四氢双环戊二烯的制备方法

文档序号:126926 发布日期:2021-10-22 浏览:47次 >En<

阅读说明:本技术 四氢双环戊二烯的制备方法 (Preparation method of tetrahydrodicyclopentadiene ) 是由 闫瑞 陶志平 赵杰 于 2020-04-14 设计创作,主要内容包括:本发明提供一种四氢双环戊二烯的制备方法,包括:采用催化剂与双环戊二烯接触进行催化加氢反应,得到所述四氢双环戊二烯;其中催化剂通过下述方法获得:向镍源和硅源的混合物中加入水解剂和水,进行溶胶-凝胶反应;及溶胶-凝胶反应后的产物经还原处理,得到催化剂。该方法通过采用溶胶-凝胶法制备的晶态镍和无定形二氧化硅的复合物作为催化剂,使得整个反应过程副反应少,转化率和收率均较高,可实现四氢双环戊二烯稳定、连续地高效生产。(The invention provides a preparation method of tetrahydrodicyclopentadiene, which comprises the following steps: contacting a catalyst with dicyclopentadiene to perform a catalytic hydrogenation reaction to obtain the tetrahydrodicyclopentadiene; wherein the catalyst is obtained by the following method: adding a hydrolytic agent and water into a mixture of a nickel source and a silicon source to carry out sol-gel reaction; and reducing the product after the sol-gel reaction to obtain the catalyst. The method adopts the compound of crystalline nickel and amorphous silicon dioxide prepared by a sol-gel method as a catalyst, so that the side reaction is less in the whole reaction process, the conversion rate and the yield are higher, and the stable, continuous and efficient production of the tetrahydrodicyclopentadiene can be realized.)

四氢双环戊二烯的制备方法

技术领域

本发明涉及石油化工技术领域,具体涉及一种四氢双环戊二烯的制备方法。

背景技术

四氢双环戊二烯是三环[5,2,1,02,6]癸烷,是一种高密度、高稳定性和高燃烧热的燃料,可广泛应用于火箭等军用航空燃料。同时,四氢双环戊二烯是制备三环癸烷结构的双环戊二烯衍生物的重要中间体;如金刚烷、挂式四氢双环戊二烯等。因此,四氢双环戊二烯的连续高效生产对于国防军工、医药卫生等领域意义重大。

目前,四氢双环戊二烯主要是由贵金属催化剂加氢得到,如下式I所示。专利CN10121521813采用Pd/C催化制备四氢双环戊二烯,催化活性良好;然而,贵金属的使用存在成本高的问题。专利CN101406839采用Ni-Rh-Y/γ-Al2O3催化剂加氢的方案,该方法虽然一定程度解决了成本高的问题,但存在反应条件较苛刻的问题。专利CN103877982A采用廉价Ni-Cu/γ-Al2O3催化剂制备四氢双环戊二烯,但催化剂稳定性较差。基于上述背景,本发明拟采用新型催化剂实现四氢双环戊二烯的高效制备。

需注意的是,前述

背景技术

部分公开的信息仅用于加强对本发明的背景理解,因此它可以包括不构成对本领域普通技术人员已知的现有技术的信息。

发明内容

本发明的一个主要目的在于克服上述现有技术的至少一种缺陷,提供一种四氢双环戊二烯的制备方法,以解决现有催化剂成本高、反应条件苛刻,难以实现稳定、高效的催化加氢反应制备四氢双环戊二烯的问题。

为了实现上述目的,本发明采用如下技术方案:

本发明提供一种四氢双环戊二烯的制备方法,包括:采用催化剂与双环戊二烯接触进行催化加氢反应,得到四氢双环戊二烯;其中催化剂通过下述方法获得:向镍源和硅源的混合物中加入水解剂和水,进行溶胶-凝胶反应;及溶胶-凝胶反应后的产物经还原处理,得到催化剂。

根据本发明的一个实施方式,双环戊二烯于含有催化剂的固定床反应器中进行催化加氢反应,反应温度为10℃~200℃,氢气压力为0.1MPa~10MPa,质量空速为0.1h-1~50h-1,氢油比为50~2000。

