在ue处利用全tx功率进行ul传送

文档序号:1382795 发布日期:2020-08-14 浏览:9次 >En<

阅读说明:本技术 在ue处利用全tx功率进行ul传送 (UL transmission with full TX power at UE ) 是由 杨维东 周子涵 苏昭诚 于 2019-06-20 设计创作,主要内容包括:本发明的一方面提供一种方法、计算机可读介质以及设备。该设备可以是UE。UE可向基站报告该UE的传送能力。UE可从基站接收对码本中的码字的子集进行指示的第一信令以及对该子集中的一个码字进行选择的第二信令,来对用于在一个或多个空间层上通过多个天线端口传送的上行链路信道进行预编码。(An aspect of the invention provides a method, a computer-readable medium, and an apparatus. The apparatus may be a UE. The UE may report the transmit capabilities of the UE to the base station. The UE may receive first signaling from the base station indicating a subset of codewords in the codebook and second signaling selecting one codeword in the subset to precode uplink channels for transmission over multiple antenna ports on one or more spatial layers.)

在UE处利用全TX功率进行UL传送

交叉引用

本申请要求2018年6月20日提交的,发明名称为“UL TRANSMISSION UTILIZINGFULL TX POWER AT A UE”的美国临时申请案62/687,736的优先权,其全部内容通过引用而明确地并入本发明。

技术领域

本发明总体上涉及通信系统,并且更具体地,涉及由用户设备(User Equipment,UE)释放(release)协议数据单元(Protocol Data Unit,PDU)会话(session)的技术。

背景技术

本部分中的陈述仅提供与本发明有关的背景技术信息,且不构成现有技术。

无线通信系统可广泛部署以提供各种电信服务,诸如电话、视频、数据、消息传送以及广播。典型的无线通信系统可以采用多址(multiple-access)技术,多址技术能够通过共享可用的系统资源来支持与多个用户进行通信。多址技术的示例包含码分多址(CodeDivision Multiple Access,CDMA)系统、时分多址(Time Division Multiple Access,TDMA)系统、频分多址(Frequency Division Multiple Access,FDMA)系统、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)系统、单载波频分多址(Single-Carrier Frequency Division Multiple Access,SC-FDMA)系统以及时分同步码分多址(Time Division Synchronous Code Division Multiple Access,TD-SCDMA)系统。

上述多址技术已经采用在各种电信标准中以提供公共协议,公共协议可使得不同的无线设备能够在市级、国家级、区域级甚至全球级上进行通信。电信标准的一个示例是第五代(5th Generation,5G)新无线电(New Radio,NR)。5G NR是由第三代合作伙伴计划(Third Generation Partnership Project,3GPP)发布的连续移动宽带演进的一部分,用来满足与时延(latency)、可靠性、安全性、可扩展性(scalability)(比如与物联网(Internet of Things,IoT))相关联的新需求以及其他需求。5G NR的一些方面可以基于第四代(4th Generation,4G)长期演进(Long Term Evolution,LTE)标准。5G NR技术需要进行进一步的改进,这些改进可能也可适用于其他多址技术和采用这些技术的电信标准。

发明内容

下述内容呈现了一个或多个方面的简要总结,目的是提供对这些方面的基本理解。本发明内容并非所有考虑方面的广泛概述,既不旨在标识所有方面的关键或重要要素,也不旨在勾画任意或所有方面的范围。本发明内容的目的仅在于以简化形式呈现一个或多个方面的一些概念,以作为下面将呈现的更具体描述的前述。

本发明的一方面提供一种方法、计算机可读介质以及设备。该设备可以是UE。本发明的一方面提供一种方法、计算机可读介质以及设备。该设备可以是UE。UE可向基站报告该UE的传送能力(transmit capability)。UE可从基站接收对码本中的码字的子集进行指示的第一信令以及对所述子集中的一个码字进行选择的第二信令,来对用于在一个或多个空间层上通过多个天线端口传送的上行链路信道进行预编码。

为了完成该前述以及相关目的,一个或多个方面包括在下文中完整描述以及在权利要求中特别指出的特征。下面的

具体实施方式

和附图详细阐述了一个或多个方面的特定的说明性特征。然而,这些特征仅指示各种方面的原理可以采用的各种方式中的一些方式,而且本发明旨在包含所有这些方面及其等同物。

附图说明

图1是例示无线通信系统和接入网络的示例的示意图。

图2是例示在接入网络中与UE进行通信的基站的示意图。

图3例示分布式接入网络的示例逻辑架构。

图4例示分布式接入网络的示例物理架构。

图5是示出下行链路(Downlink,DL)中心子帧的示例的示意图。

图6是示出上行链路(Uplink,UL)中心子帧的示例的示意图。

图7是例示在UE 704处进行上行链路传送的示意图。

图8是例示码本(codebook)的示意图。

图9A示出列出分配给全相干传送(full coherent transmission)、部分相干传送(partially coherent transmission)以及非相干传送(non-coherent transmission)的码字(codeword)的数量的表。

图9B示出列出可用于全相干传送、部分相干传送以及非相干传送的码字的数量的表。

图10是例示在UE处进行上行链路传送的示意图。

图11是传送上行链路信道的方法(处理)的流程图。

图12是传送上行链路信道的方法(处理)的另一流程图。

图13是例示在示例性设备中的不同组件/手段(mean)之间的数据流的概念性数据流程图。

图14是例示采用处理系统的设备的硬件实现的示例的示意图。

具体实施方式

下面结合附图阐述的详细描述旨在作为对各种配置的描述,而非旨在表示可以具体实践本发明所述概念的唯一配置。该详细描述包括用于提供对各种构思的透彻理解的目的的具体细节。然而,本领域技术人员应当明白,可以在不需要这些具体细节的情况下来实践这些构思。在一些情况下,按框图形式示出了公知结构和组件,以便避免模糊这种构思。

下面,将参照各种设备和方法来呈现电信系统的多个方面。通过各种框块、组件、电路、处理、算法等(统称为“要素”)在下面的详细描述中描述并在附图中例示了这些设备和方法。可以使用电子硬件、计算机软件或其任何组合来实现这些要素。将这些要素实现为硬件还是软件取决于特定的应用和施加在总体系统上的设计约束。

举例来说,要素、或者要素的任何部分、或者要素的任何组合都可以被实现为包括一个或多个处理器的“处理系统”。处理器的示例包括:微处理器、微控制器、图形处理单元(Graphics Processing Unit,GPU)、中央处理单元(Central Processing Unit,CPU)、应用处理器、数字信号处理器(Digital Signal Processor,DSP)、精简指令集计算(ReducedInstruction Set Computing,RISC)处理器、片上系统(Systems On A Chip,SoC)、基带处理器、现场可编程门阵列(Field Programmable Gate Array,FPGA)、可编程逻辑装置(Programmable Logic Device,PLD)、状态机(state machine)、选通逻辑、离散硬件电路以及被配置成执行本发明所描述的各种功能的其它合适硬件。处理系统中的一个或多个处理器可以执行软件。无论是称为软件、固件、中间件、微代码、硬件描述语言还是其它形式,软件都应当被广泛地解释为意指:指令、指令集、代码、代码段、程序代码、程序、子程序、软件组件、应用程序、软件应用、软件包、例程、子例程、对象、可执行文件、执行线程、过程、功能等。

