黄杉中二萜类化合物及其制备方法和在制药中的用途

文档序号:1388035 发布日期:2020-08-18 浏览:22次 >En<

阅读说明:本技术 黄杉中二萜类化合物及其制备方法和在制药中的用途 (Diterpenoid compounds in taxus chinensis, preparation method thereof and application thereof in pharmacy ) 是由 熊娟 黄婷 胡金锋 于 2019-02-12 设计创作,主要内容包括:本发明属医药技术领域,涉及如下式结构的从黄杉(Pseudotsuga sinensis)的枝叶中制备其90%甲醇提取物及从中分离到的半日花烷及松香烷类二萜化合物及该类化合物的制备方法和在制药中的用途。本发明经生物活性测试表明该类化合物显著抑制ATP-柠檬酸裂解酶(ACL),可用于制备预防或治疗ACL介导的糖脂代谢紊乱相关疾病,如高脂血症、动脉粥样硬化、非酒精性脂肪肝、2型糖尿病和肥胖症的药物或该类药物的先导化合物。&lt;Image he="251" wi="700" file="DDA0001968355810000011.GIF" imgContent="drawing" imgFormat="GIF" orientation="portrait" inline="no"&gt;&lt;/Image&gt;(The invention belongs to the technical field of medicines, and relates to a method for preparing a 90% methanol extract from branches and leaves of a taxus chinensis (Pseudotsuga chinensis) with the following structure, a labdane and abietane diterpene compound separated from the methanol extract, a preparation method of the compound and application of the compound in pharmacy. Biological activity tests show that the compounds obviously inhibit ATP-citrate lyase (ACL), and can be used for preparing medicines for preventing or treating ACL-mediated glycolipid metabolic disorder related diseases, such as hyperlipidemia, atherosclerosis, non-alcoholic fatty liver, type 2 diabetes and obesity, or lead compounds of the medicines.)

黄杉中二萜类化合物及其制备方法和在制药中的用途

技术领域

本发明属医药技术领域,涉及黄杉中二萜类化合物,具体涉及一类从黄杉(Pseudotsuga sinensis)的枝叶中制备其90%甲醇提取物及从中分离到的半日花烷及松香烷类二萜化合物。本发明还涉及该类化合物的制备方法和在制药中的用途。本发明经生物活性测试表明该类化合物显著抑制ATP-柠檬酸裂解酶(ACL),可用于制备预防或治疗ACL介导的糖脂代谢紊乱相关疾病(如高脂血症、动脉粥样硬化、非酒精性脂肪肝、2型糖尿病和肥胖症)的药物或该类药物的先导化合物。

背景技术

现有技术公开了腺苷三磷酸-柠檬酸裂解酶[adenosine triphosphate(ATP)-citrate lyase,ACL]是糖代谢和脂肪酸生物合成的关键酶,研究显示,人体ACL是由四个相同的亚基组成的四聚体,全长120kDa。该酶为胞质酶,主要表达于脂肪生成组织中,例如肝脏、白脂肪组织等;在ATP和Mg2+离子的存在下,该酶催化柠檬酸裂解为乙酰辅酶A和草酰乙酸,并消耗一份子ATP转变为ADP和正磷酸;作为胞质乙酰辅酶A的主要来源,ACL与脂肪酸和胆固醇的合成密切相关,ACL表达的改变与人类心血管疾病、脂肪肝、2型糖尿病、癌症等密切相关。