根据本发明的一个实施方式,双环戊二烯于含有催化剂的高压反应釜中进行催化加氢反应,反应温度为10℃~200℃,氢气压力为0.1MPa~10MPa,反应时间为0.1h~10h,搅拌速度为400r/min~1000r/min,所述催化剂与所述双环戊二烯的质量比为1:(1~50)。

根据本发明的一个实施方式,获得催化剂的方法还包括:在还原处理前,向溶胶-凝胶反应后的产物加入助剂,进行成型处理。

根据本发明的一个实施方式,获得催化剂的方法还包括:溶胶-凝胶反应后的产物经焙烧得到镍硅复合氧化物,向镍硅复合氧化物中加入助剂进行成型处理。

根据本发明的一个实施方式,镍源选自碱式碳酸镍、硝酸镍、硫酸镍、氯化镍和乙酸镍中的一种或多种;硅源选自水玻璃、硅溶胶和正硅酸乙酯中的一种或多种;镍源与硅源的摩尔比为1:(0.1~40)。

根据本发明的一个实施方式,水解剂为酸或碱,水解剂的浓度为0.5mol/L~2mol/L,酸选自盐酸、硫酸、硝酸、甲酸、乙酸、草酸和柠檬酸中的一种或多种,碱选自氨水、三乙胺、乙二胺和四甲基乙二胺中的一种或多种。

根据本发明的一个实施方式,溶胶-凝胶反应包括:水解剂加入含镍源和硅源的溶液中搅拌生成溶胶;及溶胶经静置老化后得凝胶;其中,静置老化的温度为0℃~60℃,时间0h~24h。

根据本发明的一个实施方式,还原处理的温度为400℃~600℃,时间为2h~6h。

根据本发明的一个实施方式,成型处理选自挤条、滚球、压片和造粒中的一种或多种。

根据本发明的一个实施方式,成型处理为压片处理,助剂包括黏结剂,黏结剂选自田菁粉、淀粉和石墨粉中的一种或多种。

根据本发明的一个实施方式,压片处理包括:以质量份计,将1份溶胶-凝胶反应后的产物、0.005~0.2份的黏结剂混合,经压片机进行压片,经干燥和焙烧后得压片处理后的物料。

根据本发明的一个实施方式,经压片处理的催化剂的机械强度为10N/粒~100N/粒。

根据本发明的一个实施方式,成型处理为挤条处理,助剂包括黏结剂、致孔剂和水,其中,黏结剂选自水玻璃、硅溶胶和正硅酸乙酯中的一种或多种,致孔剂选自田菁粉、石墨粉、淀粉和柠檬酸中的一种或多种。

根据本发明的一个实施方式,挤条处理包括:以质量份计,将1份溶胶-凝胶反应后的产物、0.02~50份黏结剂、0~0.1份致孔剂和0.05~0.4份水混合,经挤条机挤出条状后,经切粒、干燥和焙烧后,得挤条处理后的物料。

根据本发明的一个实施方式,经挤条处理的催化剂的机械强度为10N/mm~30N/mm。

由上述技术方案可知,本发明的有益效果在于:

本发明提出的四氢双环戊二烯的制备方法,其通过采用特定的溶胶-凝胶方法制备的加氢催化剂对双环戊二烯进行加氢处理,使得整个反应过程副反应少,转化率和收率均较高,实现了四氢双环戊二烯稳定、连续地高效生产,对于国防军工、医药卫生等领域具有重要意义。

附图说明

以下附图用于提供对本发明的进一步理解,并构成说明书的一部分,与下面的

具体实施方式

一起用于解释本发明,但并不构成对本发明的限制。

图1分别示出了实施例1中镍硅复合氧化物和催化剂的XRD谱图。

具体实施方式

以下内容提供了不同的实施例或范例,以令本领域技术人员参照说明书文字能够据以实施。当然,这些仅仅是范例,而非意图限制本发明。在本发明中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应当被视为在本文中具体公开。