因此,在一个或多个示例实施方式中,可以采用硬件、软件或其任何组合来实现所述功能。如果按软件来实现,则可以将该功能作为一个或多个指令或代码存储在计算机可读介质上,或者编码为计算机可读介质上的一个或多个指令或代码。计算机可读介质包括计算机存储介质。存储介质可以是能通过计算机存取的任何可用介质。这样的计算机可读介质可以包括:随机存取存储器(Random-Access Memory,RAM)、只读存储器(Read-OnlyMemory,ROM)、电可擦除可编程只读存储器(Electrically Erasable Programmable ROM,EEPROM)、光盘存储装置、磁盘存储装置、其它磁存储装置、前述类型的计算机可读介质的组合、或者可以用于存储能由计算机存取的采用指令或数据结构形式的计算机可执行代码的任何其它介质,这仅用作示例,并非用于限制本发明。

图1是例示无线通信系统和接入网络100的示例的示意图。无线通信系统(也称为无线广域网(Wireless Wide Area Network,WWAN))包括:基站102、UE 104以及核心网络160。基站102可以包括宏小区(macro cell)(高功率蜂窝基站)和/或小小区(small cell)(低功率蜂窝基站)。宏小区包括基站。小小区包括毫微微小区(femtocell)、微微小区(picocell)和微小区(microcell)。

基站102(统称为演进通用移动电信系统陆地无线电接入网络(EvolvedUniversal Mobile Telecommunications System Terrestrial Radio Access Network,E-UTRAN))通过回程链路(backhaul link)132(例如,S1接口(interface))与核心网络160进行接口连接。除其它功能以外,基站102还可以执行以下各项功能中的一项或更多项:传递用户数据、无线电信道加密和解密、完整性保护、报头压缩、移动性控制功能(例如,切换、双连接)、小区间干扰协调、连接建立和释放、负载均衡、分发非接入层(Non-AccessStratum,NAS)消息、NAS节点选择、同步、无线电接入网络(Radio Access Network,RAN)共享、多媒体广播多播服务(Multimedia Broadcast Multicast Service,MBMS)、订户和设备跟踪、RAN信息管理(RAN Information Management,RIM)、寻呼(paging)、定位以及递送警告消息。基站102可以通过回程链路134(例如,X2接口)彼此直接或间接(例如,通过核心网络160)通信。回程链路134可以是有线的或无线的。

基站102可以与UE 104无线通信。基站102中的各个基站可以提供相应地理覆盖区域110的通信覆盖。可能有重叠的地理覆盖区域110。例如,小小区102'可以具有与一个或多个宏基站102的覆盖区域110重叠的覆盖区域110'。包括小小区和宏小区两者的网络可以称为异构网络。异构网络还可以包括家庭演进节点B(Evolved Node B,eNB)(Home eNB,HeNB),该家庭演进节点B可以向称为封闭订户组(Closed Subscriber Group,CSG)的受限组提供服务。基站102与UE 104之间的通信链路120可以包括从UE 104到基站102的上行链路(还称为反向链路)传送和/或从基站102到UE 104的下行链路(还称为前向链路)传送。通信链路120可以使用包括空间复用、波束成形和/或传送分集的多输入多输出(Multiple-Input And Multiple-Output,MIMO)天线技术。通信链路可以通过一个或多个载波。基站102/UE 104可以使用高达每个载波Y MHz(比如5、10、15、20、100MHz)带宽的频谱,其中载波分配(allocate)于在用于各个方向上进行传送的载波聚合(carrier aggregation)中,其中载波聚合总共高达Yx MHz(x个分量载波(component carrier))。载波可以彼此相邻或者可以不相邻。载波的分配相对于DL和UL可以是不对称的(例如,可以为DL分配比为UL更多或更少的载波)。分量载波可以包括主分量载波以及一个或多个次分量载波。主分量载波可以称为主小区(Primary Cell,PCell),次分量载波可以称为次小区(Secondary Cell,SCell)。

无线通信系统还可以包括以5GHz未许可频谱(unlicensed frequency spectrum)经由通信链路154与Wi-Fi站点(Station,STA)152进行通信的Wi-Fi接入点(Access Point,AP)150。当以未许可频谱进行通信时,STA 152/AP 150可以在进行通信之前执行空闲信道评估(Clear Channel Assessment,CCA)以便确定信道是否可用。

小小区102'可以以经许可频谱和/或未许可频谱工作。当以未许可频谱工作时,小小区102'可以采用NR并且使用与由Wi-Fi AP 150使用的相同的5GHz未许可频谱。采用未许可频谱中的NR的小小区102’可以提高接入网络的覆盖范围和/或增加接入网络的容量。

在与UE 104通信方面,gNodeB(gNB)180可以工作于毫米波(Millimeter Wave,mmW)频率和/或近mmW频率。当gNB 180工作于mmW或近mmW频率时,gNB180可以称为mmW基站。极高频(Extremely High Frequency,EHF)是电磁频谱中的射频(Radio Frequency,RF)的一部分。EHF具有30GHz至300GHz的范围以及1毫米与10毫米之间的波长。该频带中的无线电波可以称为毫米波。近mmW可以向下延伸至波长为100毫米的3GHz的频率。超高频(SuperHigh Frequency,SHF)频带在还称为厘米波的3GHz与30GHz之间延伸。使用mmW/近mmW射频频带的通信具有极高的路径损耗和短距离。mmW基站180可以与UE 104利用波束成形184来补偿极高的路径损耗和短距离。

核心网络160可以包括:移动性管理实体(Mobility Management Entity,MME)162、其它MME 164、服务网关(serving gateway)166、MBMS网关168、广播多播服务中心(Broadcast Multicast Service Center,BM-SC)170以及分组数据网络(Packet DataNetwork,PDN)网关172。MME 162可以与归属订户服务器(Home Subscriber Server,HSS)174进行通信。MME 162是对UE 104与核心网络160之间的信令进行处理的控制节点。通常,MME 162提供承载(bearer)和连接管理。所有的用户互联网协议(Internet Protocol,IP)包(packet)均通过服务网关166(其本身连接至PDN网关172)来传递。PDN网关172提供UE IP地址分配以及其它功能。PDN网关172和BM-SC 170连接至IP服务176。IP服务176可以包括互联网、企业内联网、IP多媒体子系统(IP Multimedia Subsystem,IMS)、包交换的流服务(Packet-Switched Streaming Service,PSS)和/或其它IP服务。BM-SC 170可以提供用于MBMS用户服务供应和递送的功能。BM-SC 170可以用作内容提供商MBMS传送的入口点、可以用于授权和发起公共陆地移动网络(Public Land Mobile Network,PLMN)内的MBMS承载服务、并且可以用于调度MBMS传送。MBMS网关168可以用于向属于广播特定服务的多播广播单频网络(Multicast Broadcast Single Frequency Network,MBSFN)区域的基站102分配MBMS流量,并且可以负责会话管理(开始/停止)以及负责收集演进型MBMS(evolved MBMS,eMBMS)相关收费信息。

基站还可以称为gNB、节点B、演进节点B(eNB)、接入点、基本收发器站、无线电基站、无线电收发器、收发器功能、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)或者某一其它合适术语。基站102为UE 104提供到核心网络160的接入点。UE 104的示例包括:蜂窝电话、智能电话、会话发起协议(SessionInitiation Protocol,SIP)电话、膝上型电脑、个人数字助理(Personal DigitalAssistant,PDA)、卫星无线电装置、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、摄像机、游戏机、平板电脑、智能装置、可穿戴装置、载具、电表、气泵、烤箱或者任何其它类似的功能装置。UE 104中的一些UE可以称为IoT装置(例如,停车计时器、气泵、烤箱、车辆等)。UE 104还可以称为站(station)、移动站、订户站、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户站、接入终端、移动终端、无线终端、远程终端、手机、用户代理、移动客户端、客户端或者某一其它合适术语。