据世界卫生组织(WHO)报道,心血管疾病是全球的头号死因,仅2016年,就有1790万人死于心血管疾病,占全球死亡总数的31%。低密度脂蛋白胆固醇(LDL-C)是动脉粥样硬化斑块的主要成分,是导致动脉粥样硬化性血管疾病的罪魁祸首;大量研究表明,降低血浆低密度脂蛋白胆固醇(LDL-C)的浓度,能有效减轻心血管疾病的致死率。乙酰辅酶A是内源性脂肪酸和胆固醇生物合成的重要基础材料,ACL作为胞质乙酰辅酶A的主要来源,与胆固醇和脂肪酸的合成密切相关;研究表明,ACL抑制剂能够有效阻断脂肪酸和胆固醇的从头合成,并降低血脂(Burke et al.,Curr.Opin.Lipidol.2017,28:193–200;Pinkosky et al.,Trends Mol.Med.2017,23:1047–1063),因此,寻找有效的ACL抑制剂,通过抑制ACL的活性降低LDL-C的浓度,对于治疗血脂异常,并减少动脉粥样硬化等心血管疾病的发生,具有重要的临床实际意义。

此外,由于ACL活性异常会导致脂肪酸从头合成(de novo lipid synthesis)紊乱,而这与非酒精性脂肪肝(NALFD)和2型糖尿病的发生亦密切相关,因此,ACL还可作为非酒精性脂肪肝和II型糖尿病的潜在药物靶点(Wang et al.,Hepatology 2009,49:1166–1175)。

有研究表明ACL与癌症的发生密切相关,癌细胞重要的代谢标志之一是脂类的从头合成大大增强,各种肿瘤细胞均显示内源性脂肪酸生物合成增高,在多种肿瘤细胞中,均见ACL表达的上调,抑制其基因的表达能显著抑制肿瘤细胞的增殖并诱导其凋亡,因此,ACL作为潜在的抗癌靶点,被广泛研究,有效的ACL抑制剂可有望成为新的抗癌药物(Granchiet al.,Eur.J.Med.Chem.2018,157:1276–1291;Lei et al.,Mol.Cell 2013,51:506–518;Zaidi et al.,Cancer Res.2012,72:3709–3714)。

ACL作为新的药用靶点已成为近年来生物学及创新药物研究的一个热点,随着高通量筛选技术的广泛运用,目前已经发现较多种类的AC L小分子抑制剂,然而迄今为止,尚未有任何ACL抑制剂得以成功上市成为药物。由美国Esperion Therapeutics(ESPR)公司开发研制的药物ETC-1002(bempedoic acid,8-hydroxy-2,2,14,14-tetramethylpentadecanedioic acid),是有效的ACL小分子抑制剂,目前处于临床IIb试验阶段,用于治疗患者胆固醇血症,降低低密度胆固醇水平;有研究表明,对于治疗高血脂疾病,ECT-1002与他汀类药物或依泽替米贝联用,能有效改善高血脂病人对他汀类药物的耐受情况(Bilen and Ballantyne,Curr.Atheroscler.Rep.2016,18:61;Samsoondar elal.,Arterioscler.Thromb.Vasc.Biol.2017,37:647–656);除ECT-1002外,其他ACL抑制剂,由于其低细胞穿透力、与ACL的低亲和力以及特异性不强等原因,研制受到限制;因此寻找高效、高选择性,同时兼具良好药代动力学性质的小分子ACL抑制剂具有重要意义,对于心血管疾病和癌症的治疗有着广阔的应用前景。

业内知晓,天然产物具有结构复杂性和结构多样性的特点,且毒副作用往往较小,是新药发现的重要来源,天然产物及其衍生物独特的化学结构,使其具有高药效和对特定靶点高选择性的优点以及潜在的独特的作用机制等优点(Newman et al.,Nat.Prod.Rep.2000,17:215–234;Newman et al.,J.Nat.Prod.2016,79:629–661),因此从天然活性成分中寻找开发新型、高效的ACL小分子抑制剂具有重要的研究价值;研究表明濒危植物次生代谢产物的成药性较高,是发现具有新颖结构和独特作用机制的新药物的重要来源,在国际上引起高度重视(Ibrahim et al.,Proc.Natl.Acad.Sci.U S A.2013:110,16832–16837;Zhu et al.,Proc.Natl.Acad.Sci.U S A.2011,108:12943–12948)。黄杉(Pseudotsuga sinensis)隶属松科(Pinaceae)黄杉属(Pseudotsuga)植物,是一种乔木,可高达50余米,为我国特有种,于1992年被中国植物红皮书收录,记为渐危种(Fu et al.,China Plant Red Data Book,Science Press:Beijing;New York,1992)。1998年黄杉被国际自然保护联盟(International Union for Conservation of Nature,IUCN)列为易危种(vulnerable)。黄杉产于云南、四川,贵州、湖北、湖南等地,生于海拔800-1200米地带,目前关于其化学成分仅有一篇中文文献报道了6个黄酮类化合物(易进海等,药学学报,2002,37:352-354),而二萜类成分及药理活性尚未见有任何报道。

