鸡蛋花中具有抗糖尿病活性的化合物及其制备方法

文档序号:1225230 发布日期:2020-09-08 浏览:10次 >En<

阅读说明:本技术 鸡蛋花中具有抗糖尿病活性的化合物及其制备方法 (Compound with anti-diabetic activity in frangipani and preparation method thereof ) 是由 谭钦刚 张胜男 赖春华 于 2020-07-13 设计创作,主要内容包括:本发明公开了鸡蛋花中具有抗糖尿病活性的化合物及其制备方法,所述的化合物有四个,其中化合物1,2,4为新化合物,分别为三萜类化合物lup-20(29)-en-3&lt;I&gt;β&lt;/I&gt;-(1-(2&lt;I&gt;S&lt;/I&gt;-hydroxypropionate)-benzoic acid)(1),环烯醚萜类化合物&lt;I&gt;β&lt;/I&gt;-dihydroplumericin A(2),&lt;I&gt;β&lt;/I&gt;-dihydroplumericinic acid(3),吡喃酮类化合物tetrahydro-4&lt;I&gt;S&lt;/I&gt;-hydroxy-6&lt;I&gt;β&lt;/I&gt;-heptadecyl-2H-pyran-2-one(4),并通过光吸收检测法实验进一步研究上述鸡蛋花的化合物1-4的抗糖尿病效果。结果显示化合物1-4对&lt;I&gt;α&lt;/I&gt;-葡萄糖甘酶抑制作用强于阳性对照阿卡波糖,特别是化合物1的活性尤为突出;化合物1对PTP1B抑制作用强于阳性对照齐墩果酸,具有较强的活性。本发明从鸡蛋花中发现结构新颖的、具有抗糖尿病活性的化合物,为制备抗糖尿病新药奠定基础。(The invention discloses compounds with anti-diabetic activity in plumeria and a preparation method thereof, wherein the number of the compounds is four, wherein the compounds 1, 2 and 4 are new compounds which are triterpenoids lup-20(29) -en-3 β ‑(1‑(2 S -hydroxyproprionate) -benzoic acid) (1), iridoid compounds β ‑dihydroplumericin A(2), β -dihydroplircinic acid (3), pyrone compound tetrahydroxy-4 S ‑hydroxy‑6 β -heptadeceyl-2H-pyran-2-one (4), and the anti-diabetic effect of compounds 1-4 of the above frangipani was further investigated by photoabsorption detection assay. The results show that compounds 1-4 are paired α -grapeThe inhibition effect of the glycuronase is stronger than that of positive control acarbose, and particularly the activity of the compound 1 is particularly outstanding; the compound 1 has stronger inhibitory action on PTP1B than that of positive control oleanolic acid, and has stronger activity. The invention discovers a compound with novel structure and anti-diabetic activity from frangipani, and lays a foundation for preparing a new anti-diabetic medicine.)

鸡蛋花中具有抗糖尿病活性的化合物及其制备方法

技术领域

本发明涉及化合物,具体是一种从鸡蛋花中提取分离出来的具有抗糖尿病活性的三萜类、环烯醚萜类、吡喃酮类化合物及其制备方法。

背景技术

鸡蛋花来源为夹竹桃科植物鸡蛋花(Plumeria rubra L.)的干燥的花。花白色黄心,气醇香,味清淡稍苦,为广西道地药材。主要分布于广东、广西、云南、福建等地,广东、广西民间常采其花晒干泡茶饮。鸡蛋花既具有极佳的观赏性,又有许多民族药用作用,如治疗腹泻、痢疾、腹痛、牙痛和耳痛癌症等。据《中国民族志要》记载,其味甘、淡,性凉,有治湿热下痢和解毒、润肺等功效。在墨西哥,鸡蛋花水煎剂被用来治疗和预防糖尿病。近些年研究,鸡蛋花的乙醇水提取物对由链脲佐菌素诱导的糖尿病大鼠抗糖尿病作用。

据文献报道,鸡蛋花抗糖尿病活性多为鸡蛋花各类粗提物的相关报道,关于鸡蛋花具体的活性成分的报道极少。

为了进一步从鸡蛋花中发现新的抗糖尿病活性成分,为新药开发奠定基础,发明人对鸡蛋花进行了化学成分的深入研究。从鸡蛋花中分离提取,并结合抗糖尿病活性筛选,并鉴定了具有抗糖尿病活性的三萜类、环烯醚萜类、吡喃酮类化合物。

发明内容

本发明公开了从鸡蛋花中提取分离出来的具有抗糖尿病活性的三萜类、环烯醚萜类、吡喃酮类化合物,并公开了提取分离方法、结构鉴定,并对其抗糖尿病活性进行了实验。

实现本发明目的的技术方案是:

鸡蛋花中具有抗糖尿病活性的化合物,所述的化合物有四个,其中化合物1,2,4为新化合物,分别为三萜类化合物lup-20(29)-en-3β-(1-(2S-hydroxypropionate)-benzoicacid)(1),环烯醚萜类化合物β-dihydroplumericin A(2),β-dihydroplumericinic acid(3),吡喃酮类化合物tetrahydro-4S-hydroxy-6β-heptadecyl-2H-pyran-2-one(4),具有下述式所示结构:

Figure RE-DEST_PATH_IMAGE002

上述鸡蛋花中具有抗糖尿病活性的化合物的制备方法,包括如下步骤:

(1)取30 kg鸡蛋花,用95%乙醇没过鸡蛋花表面浸泡4次,每次7天,提取液合并,减压蒸馏除去溶剂,粗提物悬浮于水中,用乙酸乙酯萃取,减压回收溶剂得乙酸乙酯层浸膏1.1kg;

(2)将乙酸乙酯部位经正相硅胶柱,设置浓度梯度进行洗脱,得十一个流分:I‒XI;

(3)将流份VI经MCI色谱柱层析,甲醇水梯度洗脱,得VI-1至VI-5 五个流份;VI-1流分经ODS反向色谱柱层析,甲醇水梯度洗脱,重结晶得β-dihydroplumericin A化合物2;

将流份V经MCI色谱柱层析,甲醇水梯度洗脱,得V-1至V-5五个流份;V-4流分经正向硅胶柱,然后ODS反向色谱柱层析,甲醇水梯度洗脱得tetrahydro-4S-hydroxy-6β-heptadecyl-2H-pyran-2-one化合物4;

V-5减压浓缩沉淀粉末,甲醇洗涤粉末得lup-20(29)-en-3β-(1-(2S-hydroxypropionate)-benzoic acid) 化合物1;

将流分VII经MCI色谱柱层析,甲醇水梯度洗脱,得VII-1至VII-4 四个流份;VII-2流分经LH-20凝胶柱,甲醇洗脱得β-dihydroplumericinic acid化合物3

步骤(2)所述的正相硅胶柱,洗脱剂采用体积比为,石油醚:丙酮=1:0, 13:1, 4:1, 1:1,至氯仿:甲醇=1:1梯度洗脱。

步骤(3)所述甲醇水梯度洗脱,其中甲醇水的浓度按70%、75%、80%、85%、90%、95%、100%梯度洗脱,并用丙酮洗脱得V-5;V-5减压浓缩沉淀粉末,甲醇洗涤粉末;所述的正相硅胶柱,洗脱剂分别采用体积比为石油醚:乙酸乙酯=12:1和石油醚:乙酸乙酯=16:1梯度洗脱。

本发明从鸡蛋花中发现结构新颖的、具有抗糖尿病活性的三萜类、环烯醚萜类、吡喃酮类化合物,为制备抗糖尿病活性新药奠定基础。

附图说明

图1为鸡蛋花化合物1的1H NMR图谱;

图2为鸡蛋花化合物1的13C NMR图谱;

图3为鸡蛋花化合物1的HSQC图谱;

图4为鸡蛋花化合物1的HMBC图谱;

图5为鸡蛋花化合物1的1H-1H COSY图谱;

图6为鸡蛋花化合物1的NEOSY图谱;