图2是在接入网络中与UE 250进行通信的基站210的框图。在DL中,可以将来自核心网络160的IP包提供给控制器/处理器275。控制器/处理器275实现层3和层2功能。层3包括无线电资源控制(Radio Resource Control,RRC)层,层2包括:分组数据会聚协议(Packet Data Convergence Protocol,PDCP)层、无线电链路控制(Radio Link Control,RLC)层、以及媒体接入控制(Medium Access Control,MAC)层。控制器/处理器275提供:与系统信息(例如,主系统信息块(Master Information Block,MIB)、系统信息块(SystemInformation Block,SIB))的广播、RRC连接控制(例如,RRC连接寻呼、RRC连接建立、RRC连接修改以及RRC连接释放)、无线电接入技术(Radio Access Technology,RAT)间移动性、以及用于UE测量结果报告的测量配置相关联的RRC层功能;与报头压缩/解压缩、安全性(加密、解密、完整性保护、完整性验证)以及切换支持功能相关联的PDCP层功能;与上层分组数据单元(Packet Data Unit,PDU)的传递、RLC服务数据单元(Service Data Unit,SDU)的通过自动重传请求(Automatic Repeat-reQuest,ARQ)的纠错、级联、分割以及重组、RLC数据PDU的重新分割以及RLC数据PDU的重新排序相关联的RLC层功能;以及与逻辑信道和传送信道之间的映射、MAC SDU到传送块(Transport Block,TB)上的复用、从TB到MAC SDU的解复用、调度信息报告、通过混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)的纠错、优先级处理以及逻辑信道优先化相关联的MAC层功能。

传送(Transmit,TX)处理器216和接收(Receive,RX)处理器270实现与各种信号处理功能相关联的层1功能。包括物理(Physical,PHY)层的层1可以包括:传送信道上的检错、传送信道的前向纠错(Forward Error Correction,FEC)编码/解码、交织、速率匹配、到物理信道的映射、物理信道的调制/解调以及MIMO天线处理。TX处理器216基于各种调制方案(例如,二进制相移键控(Binary Phase-Shift Keying,BPSK)、正交相移键控(QuadraturePhase-Shift Keying,QPSK)、M相移键控(M-Phase-Shift Keying,M-PSK)、M正交振幅调制(M-Quadrature Amplitude Modulation,M-QAM)),来处理到信号星群(constellation)的映射。然后,可以将编码和调制后的符号分成并行流(parallel stream)。然后,可以将各个流映射至正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)子载波,按时域和/或频域与参考信号(例如,导频)复用,然后使用快速傅立叶逆变换(InverseFast Fourier Transform,IFFT)组合在一起,以生成承载时域OFDM符号流的物理信道。将OFDM流进行空间预编码,以生成多个空间流。可以将来自信道估计器274的信道估计用于确定编码和调制方案,以及用于空间处理。可以根据由UE 250传送的参考信号和/或信道条件反馈得出信道估计。然后,可以经由单独传送器218TX将各个空间流提供给不同天线220。各个传送器218TX可以利用相应空间流来调制RF载波以用于传送。

在UE 250处,各个接收器254RX通过其相应天线252接收信号。各个接收器254RX恢复调制到RF载波上的信息并将该信息提供给RX处理器256。TX处理器268和RX处理器256实现与各种信号处理功能相关联的层1功能。RX处理器256可以对该信息执行空间处理以恢复去往UE 250的任何空间流。如果多个空间流去往UE 250,则它们可以由RX处理器256组合成单一OFDM符号流。然后,RX处理器256使用快速傅立叶变换(Fast Fourier Transform,FFT)将OFDM符流从时域转换到频域。频域信号包括OFDM信号的各个子载波的单独的OFDM符号流。通过确定由基站210传送的最可能的信号星群点,来恢复和解调各个子载波上的符号以及参考信号。这些软判定可以基于由信道估计器258计算出的信道估计。然后,对软判定进行解码和解交织以恢复最初在物理信道上由基站210传送的数据和控制信号。然后,将该数据和控制信号提供给实现层3和层2的功能的控制器/处理器259。

可以将控制器/处理器259与存储程序代码和数据的存储器260相关联。存储器260可以称为计算机可读介质。在UL中,控制器/处理器259提供传送信道与逻辑信道之间的解复用、包重组、解密、报头解压缩以及控制信号处理,以恢复来自核心网络160的IP包。控制器/处理器259还负责使用应答(Acknowledgment,ACK)和/或否定应答(Negative-Acknowledgment,NACK)协议进行检错(error detection),以支持HARQ操作。

类似于结合基站210的DL传送所描述的功能,控制器/处理器259提供:与系统信息(例如,MIB、SIB)获取、RRC连接以及测量结果报告相关联的RRC层功能;与报头压缩/解压缩以及安全性(加密、解密、完整性保护、完整性验证)相关联的PDCP层功能;与上层PDU的传递、RLC SDU的通过ARQ的纠错、级联、分割以及重组、RLC数据PDU的重新分割以及RLC数据PDU的重新排序相关联的RLC层功能;以及与逻辑信道和传送信道之间的映射、MAC SDU到TB上的复用、从TB到MAC SDU的解复用、调度信息报告、通过HARQ的纠错、优先级处理以及逻辑信道优先化相关联的MAC层功能。

由信道估计器258根据基站210传送的参考信号或反馈得出的信道估计,可以被TX处理器268用于选择适当的编码和调制方案,并易于空间处理。由TX处理器268生成的空间流可以经由单独的传送器254TX提供给不同的天线252。各个传送器254TX可以利用相应空间流来调制RF载波,以用于传送。以与结合UE 250处的接收器功能所描述的方式类似的方式,在基站210处对UL传送进行处理。各个接收器218RX通过其相应天线220接收信号。各个接收器218RX恢复调制到RF载波上的信息并将该信息提供给RX处理器270。

可以将控制器/处理器275与存储程序代码和数据的存储器276相关联。存储器276可以称为计算机可读介质。在UL中,控制器/处理器275提供传送信道与逻辑信道之间的解复用、包重组、解密、报头解压缩、控制信号处理,以恢复来自UE 250的IP包。可以将来自控制器/处理器275的IP包提供给核心网络160。控制器/处理器275还负责使用ACK和/或NACK协议进行检错,以支持HARQ操作。

NR可以指被配置为根据新空中接口(例如,除基于OFDMA的空中接口之外)或固定传送层(例如,除IP之外)操作的无线电技术。NR可以在上行链路和下行链路上利用具有循环前缀(Cyclic Prefix,CP)的OFDM,并且可以包括支持使用时分双工(Time DivisionDuplexing,TDD)的半双工操作。NR可以包括:目标为宽带宽(例如,超过80MHz)的增强型移动宽带(Enhanced Mobile Broadband,eMBB)服务、目标为高载波频率(例如,60GHz)的毫米波(mmW)、针对非向后兼容(non-backward compatible)的机器类通信(Machine TypeCommunication,MTC)技术的海量机器类通信(Massive MTC,mMTC)和/或目标为超可靠低延迟通信(Ultra-Reliable Low Latency Communication,URLLC)服务的关键任务。