基于现有技术的现状,本申请的发明人拟保护性地采集少许黄杉植物样品,积极促进利用这一珍稀濒危资源为人类服务,提供黄杉中二萜类化合物及其制备方法和在制药中的用途。

发明内容

本发明目的是基于现有技术的现状,提供新的黄杉中二萜类化合物及其制备方法和在制药中的用途。

本发明从黄杉枝叶中分离得到具有显著ACL抑制活性的二萜类化合物,其包括如式1~式3所示的化合物:两个半日花烷型二萜pseudosinin E和cis-communic acid以及降碳松香烷型二萜4β,15-dihydroxy-19-norabieta-8,11,13-trien-7-one。

本发明所述二萜类化合物具有如下化学结构式:

本发明的另一目的是提供该类化合物的制备方法。本发明所述的化合物可通过从植物中分离纯化得到;也可经本领域技术人员熟知的化学方法合成获得。

本发明所述的化合物由黄杉枝叶经由本领域所涉常规的提取分离方法制备而得,其步骤如下:晾干粉碎的黄杉松针用甲醇室温浸泡提取,提取液减压回收溶剂,合并后得浸膏。浸膏用水分散后依次用石油醚、乙酸乙酯和正丁醇萃取,得石油醚部位、乙酸乙酯部位、正丁醇部位和水溶性部位。乙酸乙酯部位经硅胶、微孔树脂(MCI)、Sephadex LH-20及反相半制备高效液相(semi-RP-HPLC)分离,得化合物pseudosinin E、cis-communic acid和4β,15-dihydroxy-19-norabieta-8,11,13-trien-7-one。

本发明进一步提供所述的二萜类化合物作为ACL抑制剂的药物用途,可用于制备治疗糖脂代谢紊乱相关疾病的药物,包括高血脂、动脉粥样硬化、脂肪肝、2型糖尿病、癌症及其他ACL介导的疾病的药物。

本发明对所得二萜类化合物进行了ACL抑制活性实验,结果表明所述化合物均具有显著活性,可用于制成预防、延缓或治疗由ACL介导的糖脂紊乱相关疾病(特别是高血脂症及其相关的心血管疾病的药物)或是作为该类药物的先导化合物。

本发明所述的化合物可单独应用或者合用,亦可与药学上可接受的载体或赋形剂结合,按照常规方法制成口服或者非口服剂型。

本发明具有如下优点:

从黄杉中分离得到具有显著的ACL抑制活性的二萜类化合物,其中包括所述pseudosinin E(式1)的化合物,和cis-communic acid和4β,15-dihydroxy-19-norabieta-8,11,13-trien-7-one,且研究证实所述化合物具有ACL抑制活性以及在糖脂代谢紊乱相关疾病中的药理活性报道。本发明的二萜类化合物对现代人群中高发的糖脂代谢紊乱相关疾病如高脂血症、动脉粥样硬化、脂肪肝等疾病将具有重要临床应用前景。