本发明提供一种四氢双环戊二烯的制备方法,包括:采用催化剂与双环戊二烯接触进行催化加氢反应,得到四氢双环戊二烯;其中催化剂通过下述方法获得:向镍源和硅源的混合物中加入水解剂和水,进行溶胶-凝胶反应;溶胶-凝胶反应后的产物经还原处理后,得到所述催化剂。

根据本发明,四氢双环戊二烯是一种高密度、高稳定性和高燃烧热的燃料,可广泛应用于火箭等军用航空燃料,目前多采用贵金属催化剂等催化双环戊二烯进行加氢反应以制备四氢双环戊二烯,但催化剂存在成本高、反应条件苛刻等问题。本发明的发明人发现,通过利用溶胶-凝胶法制备得到镍和二氧化硅的复合物,其可作为催化剂催化双环戊二烯进行加氢反应,具有活性和稳定性较高、易于分离的特点,具有良好的应用前景。

在一些实施例中,双环戊二烯于含有前述催化剂的固定床反应器中进行催化加氢反应,具体地,将双环戊二烯溶于有机溶剂中,例如甲基环己烷等,然后与固定床反应器中的催化剂接触,在氢气作用下进行反应。反应温度为10℃~200℃,例如20℃、40℃、60℃、70℃、75℃、80℃、90℃、100℃、103℃、110℃、116℃、124℃、136℃、141℃、159℃、168℃、180℃、190℃等。可选地,反应温度为40℃~160℃。氢气压力为0.1MPa~10MPa,例如0.2MPa、0.7MPa、1MPa、2MPa、3.5MPa、4MPa、5MPa、6MPa、7MPa、8MPa、9MPa、10MPa等,可选地,为2MPa~7MPa。质量空速为0.1h-1~50h-1,例如,0.1h-1、0.5h-1、1h-1、2h-1、4h-1、10h-1、25h-1、37h-1、45h-1、50h-1等,氢油比为50~2000,例如100、220、350、490、550、760、880、1000、1600、2000等。

在一些实施例中,双环戊二烯于含有前述催化剂的高压反应釜中进行催化加氢反应,具体地,将双环戊二烯溶于有机溶剂中,例如甲基环己烷等,然后置于高压反应釜中,并向所述高压反应釜中加入催化剂,所述催化剂与双环戊二烯接触并搅拌,在氢气作用下进行反应。反应温度为10℃~200℃,例如20℃、40℃、60℃、70℃、75℃、80℃、90℃、100℃、103℃、110℃、116℃、124℃、136℃、141℃、159℃、168℃、180℃、190℃等。可选地,反应温度为40℃~160℃。氢气压力为0.1MPa~10MPa,例如0.2MPa、0.7MPa、1MPa、2MPa、3.5MPa、4MPa、5MPa、6MPa、7MPa、8MPa、9MPa、10MPa等,优选为2MPa~7MPa。反应时间为0.1h~10h,例如,0.1h、0.5h、1h、2h、4h、10h等,可选地,为0.5h~4h。搅拌速度为400r/min~1000r/min,例如,400r/min、500r/min、670r/min、800r/min、950r/min、1000r/min等;催化剂与双环戊二烯的质量比为1:(1~50),例如1:10、1:20、1:25、1:30、1:35、1:40、1:45、1:50等。

可见,采用本发明的催化剂催化制备四氢双环戊二烯,其反应条件较温和,成本较低。对于固定床反应器或高压反应釜反应器均适用。

下面对前述的催化剂的制备方法进行具体说明。

首先,向镍源和硅源的混合物中加入水解剂和水,进行溶胶-凝胶反应。镍源为可溶性镍源,包括但不限于碱式碳酸镍、硝酸镍、硫酸镍、氯化镍和乙酸镍中的一种或多种;硅源为可溶性硅源,包括但不限于水玻璃、硅溶胶和正硅酸乙酯中的一种或多种;镍源与硅源的摩尔比为1:(0.1~40),例如1:3、1:4.5、1:5、1:7、1:10、1:11、1:14等。于一实施方式中,镍源与硅源的摩尔比为1:(2~15)。