可以支持100MHz的单一分量载波带宽。在一个示例中,NR资源块(ResourceBlock,RB)可以跨12个子载波,在0.125ms持续时间上具有60kHz的子载波带宽,或者在0.5ms持续时间上具有15kHz的带宽。各个无线电帧可以包括20或80个子帧(或者NR时隙),该子帧的长度可为10ms。各子帧可以指示数据传送的链路方向(即,DL或UL),并且可以动态地切换各子帧的链路方向。各子帧可以包括DL/UL数据以及DL/UL控制数据。NR的UL和DL子帧可以如下参照图5和图6更详细地描述。

NR RAN可以包括中央单元(Central Unit,CU)和分布式单元(Distributed Unit,DU)。NR BS(例如,gNB、5G节点B、节点B、传送接收点(Transmission Reception Point,TRP)、接入点)可以对应于一个或多个BS。NR小区可以被配置为接入小区(Access Cell,ACell)或纯数据小区(Data Only Cell,DCell)。例如,RAN(例如,中央单元或分布式单元)可以配置上述小区。DCell可以是用于载波聚合或双连接的小区,并且可以不用于初始接入、小区选择/重选或切换。在一些情况下,DCell可以不传送同步信号(SynchronizationSignal,SS),在一些情况下,DCell可以传送SS。NR BS可以向UE传送指示(indicate)小区类型的下行链路信号。基于小区类型指示,UE可以与NR BS进行通信。例如,UE可以基于所指示的小区类型来确定用于考虑小区选择、接入、切换和/或测量的NR BS。

图3例示根据本发明各方面的分布式RAN的示例逻辑架构300。5G接入节点306可以包括接入节点控制器(Access Node Controller,ANC)302。ANC可以是分布式RAN 300的中央单元(CU)。下一代核心网络(Next Generation Core Network,NG-CN)404的回程接口可以终止于ANC。相邻的下一代接入节点(Next Generation Access Node,NG-AN)的回程接口可以终止于ANC。ANC可以包括一个或多个TRP308(其也可以称为BS、NR BS、节点B、5G NB、AP或者某一其它术语)。如上所述,TRP可以与“小区”互换地使用。

TRP 308可以是分布式单元(DU)。TRP可以连接至一个ANC(ANC 302)或者一个以上的ANC(未例示)。例如,对于RAN共享、作为服务的无线电(Radio as a Service,RaaS)以及服务特定的AND部署来说,TRP可以连接至一个以上的ANC。TRP可以包括一个或多个天线端口。TRP可以被配置成向UE单独地(例如,动态选择)或联合地(例如,联合传送)提供流量。

可以将分布式RAN 300的本地架构用于例示前传(fronthaul)定义。可以将该架构定义为支持跨不同部署类型的前传解决方案。例如,该架构可以基于传送网络能力(例如,带宽、延迟和/或抖动(jitter))。该架构可以与LTE共享特征和/或组件。根据各方面,NG-AN310可以支持与NR的双连接。NG-AN可以共享用于LTE和NR的公共前传。

该架构可以启用TRP 308之间的协作。例如,可以经由ANC 302在TRP内和/或跨TRP预置协作。根据各方面,可能不需要/不存在TRP间接口。

根据各方面,分离逻辑功能的动态配置可以存在于分布式RAN 300的架构内。可以将PDCP、RLC、MAC协议适应性地放置在ANC或TRP处。

图4例示根据本发明各方面的分布式RAN的示例物理架构400。集中式核心网络单元(Centralized Core Network Unit,C-CU)402可以主控(host)核心网络功能。可以集中部署C-CU。为了处理峰值容量,可以分流(offload)C-CU功能(比如分流到高级无线服务(Advanced Wireless Service,AWS))。集中式RAN单元(Centralized RAN Unit,C-RU)404可以主控一个或多个ANC功能。可选地,C-RU可以在本地主控核心网络功能。C-RU可以具有分布式部署。C-RU可以更靠近网络边缘。分布式单元(DU)406可以主控一个或多个TRP。DU可以位于具有RF功能的网络的边缘。

图5是示出DL中心子帧的示例的示意图500。DL中心子帧可以包括控制部分502。控制部分502可以存在于DL中心子帧的初始或开头部分中。控制部分502可以包括:与DL中心子帧的各部分相对应的各种调度信息和/或控制信息。在一些配置中,如图5所示,控制部分502可以是物理下行链路控制信道(Physical DL Control Channel,PDCCH)。DL中心子帧还可以包括DL数据部分504。DL数据部分504有时可以称为DL中心子帧的有效载荷(payload)。DL数据部分504可以包括用于将来自调度实体(例如,UE或BS)的DL数据传送至下级实体(例如,UE)的通信资源。在一些配置中,DL数据部分504可以是物理下行链路共享信道(Physical DL Shared Channel,PDSCH)。

DL中心子帧还可以包括公共UL部分506。公共UL部分506有时可以称为UL突发(burst)、公共UL突发和/或各种其它合适术语。公共UL部分506可以包括与DL中心子帧的各个其它部分相对应的反馈信息。例如,公共UL部分506可以包括与控制部分502相对应的反馈信息。反馈信息的非限制性示例可以包括:ACK信号、NACK信号、HARQ指示符和/或各种其它合适类型的信息。公共UL部分506可以包括附加或另外的信息,诸如与随机接入信道(Random Access Channel,RACH)过程有关的信息、调度请求以及各种其它合适类型的信息。

如图5所示,DL数据部分504的结尾可以与公共UL部分506的开头在时间上分开。这种时间分隔有时可以称为间隙(gap)、保护时段(guard period)、保护间隔和/或各种其它合适术语。该分隔可提供用于从DL通信(例如,由下级实体(例如,UE)进行的接收操作)切换成UL通信(例如,由下级实体(例如,UE)进行的传送)的时间。本领域普通技术人员应当理解,前述内容仅仅是DL中心子帧的一个示例,并且在不必脱离本发明所描述的各方面的情况下,可以存在具有类似特征的另外的结构。

图6是示出UL中心子帧的示例的示意图600。UL中心子帧可以包括控制部分602。控制部分602可以存在于UL中心子帧的初始或开头部分中。图6中的控制部分602可以类似于上面参照图5描述的控制部分502。UL中心子帧还可以包括UL数据部分604。UL数据部分604有时可以称为UL中心子帧的有效载荷。UL部分可以指,用于将来自下级实体(例如,UE)的UL数据传送至调度实体(例如,UE或BS)的通信资源。在一些配置中,控制部分602可以是PDCCH。

如图6所示,控制部分602的结尾可以与UL数据部分604的开头在时间上分开。这种时间分隔(time separation)有时可以称为间隙、保护时段、保护间隔和/或各种其它合适术语。该分隔提供了用于从DL通信(例如,由调度实体进行的接收操作)切换成UL通信(例如,由调度实体进行的传送)的时间。UL中心子帧还可以包括公共UL部分606。图6中的公共UL部分606可以类似于上面参照图6描述的公共UL部分606。公共UL部分606可以附加或另外地包括:关于信道质量指示符(Channel Quality Indicator,CQI)的信息、探测参考信号(Sounding Reference Signal,SRS)以及各种其它合适类型的信息。本领域普通技术人员应当理解,前述内容仅仅是UL中心子帧的一个示例,并且在不必脱离本发明所描述的各方面的情况下,可以存在具有类似特征的另外的结构。

