一种金属氨基硼烷复合储氢材料

文档序号:1210082 发布日期:2020-09-04 浏览:18次 >En<

阅读说明:本技术 一种金属氨基硼烷复合储氢材料 (Metal amino borane composite hydrogen storage material ) 是由 武媛方 刘晓然 王树茂 蒋利军 李志念 叶建华 袁宝龙 郭秀梅 于 2020-06-11 设计创作,主要内容包括:本发明公开了属于固态氢气储存材料技术领域的一种金属氨基硼烷复合储氢材料。所述金属氨基硼烷复合储氢材料由α-LiNH&lt;Sub&gt;2&lt;/Sub&gt;BH&lt;Sub&gt;3&lt;/Sub&gt;相、LiH相和储氢合金氢化物相组成,以LiH、NH&lt;Sub&gt;3&lt;/Sub&gt;BH&lt;Sub&gt;3&lt;/Sub&gt;和储氢合金为原料经原位金属化复合球磨制备而成,NH&lt;Sub&gt;3&lt;/Sub&gt;BH&lt;Sub&gt;3&lt;/Sub&gt;、LiH、储氢合金的摩尔比为1:(1.01~1.05):(0.1~0.5)。所述金属氨基硼烷复合储氢材料相较于氨硼烷、金属氨硼烷可在室温附近快速放氢、具有更快的放氢动力学、无杂质气体产生,且具有制备工艺简单、效率高的优点,可用于燃料电池高安全高密度固态氢源。(The invention discloses a metal amino borane composite hydrogen storage material, belonging to the technical field of solid hydrogen storage materials, wherein the metal amino borane composite hydrogen storage material is prepared from α -LiNH 2 BH 3 Phase, LiH phase and hydride phase of hydrogen storage alloy consisting of LiH, NH 3 BH 3 And hydrogen storage alloy as raw material, and in-situ metallizing and ball-milling to obtain NH 3 BH 3 The molar ratio of LiH to the hydrogen storage alloy is 1 (1.01-1.05) to 0.1-0.5. Compared with ammonia borane and metal ammonia borane, the metal amino borane composite hydrogen storage material can rapidly release hydrogen at room temperature, has faster hydrogen release kinetics, does not generate impurity gas, has the advantages of simple preparation process and high efficiency, and can be used for high-safety high-density solid hydrogen sources of fuel cells.)

一种金属氨基硼烷复合储氢材料

技术领域

本发明属于固态氢气储存材料技术领域,尤其涉及一种金属氨基硼烷复合储氢材料。

背景技术

氢在目前的全球能源系统中扮演着及其重要的角色,轻质高容量的固态储氢材料可以满足氢的安全储存和输运需求。但在实际应用过程中,这些固态储氢材料往往存在放氢温度高,放氢容量小的温度,难以满足实际生产的需要。因此,亟需找到制备容量高,放氢条件温和的固态储氢材料的方法,以期满足储氢材料在燃料电池领域的应用要求。

目前,氨硼烷作为化学储氢材料的代表,本身具有高达19.6wt%的质量储氢密度,体积储氢密度146gH2/L,初始放氢温度约为75℃,在150℃下可以放出12.5wt%氢气;满足了多项2015年美国DOE提出的用于轻型燃料电池车辆的车载氢气储存技术目标。但要用于实际生产应用仍存在放氢温度偏高,放氢动力学缓慢以及放氢过程存在有害副产物,目前广泛应用的改进氨硼烷放氢性能的方法是通过加入碱/碱土金属氢化物合成金属氨基硼烷,但这种方法得到的储氢体系的放氢温度仍偏高,放氢产物中仍存在少量NH3、B2H6等杂质气体。此外,通过添加过渡金属及其合金等方法达到催化放氢的作用,但由于催化添加物不参与体系放氢,从而造成储氢密度下降、放氢动力学慢的问题。

发明内容

针对上述问题,本发明提出了一种金属氨基硼烷复合储氢材料,所述原料为NH3BH3、LiH及储氢合金的复合球磨产物;其中NH3BH3、LiH、储氢合金的摩尔比为1:(1.01~1.05):(0.1~0.5);

所述储氢合金为TiMn2系、Ti-V系、Ti-Fe系储氢合金的一种或两种。

所述金属氨基硼烷复合储氢材料采用原位金属化复合的方法得到,将所述原料在氢气气氛下球磨,气氛压力为8~10bar,球料比为50:1,球磨转速为0~400r/min,累计球磨时间为8~10h,采用温压监控通过球磨转速调控球磨罐温度≤30℃。