在溶胶-凝胶反应过程中,首先将镍源与硅源和水混合,制得混合溶液,然后将水解剂加入到混合溶液中,搅拌生成溶胶;所得溶胶经静置老化后得到凝胶。前述溶胶-凝胶反应过程中,一般地,静置老化的温度为0℃~60℃,优选为10℃~30℃,静置老化的时间0h~24h,优选为2h~12h。

其中的水解剂一般为酸或碱,水解剂的浓度为0.5mol/L~2mol/L,例如0.5mol/L、1mol/L、1.5mol/L、2mol/L等。酸选自盐酸、硫酸、硝酸、甲酸、乙酸、草酸和柠檬酸中的一种或多种,碱选自氨水、三乙胺、乙二胺和四甲基乙二胺中的一种或多种。

在一些实施例中,本发明还包括对溶胶-凝胶反应后的产物进行干燥、焙烧,将焙烧后的产物进行成型处理。其中干燥温度为60℃~120℃,优选为100℃~120℃,焙烧温度为300℃~700℃,焙烧时间为2h~6h,此时所得到的产物为镍硅复合氧化物,该镍硅复合氧化物的结构为无定形结构的氧化硅和晶体结构的氧化镍颗粒团簇聚集而成的多孔结构,该镍硅复合氧化物中的氧化镍晶粒尺寸与最终经还原后得到的催化剂中镍金属晶粒尺寸大致相当,同时具有相似的结构,孔结构参数也近似相当。

下面以前述干燥后未进行焙烧的凝胶直接进行成型处理说明具体的成型过程。当然,本发明还可以将凝胶经过焙烧处理后,对镍硅复合氧化物进行成型处理,本发明不限于此。本发明所述的成型处理包括但不限于挤条、滚球、压片和造粒中的一种或多种。

在一些实施例中,前述的成型处理为挤条处理。在挤条处理过程中,助剂包括黏结剂、致孔剂和水,其中,黏结剂选自水玻璃、硅溶胶和正硅酸乙酯中的一种或多种,致孔剂选自田菁粉、石墨粉、淀粉和柠檬酸中的一种或多种。具体地,挤条处理的过程包括:以质量份计,将1份溶胶-凝胶反应后的产物、0.02~50份黏结剂、0~0.1份致孔剂和0.05~0.4份水混合,经挤条机挤出条状后,经切粒、干燥和焙烧后,得挤条处理后的物料。其中,前述的溶胶-凝胶反应后的产物、黏结剂、致孔剂的质量均以干基计算。在一些实施例中,挤条处理过程中的干燥温度为100℃~130℃,2h~24h,焙烧温度为300℃~700℃,2h~6h。经过焙烧以后的挤条处理后的物料进一步进行还原处理,其中还原温度为400℃~600℃,时间为2h~6h。通过还原处理得到晶态镍和无定形二氧化硅形成的复合物,即为催化剂。

前述通过挤条处理后得到的催化剂为条状催化剂,具体包括圆柱形、三叶草形或蝶形等。条状催化剂的截面尺寸可以为0.5mm~3mm,例如1mm、1.5mm、2mm、2.5mm等,此处的截面尺寸是指条状催化剂横截面的各个方向的尺寸在0.5~3mm的范围内;另外,条状催化剂的长度可以为0.2cm~0.8cm。一般地,通过前述处理后,所得的条状催化剂的机械强度为10N/mm~30N/mm,例如10N/mm、12N/mm、15N/mm、22N/mm、24N/mm、25N/mm、30N/mm等。

在一些实施例中,前述的成型处理包括为压片处理。在压片处理过程中,助剂包括黏结剂,黏结剂选自田菁粉、淀粉和石墨粉中的一种或多种,优选地,黏结剂为石墨粉。具体地,压片处理过程包括:以质量份计,将1份溶胶-凝胶反应后的产物、0.005~0.2份的黏结剂混合,经压片机进行压片,经干燥和焙烧后得压片处理后的物料。其中,前述的凝胶、黏结剂的质量均以干基计算。溶胶-凝胶反应后的产物与黏结剂的质量比也可以为1:0.00625、1:0.008、1:0.01、1:0.03、1:0.05、1:0.08、1:0.1、1:0.12、1:0.15、1:0.18等。在一些实施例中,压片处理过程中的干燥温度为110℃~130℃,2h~24h,焙烧温度为400℃~600℃,例如450℃、500℃、550℃;时间为2h~6h。

