小时。各组样品中:MCT1中,x=0.05;MCT2中,x=0.25;MCT3中,x=0.50。

表1 Mg2-3xCaxTiO4-2x实施例配方

Figure BDA0002558302620000061

(2)按照CaSiO3组成,将碳酸钙和二氧化硅按1:1的摩尔比配置于球磨机中,按质量比为固体物料:去离子水=1:1.5的比例加入去离子水进行湿法球磨,混合均匀,用喷雾干燥塔进行干燥,在空气炉中1080℃的温度煅烧1.5小时。

(3)按照Mg2-3xCaxTiO4-2x·yCaSiO3(其中0.01≤x≤0.50,0.00<y≤0.20)的组成,按表2的试样化学组成,称取(1)得到的Mg2-3xCaxTiO4-2x、(2)得到的CaSiO3以及各种改性添加物,分组置于球磨机中,按每组质量比为固体物料:去离子水=1:0.8的比例加入去离子水进行湿法砂磨,要求物料混合均匀,使砂磨后的粉体用激光粒度仪测试平均颗粒径在0.40-1.0um。砂磨完毕后,加入分别占总质量0.5~3%的聚乙烯醇粘合剂、聚乙二醇增塑剂、羧酸铵盐分散剂,分散均匀后,用喷雾干燥塔进行干燥,干燥后粉体压制成圆柱型生坯圆片;然后设定温度曲线,先置于600℃中保温24小时以进行排胶,整个排胶过程的升温速度为8℃/小时;再以150℃/小时的升温速度升温至1310~1375℃保温3小时进行烧结;高温烧结后,在1000℃中保温1.5小时,得到成型的微波介质陶瓷材料圆片。

表2 微波介质陶瓷材料试样化学组成

对成型的微波介质陶瓷材料进行微波性能测试,测试结果列于表3中。表3的1~15号试样取自表2中的1~15号试样,且相同编号一一对应。

表3 微波介质陶瓷材料试样烧结制成圆片各项电性能测试结果

从表3可以看出,经过上述过程制成的陶瓷材料,可以在1300℃~1380℃的温度范围内。通过调整材料合成的配比可形成室温介电常数介于18~23,温度系数τf(-40~85℃):±10ppm/℃,Qf值≥40000GHz,微波性能参数连续可调的系统陶瓷材料,可满足微波器件的中低室温介电常数和窄波动范围的温度系数τf(-40~85℃)的应用要求。

以上所描述的实施例是本发明的一部分实施例,而不是全部的实施例。本发明的实施例的详细描述并非旨在限制要求保护的范围,而是仅仅表示本发明的选定实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

8页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种多种元素增韧氧化锆基陶瓷材料的制备方法及其产品

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!