所述金属氨基硼烷复合储氢材料由α-LiNH2BH3相、LiH相和金属氢化物相组成。

所述金属氨基硼烷复合储氢材料在50℃,30min内放出高于5wt%的氢气。

金属氨基硼烷复合储氢材料的物相设计包括:所述金属氨基硼烷复合储氢材料由α-LiNH2BH3相、少量LiH相和金属氢化物相组成,纯α-LiNH2BH3相相比α、β复合相具有更优的放氢动力学和热力学,且无副产物NH3、B2H6生成;少量LiH相的存在有利于催化α-LiNH2BH3的放氢;TiMn2系、Ti-V系、Ti-Fe系储氢合金氢化相具有较强的脆性和硬度,可在温和条件下吸放氢,大幅提升球磨效率,并作为氢泵促进α-LiNH2BH3的放氢;

制备方过程中通过储氢合金筛选、制备过程温压监控及球磨工艺调控,实现氨硼烷的原位金属化复合,并抑制金属氨硼烷及金属氢化物在合成过程中的分解放氢。

本发明的有益效果在于:

1.本发明设计的金属氨基硼烷复合储氢材料含α-LiNH2BH3相、少量LiH相和合金氢化物相,在50℃即可快速放氢,且放氢产物中无NH3、B2H6等杂质气体。其中α-LiNH2BH3相比常见的α、β复合相具有更低的放氢温度,少量LiH能够促进α-LiNH2BH3的放氢,合金氢化物相作为氢泵进一步加快复合体系的放氢。

2.本发明采用原位金属化复合的方法,通过具有适宜吸放氢平台压的储氢合金的筛选、氢化压力、温度的控制,制备获得所设计的合金复合相,具有工艺简单、制备效率高的优点。

附图说明

图1实施例1中α-LiNH2BH3+0.1LiH及对比例1的α-LiNH2BH3与β-LiNH2BH3复合物XRD对比图谱;

图2实施例1中α-LiNH2BH3+0.1LiH及对比例1的α-LiNH2BH3与β-LiNH2BH3复合物的DSC曲线;

图3-a实施例1中α-LiNH2BH3+0.1LiH的放氢产物质谱分析图;

图3-b对比例1的α-LiNH2BH3与β-LiNH2BH3复合物的放氢产物质谱分析图;

图4实施例2中α-LiNH2BH3-0.1LiH-0.2(V-Ti-Cr)Hx复合体系XRD图谱;

图5实施例2中α-LiNH2BH3-0.1LiH-0.2(V-Ti-Cr)Hx复合体系50℃放氢动力学曲线;

图6实施例2中α-LiNH2BH3-0.1LiH-0.2(V-Ti-Cr)Hx复合体系放氢产物质谱分析图

具体实施方式

以下结合附图和具体实施例对本发明作进一步的详细说明:

实施例1

采用配有远程温度-压力监控系统行星式球磨机,将原料LiH,NH3BH3以1.01:1的比例装入球磨罐内,球料比为50:1,充入氢气到4bar,球磨罐温度上限设定为30℃,球磨转速为400r/min。对球磨罐中温度和压力变化进行实时监控,并实时调控,累积球磨时间为10h。

在手套箱内取球磨后的产物,密封制样后进行XRD结构分析,如图1中的1-a数据线,产物为α-LiNH2BH3及LiH的复合物。

取制备所得的产物5~10mg,以2K/min的加热速率进行DSC分析,并对放出的气体进行质谱分析,结果如图2中2-a数据线和图3-a所示,起始放氢温度为55℃,放氢产物中无NH3、B2H6等杂质气体。

对比例1

采用配有远程温度-压力监控系统行星式球磨机,将原料LiH,NH3BH3以1:1的比例装入球磨罐内,球料比、氢气压力、球磨罐温度上限、球磨转速、时间等参数与实施例1相同。

在手套箱内取球磨后的产物,密封制样后进行XRD结构分析,如图1中1-b数据线,制备所得产物呈α-LiNH2BH3与β-LiNH2BH3的复合相。

取制备所得的产物5~10mg,以2K/min的加热速率进行DSC分析,并对放出的气体进行质谱分析,结果如图2中2-b数据线和图3-b所示,DSC出现2个放氢峰,起始放氢温度60℃,放氢产物质谱图中出现少量NH3和B2H6峰。

实施例2

采用配有远程温度-压力监控系统行星式球磨机,将原料LiH,NH3BH3、V-Ti-Cr合金以1.01:1:0.1的比例装入球磨罐内,球料比为50:1,充入氢气到10bar,球磨罐温度上限设定为30℃,球磨转速为400r/min。对球磨罐中温度和压力变化进行实时监控,并实时调控,累积球磨时间为8h。

样品结构、放氢温度及动力学的分析方法与实施例1相同,球磨产物XRD分析结果表明,如图3所示,添加V-Ti-Cr后,产物中除α-LiNH2BH3及LiH相外,出现(V-Ti-Cr)Hx相,这说明球磨过程,储氢合金发生了氢化。

取0.5g复合产物进行50℃等温放氢动力学及产物质谱分析,结果如图5和6所示,30min复合储氢材料的放氢量为5.078wt%,且放氢产物中无NH3、B2H6等杂质气体。

12页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种新型化学制氢反应器

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类