经过焙烧后的压片处理后的物料进一步进行还原处理,其中还原温度为400℃~600℃,例如450℃、500℃、550℃,时间为2h~6h,还原剂可以为氢气。通过还原处理即得到本发明的催化剂。该催化剂包括镍和二氧化硅的复合物,其中,镍为晶体结构,二氧化硅为无定形结构。通过前述一系列处理后,压片后所得的催化剂呈粒状或片状,其截面尺寸为1mm~5mm,一般地,尺寸越大,其耐受力会相对更大;机械强度为10N/粒~100N/粒,进一步可以为20~60N/粒,例如12N/粒、15N/粒、20N/粒、25N/粒、27.3N/粒、30N/粒、35N/粒、38.9N/粒、40N/粒、45N/粒、45.7N/粒、50N/粒、55N/粒、60N/粒、62.4N/粒、65N/粒、70N/粒、80N/粒、90N/粒、95N/粒等。

前述的镍和二氧化硅的复合物的化学式为Ni-(SiO2)a,a的值为0.1~40,例如,2.1、3、3.2、4.5、5、6.7、6.8、6.9、7、7.1、10、10.8、11、13.9、14等。在一些实施例中,优选地,a为2.9~11.1。该复合物的结构是由镍晶粒和二氧化硅氧化物颗粒团簇聚集而成的多孔结构,这些颗粒团簇之间呈现不规则分布,团簇的尺寸为200nm~1500nm,镍晶粒尺寸为0.5nm~10nm。该催化剂的比表面积为200m2/g~500m2/g,优选为200m2/g~380m2/g,例如220m2/g、240m2/g、300m2/g、320m2/g等;孔容为0.2cc/g~0.7cc/g,优选为0.3cc/g~0.7cc/g,例如0.37cc/g、0.40cc/g、0.42cc/g、0.44cc/g、0.45cc/g等。从前述可以看出,该催化剂具有特定的多孔洞的团簇聚集结构,有利于提高催化剂与反应物接触的比表面积,进而提高催化活性。

在一些实施例中,该催化剂中,镍的含量为1wt%~60wt%,例如5wt%、8wt%、10wt%、12wt%、15wt%、18wt%、20wt%、25wt%、30wt%、35wt%、40wt%、45wt%、50wt%、55wt%等;二氧化硅的含量为40wt%~99wt%,例如42wt%、45wt%、48wt%、50wt%、52wt%、55wt%、60wt%、65wt%、70wt%、75wt%、80wt%、85wt%等。优选地,镍的含量为5wt%~40wt%,二氧化硅的含量为60wt%~95wt%。

本发明通过采用溶胶-凝胶法获得了镍和二氧化硅的复合物,该方法简单易行、成本低,且过程中基本不使用有机溶剂,环境友好。此外,通过成型处理进一步提高了该复合物的机械强度,其应用于固定床反应器的加氢反应中,可有效避免因催化剂破碎导致的床层堵塞现象,使得反应能够连续运行,降低了生产成本和操作难度。所得催化剂具有活性和稳定性较高、且易于分离,重复使用性好的特点。通过将该催化剂应用于制备四氢双环戊二烯,具有成本低、反应条件温和、原料转化率高以及四氢双环戊二烯收率高等特点,具有良好的工业应用前景。

下面将通过实施例来进一步说明本发明,但是本发明并不因此而受到任何限制。如无特别说明,所用原料均可通过市售获得。

本发明的XRD表征使用日本理学电机工业株式会社D max-2600PC型X射线衍射仪测定,测试条件:Cu靶Kα射线,扫描速率5°/min,扫描范围10°~80°,步长0.02°,管电流100mA,管电压40kV;

本发明的SEM表征采用FEI公司Quan TA-400F型扫描电子显微镜,选择扫描电压为20kV;