图7为鸡蛋花化合物1的Mosher′s法Δδ H S-R 值。

具体实施方式

化合物1结构鉴定,高分辨质谱 (HR-ESI-MS m/z: 617.4229 [M – H], calcdfor C40H57O5 617.4211) 可推测其分子式为C40H58O5,具有12个不饱和度; + 26.77(c 0.43, DMSO)。IR (KBr) 数据中显示含有OH (υ max 3422 cm‒1),COOH (υ max 1715 cm‒1),间位取代苯环(υ max 964, 882, 750 cm‒1)。UV (甲醇) λ max (log ε) 220 (3.46), 275(1.89)。1HNMR (500 MHz, pyridine-d 5) δ H: 0.90 (1H, m, H-1a), 1.62 (1H, m, H-1b), 1.77 (2H, m, H-2), 4.78 (1H, dd, J = 11.7, 4.8 Hz, H-3), 0.78 (1H, m, H-5), 1.35 (1H, m, H-6a), 1.45 (1H, m, H-6b), 1.35 (2H, m, H-7), 1.28 (1H, m,H-9), 1.29 (2H, m, H-11), 1.14 (2H, m, H-12), 1.62 (1H, m, H-13), 0.97 (1H,m, H-15a), 1.67 (1H, m, H-15b), 1.42 (1H, m, H-16a), 1.50 (1H, m, H-16b),1.42 (1H, m, H-18), 2.48 (1H, td, J = 11.0, 5.8 Hz, H-19), 1.41 (2H, m, H-21), 1.26 (1H, m, H-22a) 1.40 (1H, m, H-22b), 0.88 (3H, s, H-23), 0.91 (3H,s, H-24), 0.84 (3H, s, H-25), 1.00 (3H, s, H-26), 0.99 (3H, s, H-27), 0.83(3H, s, H-28), 4.75 (1H, dd, J = 2.4, 1.3 Hz, H-29a), 4.90 (1H, dd, J = 2.4,H-29b), 1.75 (3H, s, H-30), 4.96 (1H, m H-2'), 3.44 (1H, dd, J = 13.8, 5.1Hz, H-3'a), 3.51 (1H, dd, J = 13.8, 7.5 Hz, H-3'b), 8.64 (1H, s, H-5'), 8.38(1H, d, J = 7.7 Hz, H-7'), 7.49 (1H, t, J = 7.6 Hz, H-8'), 7.77 (1H, d, J =7.6 Hz, H-9'); 13CNMR (125 MHz, pyridine-d 5) δ C : 39.0 (t, C-1), 24.5 (t, C-2),82.0 (d, C-3), 38.6 (s, C-4), 56.0 (d, C-5), 18.9 (t, C-6), 34.9 (t, C-7),41.5 (s, C-8), 50.9 (d, C-9), 37.7 (s, C-10), 21.5 (t, C-11), 25.9 (t, C-12),38.7 (d, C-13), 43.5 (s, C-14), 28.2 (t, C-15), 36.2 (t, C-16), 43.7 (s, C-17), 49.0 (d, C-18), 48.7 (d, C-19), 151.5 (s, C-20), 30.6 (t, C-21), 40.7(t, C-22), 28.5 (q, C-23), 17.2 (q, C-24), 16.7 (q, C-25), 16.6 (q, C-26),15.2 (q, C-27), 18.6 (q, C-28),110.4 (t, C-29), 19.9 (q, C-30), 174.9 (s, C-1'), 72.8 (d, C-2'), 41.8 (t, C-3'), 139.3 (s, C-4'), 132.3(d, C-5'), 133.3(s, C-6'), 128.9 (d, C-7'), 129.1 (d, C-8'), 134.9 (d, C-9'), 169.8 (s, C-10')。如图1所示,化合物1的1H NMR数据显示有两个末端双键质子(δ H 4.75, 4.90),和7个角甲基 (δ H 0.83, 0.84, 0.88, 0.91, 0.99, 1.00, 1.75)。如图2和图3所示,13C NMR和HSQC谱中的碳原子类型及相关数据给出双键化学位移在 (δ C 110.4, 151.5) 处,提示化合物1的分子式中含有羽扇豆烷型三萜骨架。1H NMR,13C NMR数据也显示化合物中含有1个间位双取代的苯环 [δ C 128.9, 129.1, 132.3, 133.3, 134.9, 139.3; δ H 7.49 (t, 7.6Hz), 7.77 (d, 7.6 Hz), 8.38 (d, 7.7 Hz), 8.64 (s)],两个羰基 (δ C 169.8, 174.9)信号。如图4所示,HMBC图谱中,H-3(δ H 4.78) 与C-23, 24, 1′ (δ C 28.5, 17.2, 174.9)相关,可知该化合物在羽扇豆烷母核的3位被酯基取代。该化合物与已知化合物lupeol β-phenyl propionate相似,不同之处在于:根据H-2′ (δ H 4.96) 与C-1′, 3′, 4′ (δ C174.9, 41.8, 139.3) 相关,H-3′ (δ H 3.44, 3.51) 与C-1′, 2′, 4′, 5′ (δ C 174.9,72.8, 139.3, 132.3) 相关,以及如图5所示,1H-1H COSY图谱中H-2′(δ H 4.96) 与H-3′(δ H 3.44, 3.51) 相关,说明2′位被羟基取代。而因苯环为间位双取代,根据HMBC图谱中,H-5′(δ H 8.64) 和H-7′(δ H 8.38) 均与C-10′ (δ C 169.8) 相关,证明苯环的6′为羧基。如图6所示,NOESY图谱中,H-3 (δ H 4.78) 与H-5 (δ H 0.78), H-23 (δ H 0.88) 相关,说明3位为β构型。用Mosher′s法确定2′仲醇手性碳的绝对构型。(R)-MTPA 和(S)-MTPA试剂分别对本化合物进行酯化反应,比较(R)-MTPA 和(S)-MTPA酯的1H NMR得到的Δδ H S-R ,如图7所示,根据羟基两侧的Δδ H S-R 的正负来判断仲醇的构型为2′S。综上可以推断该化合物结构鉴定为lup-20(29)-en-3β-(1-(2S-hydroxypropionate)-benzoic acid),该化合物为新化合物。