在一些情况下,两个或多个下级实体(例如,UE)可以使用侧链(sidelink)信号来彼此通信。这种侧链通信的现实应用可以包括:公共安全、临近服务(proximity service)、UE至网络中继、车辆至车辆(Vehicle-To-Vehicle,V2V)通信、万物互联(Internet ofEverything,IoE)通信、IoT通信、任务关键网格(mission-critical mesh)和/或各种其它合适应用。通常,侧链信号可以指从一个下级实体(比如UE1)向另一下级实体(比如UE2)通信的未通过调度实体(比如UE或BS)中继该通信的信号,即使调度实体可以用于调度和/或控制目的。在一些示例中,可以使用许可频谱来传送侧链信号(与通常使用未许可频谱的无线局域网不同)。

图7是例示在UE 704处进行上行链路传送的示意图700。在该示例中,UE 704可操作天线端口(antenna port)722-1、722-2、722-3、722-4以传送信号。天线端口722-1、722-2、722-3、722-4分别可与传送链(transmission chain)730-1、730-2、730-3、730-4相连接。特别地,在传送链730-1中,基带组件732-1可生成基带信号,基带信号然后可由调制器734-1进行调制。来自734-1、734-2、734-3以及734-4的调制后的信号(modulated signal)可传送至预编码单元(precoding unit)735-1。从预编码单元735-1生成的信号可由功率放大器(Power Amplifier,PA)736-1进行放大,该功率放大器736-1随后可将放大后的信号传送至天线端口722-1。类似地,传送链730-2可包括:基带组件732-2、调制器734-2、预编码单元735-2以及功率放大器736-2;传送链730-3可包括:基带组件732-3、调制器734-3、预编码器735-3以及功率放大器736-3;传送链730-4可包括:基带组件732-4、调制器734-4、预编码单元735-4以及功率放大器736-4。

UE 704可以基于UE 704的能力来操作天线端口722-1、722-2、722-3、722-4并且执行全相干传送、部分相干传送或者非相干传送。当UE 704可以将天线端口722-1、722-2、722-3、722-4的相位关系保持预定时段(time period)时,天线端口722-1、722-2、722-3、722-4可以执行全相干传送。当UE 704仅可以将天线端口722-1、722-2、722-3、722-4中的一些(并非所有)天线端口的相位关系保持预定时段时,天线端口722-1、722-2、722-3、722-4可以执行部分相干传送。当UE 704无法将天线端口722-1、722-2、722-3、722-4中的任意两个天线端口的相位关系保持预定时段时,天线端口722-1、722-2、722-3、722-4可以执行非相干传送。如果UE配备(equip)有2个传送链,则可以按与配备有4个传送链的UE类似的方式来定义具有全相干传送和非相干传送的UE能力。

UE 704还可以向基站702报告该UE 704支持相干传送的能力。例如,UE 704可以通过信令(signaling)向基站702指示该UE 704支持全相干传送、部分相干传送或者仅支持非相干传送。

图8是例示包括索引为0到27的码字的码本的示意图800,该码本可以由预编码单元735-1、735-2、735-3、735-4在具有4个天线端口的单层(single layer)(即秩1(rank 1))中使用。类似地,各码本同样也可以用于秩2、秩3以及秩4。

图9A示出如3GPP Rel-15 NR规范所定义的列出秩1、秩2、秩3以及秩4的分配给全相干传送、部分相干传送以及非相干传送的码字的数量的表900。例如,在秩1中,将16个码字分配给全相干传送;将8个码字分配给部分相干传送;将4个码字分配给非相干传送。

此外,部分相干传送也可以使用分配给非相干传送的码字;全相干传送也可以使用分配给非相干传送和部分相干传送的码字。

图9B示出列出可用于全相干传送、部分相干传送以及非相干传送的码字的数量的表950。例如,在秩1中,28个码字可用于全相干传送;12个码字可用于部分相干传送;4个码字可用于非相干传送。

UE 704还可以报告其支持全传送功率上行链路传送的能力。例如,在一些配置中,UE 704可以向基站702指示该UE 704的各个传送链中的功率放大器支持全传送功率上行链路传送。在一些配置中,UE 704可以指示该UE 704中没有功率放大器支持全传送功率上行链路传送。在一些配置中,UE 704可以指示仅有传送链的子集中的功率放大器支持全传送功率上行链路传送。

在该示例中,当天线端口722-1、722-2、722-3、722-4仅可以执行非相干传送时,基站702可向UE 704传送信令(例如通过PDCCH中的下行链路控制信息(Downlink ControlInformation,DCI)来传送)来指示码本800中的码字0至3中的一个码字的索引号。也可以说,码本800可被限制为可供UE 704使用的4个码字的子集。可由4×1矩阵来表示各个码字。各行(row)可表示要对待向特定天线端口传送的信号进行的调节(adjust)。在该示例中,第一行可对应于天线端口722-1,第二行可对应于天线端口722-2等等。

如图8所示,码字0到3中的各个码字仅有1行不为零。这可指示当天线端口722-1、722-2、722-3、722-4不相干时,仅有1个天线端口可传送信号。

天线端口722-1、722-2、722-3、722-4可分成2组。天线端口722-1和天线端口722-2可形成第一组。天线端口722-3和天线端口722-4可形成第二组。如上所述,天线端口722-1、722-2、722-3、722-4中的各个天线端口可与各传送链相连接。

在UE 704的第一配置中,一组中仅有一个传送链具有功率大于或等于预定阈值(即,全传送功率)的功率放大器。在该示例中,该阈值为23dBm。更具体地,传送链730-1中的功率放大器736-1可具有23dBm的功率。传送链730-3中的功率放大器736-3可具有23dBm的功率。其它功率放大器(即,功率放大器736-2和功率放大器736-4)可具有17dBm的功率。

在一种场景中,UE 704可准备向基站702传送上行链路信道。此外,基站702可指示UE 704使用码本800中的码字1。相应地,仅天线端口722-2将传送承载上行链路信道的信号。

在第一技术中,UE 704可以使用传送链730-2来生成信号,然后将该信号传送至天线端口722-2。当使用该技术时,因为功率放大器736-2的功率是17dBm,因此以低于阈值(即,23dBm)的17dBm通过天线端口722-2传送该信号。

在第二技术中,功率放大器736-1的输出可连接至开关(switch)742-1,该开关742-1可以将放大后的信号转换到天线端口722-1或者天线端口722-2。当从基站702接收到将码字1应用于预编码器735-1、735-2、735-3、735-4的指示时,UE 704可以使用传送链730-1来生成承载该上行链路信道的信号。该信号可由功率为23dBm的功率放大器736-1放大。此外,开关742-1可将功率放大器736-1从天线端口722-1断开,并且将功率放大器736-2与天线端口722-2连接。因此,通过功率放大器736-1放大后的信号可由天线端口722-2传送。也可以说,天线端口722-2以23dBm的功率传送承载上行链路信道的信号。