本发明的TEM表征采用FEI公司Tecnai G2 F20 S-TWIN透射电子显微镜,选择加速电压为200kV;

本发明材料的定性和定量分析采用Agilent 5977A-7890B气质联用仪的质谱检测器和氢火焰离子检测器。

本发明的摩尔比、质量含量根据XRF表征方法计算得到,总孔容和比表面积通过氮气吸脱附表征测得。

本发明中条状催化剂的催化剂强度是指条状催化剂的径向(即在径向平面内通过轴心线的方向)强度;采用机械强度仪进行强度的测定。

本发明中双环戊二烯转化率通过液相色谱定量计算得到,四氢双环戊二烯收率通过气相色谱采用峰面积归一化法计算得到。

实施例1

称取290g Ni(NO3)2·6H2O和2960g正硅酸乙酯(TEOS)溶于去离子水中,配置成以Ni离子计1.0mol/L的溶液,搅拌1小时,得到溶液a。再将柠檬酸(与硅源的重量比为0.2:1)与去离子水加入溶液a中,搅拌至形成溶胶,继续搅拌形成凝胶,老化2h,最后将所得物料放入鼓风干燥箱中100℃下干燥12h,再于马弗炉中500℃下焙烧5h得到黑色固体,即镍硅复合氧化物。

将6.0g镍硅复合氧化物置于管式炉中,在500℃保持氢气流速30mL/min还原3h得到Ni/SiO2催化剂。

图1分别示出了实施例1中镍硅复合氧化物和催化剂的XRD谱图。从图1看出:镍硅复合氧化物和催化剂均未有明显的SiO2衍射特征峰,说明SiO2以无定形结构存在。另外,镍硅复合氧化物存在NiO衍射特征峰,说明NiO以晶体结构存在;实施例1的催化剂存在Ni衍射特征峰,说明Ni也以晶体结构存在。

取部分上述Ni/SiO2催化剂在高压反应釜中进行双环戊二烯的加氢反应,以甲基环己烷为溶剂,双环戊二烯的质量分数为30%;催化剂与双环戊二烯的质量比为1:20;反应温度为80℃,搅拌速度为600r/min,压力为3MPa,反应时间为1h。最终,双环戊二烯转化率为99.9%,四氢双环戊二烯收率为99.2%。

将反应后的催化剂离心回收,重复用于加氢试验,重复8次。具体试验结果见表1。从表1可以看出,重复使用催化剂反应后,每次反应后样品为透明液体,经GC-MS分析,原料转化率99%以上,四氢双环戊二烯摩尔收率97%以上。

表1

实施例2

称取290g Ni(NO3)2·6H2O和2960g正硅酸乙酯(TEOS)溶于去离子水中,配置成以Ni离子计1.0mol/L的溶液,搅拌1小时,得到溶液a。再将柠檬酸(与硅源的重量比为0.2:1)与去离子水加入溶液a中,搅拌至形成溶胶,继续搅拌形成凝胶,老化2h,最后将所得物料放入鼓风干燥箱中100℃下干燥12h,再于马弗炉中500℃下焙烧5h得到黑色固体,即镍硅复合氧化物。

将6.0g镍硅复合氧化物置于管式炉中,在500℃保持氢气流速30mL/min还原3h得到Ni/SiO2催化剂。

取部分上述Ni/SiO2催化剂在高压反应釜中进行双环戊二烯的加氢反应,以甲基环己烷为溶剂,双环戊二烯的质量分数为70%;催化剂与双环戊二烯的质量比为1:10;反应温度为120℃,搅拌速度为620r/min,压力为3MPa,反应时间为4h。最终,双环戊二烯转化率为99.9%,四氢双环戊二烯收率为99.6%。

将反应后的催化剂离心回收,重复用于加氢试验,重复8次。具体试验结果见表2。从表2可以看出,重复使用催化剂反应后,每次反应后样品为透明液体,经GC-MS分析,原料转化率99%以上,四氢双环戊二烯摩尔收率97%以上。