化合物2结构鉴定,根据高分辨质谱 (HR-ESI-MS m/z: 329.1001 [M + Na],calcd for C16H18O6Na 329.0996) 可推测其分子式为C16H18O6,有7个不饱和度。 +187.84 (c 0.21, CH3COCH3)。IR (KBr) 数据显示含有OH (υ max 3443 cm‒1),酯基 (υ max 1784, 1267 cm‒1),C=C (υ max 1690 cm‒1)。UV (甲醇) λ max (log ε) 225 (3.29)。1HNMR(400 MHz, CD3COCD3) δ H : 5.73 (1H, d, J = 8.0 Hz, H-1), 7.45(1H, s, H-3), 3.97(1H, dt, J = 2.4, 10.0 Hz, H-5), 6.07 (1H, dd, J = 2.4, 5.6 Hz, H-6), 5.85(1H, dd, J = 6.0, 10.0 Hz, H-7), 3.52 (1H, dd, J = 2.4, 5.6 Hz, H-9), 4.45(1H, s, H-10), 2.70 (1H, m, H-11), 1.78 (2H, m, H-13), 1.11 (3H, t, J = 7.6Hz, H-14), 4.21 (2H, m, H-16), 1.28 (3H, t, J = 7.2Hz, H-17). 13CNMR (100 MHz,CD3COCD3) δ C : 102.4 (d, C-1), 153.1 (d, C-3), 109.7 (s, C-4), 38.8 (d, C-5),141.7 (d, C-6), 127.8 (d, C-7), 106.7 (s, C-8), 54.2 (d, C-9), 87.4 (d, C-10), 49.5 (d, C-11), 176.9 (t, C-12), 23.2 (t, C-13), 12.2 (s, C-14), 166.7(t, C-15), 60.7 (t, C-16), 14.6 (s, C-17)。13C NMR和DEPT数据显示化合物2含有16个碳原子,其中2个甲基(δ C 14.6, 12.2),2个亚甲基 (δ C 60.7, 23.2),8个次甲基 (δ C153.1, 141.7, 127.8, 102.4, 87.4, 54.2, 49.5, 38.8),4个季碳 (δ C176.9, 166.7,109.7, 106.7),上述数据表明化合物2是一个环烯醚萜类化合物。1H NMR数据和13C NMR数据与化合物β-dihydroplumericin相似,不同的是,该化合物数据中多了一个 (δ C 60.7, δ H4.21) 的亚甲基信号。从HMBC和1H-1H COSY图谱上:HMBC谱中,H-17 (δ H 1.28) 与C-16 (δ C60.7) 相关,H-16 (δ H 4.21) 与C-15, 17 (δ C 166.7, 14.6) 相关;1H-1H COSY图谱中H-16 (δ H 4.21) 与H-17 (δ H 1.28) 相关,证明H-16与H-17直接相连,该乙基与酯基相连。在NOESY图谱中H-5 (δ H 3.97) 与 H-1(δ H 5.73) 和H-9 (δ H 3.52)相关,为β构型。综上,该新化合物鉴定为β-dihydroplumericin A。

化合物β-dihydroplumericinic acid(3) 结构鉴定,根据低分辨质谱ESI-MS m/ z: 277 [M – H]. 推测分子式为C14H14O61H NMR (400 MHz, CD3COCD3) δ H:5.72 (1H, d,J = 5.9 Hz, H-1),7.44 (1H, s, H-3), 3.94 (1H, dt, J = 9.7, 2.3 Hz, H-5), 5.82(1H, dd, J = 5.5, 2.2 Hz, H-6), 6.05 (1H, dd, J = 5.5, 2.2 Hz, H-7), 3.50(1H, dd, J = 9.7, 5.9 Hz, H-9), 4.44 (1H, s, H-10), 2.68 (1H, ddd, J = 8.8,6.5, 1.1 Hz, H-11), 1.09 (3H, t, J = 7.4 Hz, H-14). 13C NMR (100 MHz, CD3COCD3)δ C : 102.5 (d, C-1), 153.5 (d, C-3), 106.9 (s, C-4), 39.0 (d, C-5), 127.9 (d,C-6), 141.9 (d, C-7), 109.6 (s, C-8), 54.4 (d, C-9), 87.6 (d, C-10), 49.7 (d,C-11), 177.1 (s, C-12), 23.4 (t, C-13), 12.3 (q, C-14), 167.8 (s, C-15)。鉴定该化合物为β-dihidroplumericinic acid。