类似地,在第二技术中,功率放大器736-3的输出可连接至开关742-2,该开关742-2可以将放大后的信号转换到天线端口722-3或者天线端口722-4。

在第二场景中,基站702可以传送指示,指示UE 704使用码本800中的码字3。相应地,仅天线端口722-4将传送承载上行链路信道的信号。当从基站702接收到将码字3应用于预编码器735-1、735-2、735-3、735-4的指示时,UE 704可以使用传送链730-3来生成承载上行链路信道的信号。该信号可由功率为23dBm的功率放大器736-3放大。此外,开关742-2可将功率放大器736-3从天线端口722-3断开,并且将功率放大器736-3与天线端口722-4连接。因此,由功率放大器736-3放大后的信号可通过天线端口722-4传送。也可以说,天线端口722-4以23dBm的功率传送承载上行链路信道的信号。

在第三场景中,天线端口722-1、722-2、722-3、722-4可以是部分相干的。相应地,除码字1到3外,基站702还可以指示UE 704将码字4至11应用于预编码器735-1、735-2、735-3、735-4。此外,当基站702指示码字8至11之间的码字时,可使用天线端口722-2和天线端口722-4来传送承载上行链路信道的信号。在第二技术中,UE 704可使用传送链730-1和传送链730-3来生成承载上行链路信道的信号,该信号可由功率放大器736-1和功率放大器736-3放大。随后,如上所述,开关742-1可将功率放大器736-1的输出信号转换到天线端口722-2,开关742-2可将功率放大器736-3的输出信号转换到天线端口722-4。因此,天线端口722-2和天线端口722-4可以以20dBm传送承载上行链路信道的信号。因此,天线端口722-1、722-2、722-3、722-4的总输出功率可以等于阈值(例如,23dBm)。

在UE 704的第二配置中,传送链730-1、730-2、730-3、730-4中仅有一个传送链具有大于或等于第一阈值(例如23dBm,其可为全传送功率)的功率的功率放大器。在该示例中,第一组中仅功率放大器736-1具有23dBm的功率。第二组中仅有一个功率放大器具有大于或等于第二阈值(例如,20dBm)的功率。

在上述的第二场景中,基站702可传送指示,指示UE 704使用码本800中的码字3。相应地,仅天线端口722-4将传送承载上行链路信道的信号。在第二配置中,仅功率放大器736-1具有23dBm的功率。

在第三技术中,除天线端口722-2以外,开关742-1还可以将功率放大器736-1连接至天线端口722-3和天线端口722-4。当从基站702接收到将码字3应用于预编码器735-1、735-2、735-3、735-4的指示时,UE 704可以使用传送链730-1来生成承载上行链路信道的信号。该信号可由功率为23dBm的功率放大器736-1放大。此外,开关742-1可将功率放大器736-1从天线端口722-1断开,并且将功率放大器736-1与天线端口722-4连接。因此,由功率放大器736-1放大后的信号可通过天线端口722-4传送。也可也说,天线端口722-4以23dBm的功率传送承载上行链路信道的信号。

类似地,当基站702指示UE 704应用码字1和2时,UE 704还可以使用传送链730-1来生成承载上行链路信道的信号,然后可使用开关742-1将放大后的信号转换到天线端口722-2或天线端口722-3。

在上述的第三场景中,天线端口722-1、722-2、722-3、722-4可以是部分相干的。基站702还可以指示UE 704将码字3至11应用于预编码器735-1、735-2、735-3、735-4。当基站702指示码字8至11之间的码字时,可使用天线端口722-2和天线端口722-4来传送承载上行链路信道的信号。如上所述,在该第二配置中,功率放大器736-1具有23dBm的功率,功率放大器736-3具有20dBm的功率。

如第二技术,在第三技术中,开关742-2可以将从功率放大器736-3放大后的信号转换到天线端口722-3或者天线端口722-4。UE 704可使用传送链730-1和传送链730-3来生成承载上行链路信道的信号,该信号可由功率放大器736-1和功率放大器736-3放大。随后,如上所述,开关742-1可将功率放大器736-1的输出信号转换到天线端口722-2,开关742-2可将功率放大器736-3的输出信号转换到天线端口722-4。因此,天线端口722-2和天线端口722-4可以以20dBm来传送承载上行链路信道的信号。因此,天线端口722-1、722-2、722-3、722-4的总输出功率可以等于第一阈值(例如,23dBm)。

图10是例示在UE 1004处进行上行链路传送的示意图1000。在该示例中,UE1004可操作天线端口1022-1、1022-2、1022-3、1022-4以传送信号。天线端口1022-1、1022-2、1022-3、1022-4分别可与传送链1030-1、1030-2、1030-3、1030-4相连接。特别地,在传送链1030-1中,基带组件1032-1可生成基带信号,基带信号可由调制器1034-1进行调制。可将调制后的信号传送至循环时延分集(Cyclic Delay Diversity,CDD)组件1044-1,该CDD组件1044-1可以将循环时延应用于调制后的信号。可将CDD组件1044-1的输出信号传送至预编码单元1035-1以进行预编码。然后,从预编码器1035-1生成的信号可由功率放大器1036-1进行放大,该功率放大器1036-1随后可将放大后的信号传送至天线端口1022-1。类似地,传送链1030-2可包括基带组件1032-2、调制器1034-2、CDD组件1044-2、预编码单元1035-2以及功率放大器1036-2;传送链1030-3可包括基带组件1032-3、调制器1034-3、CDD组件1044-3、预编码单元1035-3以及功率放大器1036-3;传送链1030-4可包括基带组件1032-4、调制器1034-4、CDD组件1044-4、预编码单元1035-4以及功率放大器1036-4。UE实现中也可能会省略图10所示的CDD组件。

根据UE 1004在通过码本子集限制(codebook subset restriction)(例如,位图(bitmap))进行全相干传送、部分相干传送或非相干传送方面的能力,基站1002可发信通知各个秩的码字选择。图9B示出在所报告的UE能力下各个秩所选择的码字的数量。

在该示例中,UE 1004可以具有如下配置,其仅支持非相干上行链路传送或部分相干上行链路传送,但不支持相干传送。基站1002可以指示UE 1004仅使用码本800中的码字的子集。相应地,UE 1004可以确定指示码字索引并且相应地从基站1002接收到的指示可指示该子集中的码字。该子集中的码字可按顺序进行重新索引,以致于相关的DCI字段大小相对于3GPP Rel-15 NR标准可不发生变化。

在该示例中,功率放大器1036-1、功率放大器1036-2、功率放大器1036-3以及功率放大器1036-4均可具有小于阈值(23dBm)的功率,例如为17dBm。

在第四技术中,基站1002可从UE 1004接收指示功率放大器均不支持全功率(例如,以23dBm)上行链路传送的指示。基站1002可指示UE 1004仅码本800的子集可以在预编码器1035-1、1035-2、1035-3、1035-4上使用,其中该子集可包括一个或多个全相干码字,例如码字12、码字14、码字20以及码字22。对于秩1的所选码字来说,可以通过位图(例如[00000000 0000 1010 0000 1010 0000])进行选择,其它秩的所选码字相类似。

相应地,UE 1004可将码字12、码字14、码字20以及码字22重新索引为新的码字0、新的码字1、新的码字2以及新的码字3。根据新的码字,可使用天线端口1022-1、1022-2、1022-3、1022-4中的各天线端口来传送承载上行链路信道的信号。

基站1002可以使用索引0至3(例如,经由2个比特)来指示码本800中的码字12、码字14、码字20以及码字22(即上述子集中的新的码字0、新的码字1、新的码字2以及新的码字3)。