表2

实施例3

称取238g Ni(NO3)2·6H2O和2960g正硅酸乙酯(TEOS)溶于去离子水中,配置成以Ni离子计1.0mol/L的溶液,搅拌1小时,得到溶液a。再将柠檬酸(与硅源的重量比为0.2:1)与去离子水加入溶液a中,搅拌至形成溶胶,继续搅拌形成凝胶,老化2h,最后将所得物料放入鼓风干燥箱中100℃下干燥12h,再于马弗炉中500℃下焙烧5h得到黑色固体,即镍硅复合氧化物。

将6.0g镍硅复合氧化物置于管式炉中,在400℃保持氢气流速50mL/min还原3h得到Ni/SiO2催化剂。

取部分上述Ni/SiO2催化剂在高压反应釜中进行双环戊二烯的加氢反应,以甲基环己烷为溶剂,双环戊二烯的质量分数为50%;催化剂与双环戊二烯的质量比为1:30;反应温度为80℃,搅拌速度为700r/min,压力为3MPa,反应时间为1h。最终,双环戊二烯转化率为99.9%,四氢双环戊二烯收率为98.4%。

将反应后的催化剂离心回收,重复用于加氢试验,重复8次。具体试验结果见表3。从表3可以看出,重复使用催化剂反应后,每次反应后样品为透明液体,经GC-MS分析,原料转化率99%以上,四氢双环戊二烯摩尔收率97%以上。

表3

实施例4

称取290g Ni(NO3)2·6H2O和1460g正硅酸乙酯(TEOS)溶于去离子水中,配置成以Ni离子计1.0mol/L的溶液,搅拌1小时,得到溶液a。再将柠檬酸(与硅源的重量比为0.2:1)与去离子水加入溶液a中,搅拌至形成溶胶,继续搅拌形成凝胶,老化2h,最后将所得物料放入鼓风干燥箱中100℃下干燥12h,再于马弗炉中500℃下焙烧5h得到黑色固体,即镍硅复合氧化物。

将6.0g上述镍硅复合氧化物置于管式炉中,在400℃保持氢气流速50mL/min还原3h得到Ni/SiO2催化剂。

取部分上述Ni/SiO2催化剂在高压反应釜中进行双环戊二烯的加氢反应,以甲基环己烷为溶剂,双环戊二烯的质量分数为30%;催化剂与双环戊二烯的质量比为1:20;反应温度为80℃,搅拌速度为800r/min,压力为3MPa,反应时间为1h。最终,双环戊二烯转化率为99.9%,四氢双环戊二烯收率为99.3%。

将反应后的催化剂离心回收,重复用于加氢试验,重复8次。具体试验结果见表4。从表4可以看出,重复使用催化剂反应后,每次反应后样品为透明液体,经GC-MS分析,原料转化率99%以上,四氢双环戊二烯摩尔收率97%以上。

表4

实施例5

称取580g Ni(NO3)2·6H2O和1460g正硅酸乙酯(TEOS)溶于去离子水中,配置成以Ni离子计1.0mol/L的溶液,搅拌1小时,得到溶液a。再将柠檬酸(与硅源的重量比为0.2:1)与去离子水加入溶液a中,搅拌至形成溶胶,继续搅拌形成凝胶,老化2h,最后将所得物料放入鼓风干燥箱中100℃下干燥12h,再于马弗炉中500℃下焙烧5h得到黑色固体,即镍硅复合氧化物。

将6.0g上述镍硅复合氧化物置于管式炉中,在400℃保持氢气流速50mL/min还原3h得到Ni/SiO2催化剂。

取部分上述Ni/SiO2催化剂在高压反应釜中进行双环戊二烯的加氢反应,以甲基环己烷为溶剂,双环戊二烯的质量分数为30%;催化剂与双环戊二烯的质量比为1:10;反应温度为60℃,搅拌速度为700r/min,压力为3MPa,反应时间为1h。最终,双环戊二烯转化率为99.7%,四氢双环戊二烯收率为99.0%。

将反应后的催化剂离心回收,重复用于加氢试验,重复8次。具体试验结果见表5。从表5可以看出,重复使用催化剂反应后,每次反应后样品为透明液体,经GC-MS分析,原料转化率99%以上,四氢双环戊二烯摩尔收率97%以上。