化合物tetrahydro-4S-hydroxy-6β-heptadecyl-2H-pyran-2-one(4)结构鉴定,根据高分辨质谱 (HR-ESI-MS m/z: 377.3034 [M + Na]+, calcd for C22H42O3Na+377.3026) 可推测其分子式为C22H42O3,有2个不饱和度。

Figure RE-760017DEST_PATH_IMAGE007

+ 9.15 (c 0.32,CH3COCH3)。IR (KBr) 数据显示含有OH (υ max 3464 cm‒1),酯基 (υ max 1709 cm‒1),长链烷基(υ max 2922 cm‒1)。UV (甲醇) λ max (log ε) 214 (2.05)。1H NMR (400 MHz, CD3COCD3) δ H:2.61 (1H, dd, J = 17.3, 4.7 Hz, H-3a), 2.44 (1H, ddd, J = 17.3, 3.6, 1.8 Hz,H-3b), 4.28 (1H, m, H-4), 1.90 (1H, m, H-5a), 1.70 (1H, m, H-5b), 4.60 (1H,m, H-6), 1.55 (2H, m, H-7), 1.38 (1H, m, H-8a), 1.45 (1H, m, H-8b), 1.24 (1H,s, H-9~20), 1.24 (1H, s, H-21), 1.24 (1H, s, H-22), 0.83 (3H, t, J = 6.7 Hz,H-23). 13C NMR (100 MHz, CD3COCD3) δ C : 170.5 (s, C-2), 39.6 (t, C-3), 63.3 (d,C-4), 36.9 (t, C-5), 76.3 (d, C-6), 36.7 (t, C-7), 25.9 (t, C-8), 30.0-30.6(t, C-9~20), 32.8 (t, C-21), 23.5 (t, C-22), 14.5 (q, C-23)。化合物4的1H NMR和13C NMR数据是一个长链吡喃酮类化合物,其6位长侧链均为-(CH2)16CH3,和文献中的3β-hydroxyicosan-1,5β-olide相似,3位被羟基取代。但是根据高分辨质谱可知,该化合物比文献化合物的长侧链多了2个亚甲基,故该新化合物被命名为tetrahydro-4-hydroxy-6-heptadecyl-2H-pyran-2-one。

下面结合实验进一步说明鸡蛋花的化合物抗糖尿病效果。α-葡萄糖甘酶和蛋白酪氨酸磷酸酶1B(PTP1B)是治疗糖尿病的重要靶点,抑制α-葡萄糖甘酶和蛋白酪氨酸磷酸酶1B(PTP1B)是治疗糖尿病的重要策略。

使用光检测吸收法测定鸡蛋花中化合物1-4的α-葡萄糖甘酶和蛋白酪氨酸磷酸酶1B(PTP1B)抑制活性。

使用阿卡波糖作为阳性对照的体外测定方案评估鸡蛋花中得单体化合物的α-葡萄糖甘酶抑制活性。把对硝基苯α-D-葡萄糖苷 (PNPG) 作为底物,利用α-葡萄糖苷酶催化水解PNPG产生对硝基酚 (PNP),在405 nm处具有很强的吸收性。一定时间内反应体系用酶标仪监测405 nm处的吸收强度变化,来计算试样对α-葡萄糖苷酶的抑制活性。化合物1-4,其IC50分别为19.45 ± 1.62 μM,56.84 ± 13.98 μM, 62.50 ± 23.55 μM, 135.28 ±19.10 μM,表现出突出的抑制活性,远优于阳性对照阿卡波糖的IC50为363.93 ± 95.43μM,特别是化合物1得活性最为突出。

使用齐墩果酸作为阳性对照的体外测定方案评估鸡蛋花中得化合物1-4的PTP1B抑制活性。把磷酸4-硝基苯酯 (p-NPP) 作为底物,利用PTP1B催化水解p-NPP产生对硝基酚(NPP),在405 nm处具有很强的吸收性。一定时间内反应体系用酶标仪监测405 nm处的吸收强度变化,来计算试样对PTP1B的抑制活性。化合物1表现出突出的抑制活性,其IC50为0.21± 0.00 μM远优于阳性对照阿卡波糖的IC50为2.48 ± 0.22μM。

18页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种多级逆流萃取法精制丹参酮IIA工艺

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!