具体实施方式

下面实施例对本发明作进一步阐述,但这些实施例绝非对本发明有任何限制。本领域技术人员在本说明书的启示下对本发明实施中所作的任何变动都将落在权利要求书的范围内。

下述制备例中,比旋光测试通过JASCO P-1020旋光仪完成;紫外和红外光谱数据分别通过Shimadzu UV-2550紫外光谱仪和Nicolet AVATAR 360型红外光谱仪获得;NMR用Bruker Avance II 400MHz及600MHz仪测定;ESI-MS由Agilent 1100Series LC/MSDG1946D型仪测定,HR-MS由AB Sciex TripleTOF 5600型仪测定;所使用的硅胶为青岛海洋化工公司生产,硅胶薄层板为烟台江友硅胶开发有限公司生产;Sephadex LH-20凝胶为瑞士GE Healthcare Bio-Sciences公司生产;微孔树脂MCI为日本三菱公司生产;半制备HPLC为Shimadzu LC-20AT,配备SPD-M20A PDA检测器以及Waters X-Bridge ODS半制备柱(250×10mm,5μm);所有试剂均为上海国药集团化学试剂有限公司生产。

实施例1:黄杉来源的二萜类化合物的制备

取黄杉松针及小枝30kg,粉碎后用90%甲醇室温冷浸提取5次,合并提取液,减压浓缩,得浸膏3.1kg。浸膏用水分散后依次用石油醚、乙酸乙酯和正丁醇萃取,乙酸乙酯萃取液经减压浓缩后得浸膏500g。该浸膏经100-200目硅胶柱层析,以石油醚:乙酸乙酯50:1-0:1及乙酸乙酯:甲醇10:1-0:1梯度洗脱,得到10个组分(Fr.1-Fr.10)。cis-communic acid(25.0mg)从亚组分Fr.2中结晶得到的。亚组分Fr.9先后经MCI微孔树脂柱层析(以50%-100%甲醇梯度洗脱)、硅胶柱层析(200-300目,以石油醚:丙酮30:1-1:1梯度洗脱)、Sephadex LH-20凝胶柱层析(以甲醇洗脱),并最后经半制备型HPLC进一步纯化,分别得到化合物pseudosinin E(0.8mg;HPLC洗脱条件:35%乙腈-水等度洗脱,流速3mL/min,tR=12.3min)和4β,15-dihydroxy-19-norabieta-8,11,13-trien-7-one(1.1mg;HPLC洗脱条件:68%甲醇-水等度洗脱,流速3mL/min;tR=12.9min)。光谱及理化数据如下:

Pseudosinin E:白色无定形粉末;[α]D 20+14(c 0.05,MeOH);UV(MeOH)λmax(logε)203(3.23)nm;ECD(c 2.48×10-3M,CH3CN)λmax(Δε)192(-24.7)nm;1H NMR(400MHz,CDCl3):δ0.65(3H,s,Me-20),0.99(3H,s,Me-18),0.99(1H,ddd,overlapped,H-3ɑ),1.10(1H,m,H-1ɑ),1.34(3H,s,Me-16),1.35(1H,br d,J=11.6Hz,H-5),1.35(1H,m,H-6β),1.38(1H,m,H-11a),1.52(2H,m,H-2),1.62(1H,m,11b),1.73(1H,br d,J=12.9Hz,H-1β),1.84(1H,br d,J=11.1Hz,H-3β),1.85(1H,br d,J=11.1Hz,H-6ɑ),2.01(1H,m,H-7ɑ),2.03(1H,br d,J=11.6Hz,H-9ɑ),3.40(1H,d,J=11.6Hz,H-19a),3.47(1H,br d,J=10.8Hz,H-12),3.76(1H,d,J=11.6Hz,H-19b),4.45(1H,br s,H-17a),4.84(1H,br s,H-17b),5.23(1H,br d,J=10.7Hz,H-15a),5.35(1H,br d,J=17.4Hz,H-15b),5.95(1H,dd,J=17.4,10.8Hz,H-14).13C NMR(150MHz,CDCl3):δ38.9(C-1),18.9(C-2),35.3(C-3),38.8(C-4),56.1(C-5),24.4(C-6),38.5(C-7),148.4(C-8),52.4(C-9),39.1(C-10),26.2(C-11),75.8(C-12),75.9(C-13),140.8(C-14),114.6(C-15),24.5(C-16),106.8(C-17),27.0(C-18),65.1(C-19),12.8(C-20);(+)ESIMS m/z 345.2[M+Na]+;(+)HRESIMS m/z 345.2385[M+Na]+(calcd forC20H34O3,345.2400).