UE 1004可接收该子集中的码字的索引,并相应地确定应用于预编码器1035-1、1035-2、1035-3、1035-4的码字。由于天线端口1022-1、1022-2、1022-3、1022-4中的各个天线端口均被使用,因此UE 1004可使用传送链1030-1、1030-2、1030-3、1030-4中的各个传送链来生成承载上行链路信道的信号。基带组件1032-1、1032-2、1032-3、1032-4可生成基带信号,基带信号可输入到调制器1034-1、1034-2、1034-3、1034-4中。在该技术中,调制后的信号可输入到CDD组件1044-1、1044-2、1044-3、1044-4中,上述CDD组件可以将各循环时延选择性地应用于各调制后的信号。

在一个示例中,对于各个空间层(spatial layer)来说,第一组天线端口对(entry)(例如同一相干组(例如天线端口1022-1和天线端口1022-3))可同时从相关传送链传送,而其它组天线端口对(例如天线端口1022-2和天线端口1022-4)以不同于第一组天线端口对的时序来传送。更具体地,假设tk(其中1≤k≤4)是在传送链1030-1、1030-2、1030-3、1030-4处引入的小循环时延,则对于报告非相干传送能力的UE来说,tm≠tn,其中1≤m,n≤4,m≠n;对于报告部分相干传送能力的UE来说,t1=t3≠t2=t4

如上所述,UE 1004可经由基站1002向网络报告其相干传送能力(非相干、部分相干、全相干)。可由基站1002从图9B的表中查找各个秩的码字的允许数量。根据所报告的相干传送能力,可从所有的码字中选择相应数量的码字,其中上述所有的码字可以是最初被设计用于所给的秩的非相干、部分相干、全相干的码字(例如,通过用于各个秩的位图),并且所选择的码字有资格被基站1002指示以供UE使用。更具体地,对于报告非相干传送能力的UE来说,码本子集限制或者所选择的码字可以包括最初被设计用于部分相干传送或全相干传送的码字;对于报告部分相干传送能力的UE来说,码本子集限制或者所选择的码字可以包括最初被设计用于全相干传送的码字。基站1002可以在去往UE 1004的RRC信令中将UE配置为使用码本子集限制(例如,在上述第四技术中所描述的选择)。

基站1002还可以向UE 1004配置多组码本子集限制。通过使用MAC控制单元(Control Element,CE),可以在UE 1004处选择活跃的(active)码本子集限制。UE1004可接收用于一个或多个码本子集限制的配置的RRC信令以及潜在的MAC CE激活/选择。在各个秩处选择的码字可以顺序地索引为位图中“1”的位置。当UE 1004接收到DCI时,可以相应地解释与传送预编码矩阵指示符(Transmitted Precoding Matrix Indicator,TMPI)有关的字段。

图11是传送上行链路信道的方法(处理)的流程图1100。可以由UE(例如,UE 704、设备1302以及设备1302')来执行该方法。

在操作1102,UE可从基站接收对多个天线端口上的上行链路信道的传送进行调节的指示。在一些配置中,该指示可指示码本中的码字,当通过该多个天线端口中的一个或多个天线端口传送上行链路信道时,上述码字可由UE的预编码器使用。在操作1104,UE可根据该调节确定所述多个天线端口中的第一天线端口是否用于传送上行链路信道,以及所述多个天线端口中的第二天线端口是否不用于传送上行链路信道。第一功率放大器处于与第一天线端口连接的第一传送链中。第一功率放大器的最大功率低于第一阈值。

在操作1106,当确定第一天线端口用于传送上行链路信道并且第二天线端口不用于传送上行链路信道时,UE可将第二功率放大器与第一天线端口相连接。第二功率放大器处于与第二天线端口连接的第二传送链中。第二功率放大器的最大功率大于或等于第一阈值。

在一些配置中,第一天线端口和第二天线端口处于第一组天线端口中。所述多个天线端口中的第三天线端口和第四天线端口处于第二组天线端口中。在操作1108,UE可根据该调节确定第三天线端口是否用于传送上行链路信道,以及第四天线端口是否不用于传送上行链路信道。第三功率放大器处于与第三天线端口连接的第三传送链中。第三功率放大器的最大功率低于第一阈值。

在操作1110,当确定第三天线端口用于传送上行链路信道时,UE可将第四功率放大器与第三天线端口相连接。第四功率放大器处于与第四天线端口连接的第四传送链中。第四功率放大器的最大功率大于或等于第一阈值。在一些配置中,可确定第一天线端口、第二天线端口、第三天线端口以及第四天线端口中的仅一个天线端口用于传送上行链路信道。在一些配置中,可确定第一组和第二组中各一个天线端口用于传送上行链路信道。

在操作1112,UE可通过(a)第二功率放大器和第一天线端口以大于或等于第一阈值的功率和/或(b)通过第四功率放大器和第三天线端口以大于或等于第一阈值的功率向基站传送上行链路信道。

图12是传送上行链路信道的方法(处理)的流程图1200。可以由UE(例如,UE 704、设备1302以及设备1302')来执行该方法。

在操作1202,UE可向基站报告该UE的传送能力。在操作1204,UE可从基站接收对码本中的码字的子集进行指示的第一信令以及对该子集中的一个码字进行选择的第二信令,来对用于在一个或多个空间层上通过多个天线端口传送的上行链路信道进行预编码。在一些配置中,第二信令可包括对码字的子集中的码字进行引用(refer)的索引。

在操作1206,UE可根据所选择的码字确定将所述多个天线端口中的各个天线端口用于传送上行链路信道。在操作1208,当确定将所述多个天线端口中的各个天线端口用于传送上行链路信道时,UE可将循环时延应用至与所述多个天线端口连接的传送链中的至少一个传送链。在操作1210,UE可通过所述多个天线端口中的各个天线端口传送上行链路信道。

在一些配置中,所报告的UE的传送能力可指示非相干传送。由第一信令指示的子集中的码字可为UE的预编码器,并且可调节UE在所述多个天线端口中的两个或多个天线端口上以非零功率传送一个空间层的上行链路信道。在一些配置中,所报告的UE的传送能力可指示部分相干传送。由第一信令指示的子集中的码字可为UE的预编码器,并且可调节UE在所述多个天线端口中的所有天线端口上以非零功率传送一个空间层的上行链路信道。

图13是例示在示例性设备1302中的不同组件/手段之间的数据流的概念性数据流程图1300。该设备1302可以是UE。设备1302可包括接收组件1304、功率确定组件1306、连接组件1308、码本限制组件1312以及传送组件1310。

在一个方面,接收组件1304可从基站接收对多个天线端口上的上行链路信道的传送进行调节的指示。在一些配置中,该指示可指示码本中的码字,当通过该多个天线端口中的一个或多个天线端口传送上行链路信道时,上述码字可由UE的预编码器使用。UE可根据该调节确定所述多个天线端口中的第一天线端口是否用于传送上行链路信道,以及所述多个天线端口中的第二天线端口是否不用于传送上行链路信道。第一功率放大器处于与第一天线端口连接的第一传送链中。第一功率放大器的最大功率低于第一阈值。

当确定第一天线端口用于传送上行链路信道并且第二天线端口不用于传送上行链路信道时,连接组件1308可将第二功率放大器与第一天线端口相连接。第二功率放大器处于与第二天线端口连接的第二传送链中。第二功率放大器的最大功率大于或等于第一阈值。