表5

实施例6

称取290g Ni(NO3)2·6H2O和2960g正硅酸乙酯(TEOS)溶于去离子水中,配置成以Ni离子计1.0mol/L的溶液,搅拌1小时,得到溶液a。再将柠檬酸(与硅源的重量比为0.2:1)与去离子水加入溶液a中,搅拌至形成溶胶,继续搅拌形成凝胶,老化2h,最后将所得物料放入鼓风干燥箱中100℃下干燥12h,再于马弗炉中500℃下焙烧5h得到黑色固体,即镍硅复合氧化物。

将160.0g镍硅复合氧化物、140.0g硅溶胶(固含量30%)、1.0g柠檬酸、10.0g田菁粉和40.0g水混合均匀,反复揉捏,用挤条机挤成直径为1.8mm的圆柱形细条,再切成长度为3~5mm的条状,120℃烘干4h,于500℃焙烧4h;最终,400℃氢气还原3h得到条状催化剂,其机械强度为19.3N/mm。

取3g上述催化剂在固定床反应器中进行双环戊二烯的加氢饱和反应,以甲基环己烷为溶剂,双环戊二烯的质量分数为30%;反应温度为80℃,压力为3MPa,反应质量空速为2h-1,氢油体积比500。最终,催化剂连续运转800h,催化活性未有明显下降,双环戊二烯平均转化率为99.8%,四氢双环戊二烯的平均收率为99.1%。

对比例1

称取290g Ni(NO3)2·6H2O溶于去离子水中,配置成以Ni离子计2.0mol/L的溶液a;量取8.6mL的溶液a缓慢加入至14gγ-Al2O3粉末中,持续搅拌,再添加少量去离子水至初湿润状态。滴加完毕后,停止搅拌,静置老化8h。将所得物于鼓风干燥箱中120℃下干燥12h,再于马弗炉中500℃下焙烧3h;最后在管式炉中500℃还原3h得到催化剂。

取部分上述催化剂在高压反应釜中进行双环戊二烯的加氢反应,以甲基环己烷为溶剂,双环戊二烯的质量分数为30%;催化剂与双环戊二烯的质量比为1:20;反应温度为80℃,压力为3MPa,反应时间为1h。最终,双环戊二烯转化率为85.9%,四氢双环戊二烯收率为69.1%。

对比例2

称取290g Ni(NO3)2·6H2O溶于去离子水中,配置成以Ni离子计2.0mol/L的溶液a;量取8.6mL的溶液a缓慢加入至14g SiO2粉末中,持续搅拌,再添加少量去离子水至初湿润状态。滴加完毕后,停止搅拌,静置老化8h。将所得物于鼓风干燥箱中120℃下干燥12h,再于马弗炉中500℃下焙烧3h;最后在管式炉中500℃还原3h得到催化剂。

取部分上述催化剂在高压反应釜中进行双环戊二烯的加氢反应,以甲基环己烷为溶剂,双环戊二烯的质量分数为30%;催化剂与双环戊二烯的质量比为1:20;反应温度为80℃,压力为3MPa,反应时间为1h。最终,双环戊二烯转化率为72.3%,四氢双环戊二烯收率为58.6%。

表6分别列出了实施例1~6及对比例1和2所得催化剂的相关参数。

表6

从表6可以看出,本发明通过溶胶-凝胶法制备的催化剂,其特定的多孔洞的团簇聚集结构,有利于提高催化剂与反应物接触的比表面积,进而提高了该催化剂的催化活性,此外,通过成型处理后,该催化剂还具有较高的机械强度,可应用于固定床反应器进行连续生产。该催化剂应用于制备四氢双环戊二烯时,体现了较高的催化活性和稳定性,四氢双环戊二烯的收率基本可达98%以上,具有良好的应用前景。

本领域技术人员应当注意的是,本发明所描述的实施方式仅仅是示范性的,可在本发明的范围内作出各种其他替换、改变和改进。因而,本发明不限于上述实施方式,而仅由权利要求限定。

15页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种四塔三效分离提纯正丁烷的工艺方法及其装置

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!