cis-Communic acid:白色无定形粉末;[α]D 18+29.0(c1.00,CHCl3);1H NMR(400MHz,CDCl3):δ0.65(3H,s,Me-20),1.25(3H,s,Me-18),1.78(3H,s,Me-16),4.50(1H,brs,H-17a),4,86(1H,br s,H-17b),5.09(1H,d,J=10.7Hz,H-15a),5.18(1H,d,J=17.3Hz,H-15b),5.31(1H,t,J=6.2Hz,H-12),6.80(1H,dd,J=17.3,10.7Hz,H-14);(+)ESIMS m/z303[M+H]+,301[M-H]-.

4β,15-Dihydroxy-19-norabieta-8,11,13-trien-7-one:黄色油状物;[α]D 20+20.0(c 0.5,CHCl3);1H NMR(400MHz,CDCl3):δ1.25(3H,s,Me-18),1.36(3H,s,Me-20),1.59(3H,s,Me-16),1.60(3H,s,Me-17),1.95(1H,dd,J=13.7,4.6Hz,H-5),2.37(1H,br d,J=13.8Hz,H-1β),2.82(1H,dd,J=18.4,4.6Hz,H-6α),2.92(1H,dd,J=18.4,13.8Hz,H-6β),7.38(1H,d,J=7.8Hz,H-11),7.73(1H,dd,J=7.8,1.5Hz,H-12),8.07(1H,d,J=1.5Hz,H-14);(+)ESIMS m/z 303[M+H]+,325[M+Na]+.。

实施例2:ATP-柠檬酸裂解酶抑制活性测定

实验方法:本实验中ATP依赖的柠檬酸裂解酶ACL能将柠檬酸催化转变为乙酰辅酶A,进而产生脂肪酸合成的前体分子-丙二酸单酰辅酶A,该反应伴随ATP的消耗,因此可以使用ADP-Glo和激酶检测试剂盒检测ATP的变化,来间接反应化合物对ACL的酶活性抑制作用。具体来说,初筛选择所述化合物浓度为20μg/ml时对ACL酶活性的百分抑制率进行考察,试验结果表明pseudosinin E、cis-communic acid和4β,15-dihydroxy-19-norabieta-8,11,13-trien-7-one的抑制率分别高于61%,110%和59%。进一步测定IC50值:样品临用前溶于DMSO配成合适浓度,3倍稀释,7个稀释度,三复孔,取2μL样品溶液加入到标准的测活体系(40mM Tris,pH 8.0,10mM MgCl2,5mM DTT,ATP,CoA,柠檬酸钠和ACL),37℃下孵育30min。而后,体系内加入25μL ADP-Glo试剂,室温下孵育30min,以终止反应,并消耗完剩余的ATP。再加入激酶检测试剂孵育30min后,其荧光信号由EnVision读出,其动力学曲线一级反应的斜率作为酶的活性指标。以相对活性对化合物浓度作图,经公式v/v0=100/(1+b*[I]/IC50)拟合得到IC50值,实验重复三次,结果取三次的平均值;阳性对照BMS303141的IC50值为0.37μM。

所述二萜类化合物抑制ACL的IC50值如表1所示,测试结果表明上述三个化合物均表现出显著的抑制活性,表明本发明所述化合物可用于制备治疗糖脂代谢紊乱相关疾病的药物或是作为该类药物的先导化合物。

表1.黄杉中二萜类化合物的ACL抑制活性数据

7页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种氯醇醚的制备方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类