在一些配置中,第一天线端口和第二天线端口处于第一组天线端口中。所述多个天线端口中的第三天线端口和第四天线端口处于第二组天线端口中。UE可根据该调节确定第三天线端口是否用于传送上行链路信道,以及第四天线端口是否不用于传送上行链路信道。第三功率放大器处于与第三天线端口连接的第三传送链中。第三功率放大器的最大功率低于第一阈值。

当确定第三天线端口用于传送上行链路信道时,连接组件1308可将第四功率放大器与第三天线端口相连接。第四功率放大器处于与第四天线端口连接的第四传送链中。第四功率放大器的最大功率大于或等于第一阈值。在一些配置中,可确定第一天线端口、第二天线端口、第三天线端口以及第四天线端口中的仅一个天线端口用于传送上行链路信道。在一些配置中,可确定第一组和第二组中的各个组中各一个天线端口用于传送上行链路信道。

传送组件1310可通过(a)第二功率放大器和第一天线端口以大于或等于第一阈值的功率和/或(b)通过第四功率放大器和第三天线端口以大于或等于第一阈值的功率向基站传送上行链路信道。

在另一方面,功率确定组件1306可向基站1350报告该UE的传送能力。码本限制组件1312可从基站接收对码本中的码字的子集进行指示的第一信令以及对该子集中的一个码字进行选择的第二信令,来对用于在一个或多个空间层上通过多个天线端口传送的上行链路信道进行预编码。在一些配置中,第二信令可包括对码字的子集中的码字进行引用的索引。

功率确定组件1306可根据所选择的码字确定将所述多个天线端口中的各个天线端口用于传送上行链路信道。当确定将所述多个天线端口中的各个天线端口用于传送上行链路信道时,功率确定组件1306可将循环时延应用至与所述多个天线端口连接的传送链中的至少一个传送链。传送组件1310可通过所述多个天线端口中的各个天线端口传送上行链路信道。

在一些配置中,所报告的UE的传送能力可指示非相干传送。由第一信令指示的子集中的码字可为UE的预编码器,并且可调节UE在所述多个天线端口中的两个或多个天线端口上以非零功率传送一个空间层的上行链路信道。在一些配置中,所报告的UE的传送能力可指示部分相干传送。由第一信令指示的子集中的码字可为UE的预编码器,并且可调节UE在所述多个天线端口中的所有天线端口上以非零功率传送一个空间层的上行链路信道。

图14是例示采用处理系统1414的设备1302'的硬件实现的示例的示意图1400。该设备1302'可以是UE。可以利用通常由总线1424表示的总线架构来实现处理系统1414。根据处理系统1414的具体应用和总体设计约束,总线1424可以包括任何数量的互连总线和桥(bridge)。总线1424将各种电路链接在一起,这些电路包括由一个或多个处理器1404、接收组件1304、功率确定组件1306、连接组件1308、码本限制组件1312、传送组件1310以及计算机可读介质/存储器1406表示的一个或多个处理器和/或硬件组件。总线1424还可以链接各种其它电路,诸如定时源(timing source)、外围设备、电压调节器以及功率管理电路等。

可以将处理系统1414耦接(couple)至收发器1410,收发器1410可以是收发器254中的一个或多个收发器。可将收发器1410耦接至一个或多个天线1420,天线1420可以是通信天线252。

收发器1410可提供用于通过传送介质与各种其它设备进行通信的手段。收发器1410从所述一个或多个天线1420接收信号,从接收到的信号中提取信息,并将所提取的信息提供给处理系统1414(具体可提供给接收组件1304)。另外,收发器1410从处理系统1414(具体可从传送组件1310)接收信息,并且基于所接收的信息,生成可应用至所述一个或多个天线1420的信号。

处理系统1414可包括耦接至计算机可读介质/存储器1406的一个或多个处理器1404。所述一个或多个处理器1404负责一般处理,包括执行存储在计算机可读介质/存储器1406上的软件。该软件在由所述一个或多个处理器1404执行时,可使得处理系统1414执行本发明所描述的任何特定设备的各种功能。计算机可读介质/存储器1406还可以用于存储由所述一个或多个处理器1404在执行软件时所操纵的数据。处理系统1414还包括接收组件1304、功率确定组件1306、连接组件1308、码本限制组件1312以及传送组件1310中的至少一个。上述组件可以是在所述一个或多个处理器1404中运行的软件组件(该软件组件驻留/存储在计算机可读介质/存储器1406中),或者是耦接至所述一个或多个处理器1404的一个或多个硬件组件,或者是上述软件组件和硬件组件的一些组合。处理系统1414可以是UE 250的组件,并且可以包括存储器260和/或TX处理器268、RX处理器256以及通信处理器259中的至少一个。

在一种配置中,用于无线通信的设备1302/设备1302'包括用于执行图11至图12的操作中的各个操作的手段。上述手段可以是如下中的一个或多个:被配置为执行由该手段所陈述的功能的设备1302的前述组件和/或设备1302'的处理系统1414。

如上所述,处理系统1414可以包括TX处理器268、RX处理器256以及通信处理器259。因此,在一种配置中,上述手段可以是被配置为执行由上述手段所陈述的功能的TX处理器268、RX处理器256以及通信处理器259。

请注意,本发明的处理/流程图中方块的特定顺序或层次是示范性方法的示例。因此应该理解的是,可以基于设计偏好对处理/流程图中方块的特定顺序或层次进行重新排列,还可以进一步组合或省略一些方块。所附的方法以范例性的顺序要求保护各种方块所呈现的要素,但这并不意味着本发明只限于所呈现的特定顺序或层次。

提供先前描述用来使任何本领域技术人员均能够实现本发明所描述的各个方面。本领域技术人员可轻易对这些方面进行各种修改,并可将本发明中定义的一般原理应用于其它方面。因此,权利要求书并不旨在限于本发明所示的方面,而是应被赋予与权利要求书语言描述一致的全部范围。其中,除非特别说明,提及呈单数的元件时并不旨在意味着“一个且仅一个”,而是意味着“一个或多个”。词语“示范性”在本发明中用来指“用作示例、例子或例示”。本发明描述为“示范性”的任何方面不一定被理解为比其他方面优选或有利。除非另有特别说明,术语“一些”指一个或多个。诸如“A、B或C中的至少一个”、“A、B或C中的一个或多个”、“A、B和C中的至少一个”、“A、B和C中的一个或多个”以及“A、B、C或其任何组合”的组合包含A、B和/或C的任何组合,并且可以包含多个A、多个B、或多个C。具体来说,诸如“A、B或C中的至少一个”、“A、B或C中的一个或多个”、“A、B和C中的至少一个”、“A、B和C中的一个或多个”以及“A、B、C或其任何组合”的组合可为仅包括A、仅包括B、仅包括C、包括A和B、包括A和C、包括B和C、或包括A和B和C,其中任何这些组合可以包含A、B或C中的一个或多个。本领域普通技术人员已知或将要知晓的本发明中描述的各种方面的要素的所有结构和功能等效物,均以引用方式明确包含在本发明中,并旨在由权利要求书所涵盖。此外,无论是否在权利要求书中明确陈述这种公开,本发明所公开的内容不旨在捐献给公众。词语“模块”、“机制”、“要素”、“设备”等可以不是词语“手段”的替代词。因此,除非使用短语“用于…的手段”来明确地陈述权利要求中的要素,否则该要素不应被理解为功能限定。

36页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:无线通信设备、控制设备和控制方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!