一种微波介质烧结粉体材料的制备方法、微波介质陶瓷及其应用

文档序号:1402036 发布日期:2020-03-06 浏览:35次 >En<

阅读说明:本技术 一种微波介质烧结粉体材料的制备方法、微波介质陶瓷及其应用 (Preparation method of microwave dielectric sintered powder material, microwave dielectric ceramic and application thereof ) 是由 聂敏 刘剑 彭虎 于 2019-11-13 设计创作,主要内容包括:本发明提供一种微波介质烧结粉体材料的制备方法、微波介质陶瓷及其应用,方法包括:制备主粉体xMgO-(1-x)TiO&lt;Sub&gt;2&lt;/Sub&gt;,x为MgO的摩尔分数比,0.475≤x≤0.495;将主粉体xMgO-(1-x)TiO&lt;Sub&gt;2&lt;/Sub&gt;和改性剂CaCO&lt;Sub&gt;3&lt;/Sub&gt;、ZnO、ZrO&lt;Sub&gt;2&lt;/Sub&gt;、Mn&lt;Sub&gt;3&lt;/Sub&gt;O&lt;Sub&gt;4&lt;/Sub&gt;、SiO&lt;Sub&gt;2&lt;/Sub&gt;混合得到混合物;加水后球磨粉碎并干燥得到微波介质烧结粉体材料;改性剂CaCO&lt;Sub&gt;3&lt;/Sub&gt;、ZnO、ZrO&lt;Sub&gt;2&lt;/Sub&gt;、Mn&lt;Sub&gt;3&lt;/Sub&gt;O&lt;Sub&gt;4&lt;/Sub&gt;、SiO&lt;Sub&gt;2&lt;/Sub&gt;占所述主粉体xMgO-(1-x)TiO&lt;Sub&gt;2&lt;/Sub&gt;的质量百分比分别为1.7%~5.89%、0.05%~2%、0.05%~1%、0.05%~1%、0.05%~1%。制备工艺简单,无污染,所得的微波介质陶瓷致密,满足微波器件的应用。(The invention provides a preparation method of a microwave dielectric sintered powder material, microwave dielectric ceramic and application thereof, wherein the method comprises the following steps: preparation of Main powder xMgO- (1-x) TiO 2 X is the mole fraction ratio of MgO, and x is more than or equal to 0.475 and less than or equal to 0.495; mixing main powder xMgO- (1-x) TiO 2 And modifier CaCO 3 、ZnO、ZrO 2 、Mn 3 O 4 、SiO 2 Mixing to obtain a mixture; adding water, ball-milling, crushing and drying to obtain a microwave medium sintered powder material; modifier CaCO 3 、ZnO、ZrO 2 、Mn 3 O 4 、SiO 2 Occupying the main powder xMgO- (1-x) TiO 2 The mass percentages of the components are respectively 1.7-5.89%, 0.05-2%, 0.05-1% and 0.05-1%. The preparation process is simple, no pollution is caused, and the obtained microwave dielectric ceramic is compact and meets the application requirements of microwave devices.)

一种微波介质烧结粉体材料的制备方法、微波介质陶瓷及其 应用

技术领域

本发明涉及陶瓷材料技术领域,尤其涉及一种微波介质烧结粉体材料的制备方法、微波介质陶瓷及其应用。

背景技术

微波介质陶瓷材料是指应用于微波频段电路中作为介质材料并完成一种或多种功能的陶瓷,在现代通讯中被广泛用作介质基片、谐振器、滤波器、介质导波回路等微波元器件,是现代通信技术的关键基础材料。

移动2G、3G时代,通信频率较低,环形器、隔离器由上下两片微波铁氧体材料***填充聚氟乙烯(介电常数为2.5左右)来满足要求。当前4G、5G时代的普及,通信频率大大提升,在减小体积的情况下为了满足高频率、低损耗、温度稳定的要求,在微波铁氧体片***增加一个微波介质陶瓷材料,可提高整体的介电常数,进而可减小环形器、隔离器的尺寸,满足器件小型化的要求。

申请号为201410097205.6的中国专利公开了一种MgTiO3-SrTiO3微波介质陶瓷复合材料,由MgTiO3、SrTiO3、Yb2O3、Y2O3和Sm2O3组成,介电常数在20左右。申请号为201410707197.2的中国专利公开了一种微波介质材料,其配方组成为(以重量百分比表示包括)61-92%MgTiO3、3-23%CaTiO3、1-12%MgO、0.01-1.5%V2O5、0.01-1%CeO2、0.5-2.5%La(Ti1/2Mg1/2)O3、0.1-1.5%Bi2TiSiO7,该微波介质材料的介电常数为20~22。申请号为201810793134.1的中国专利公开了以MgTiO3为基质,以Ca0.5Sr0.5TiO3或者Ca0.5Sr0.5TiO3与LnAlO3(Ln=Pr,Nd,La,Sm)之一的混合物为添加剂的微波介质材料,该微波介质材料的介电常数为20左右。

具有钛铁矿结构的偏钛酸镁(MgTiO3,ε=17,Q值=22000,τf=-55ppm/℃)因其原料相对廉价、微波性能优异,是一种重要的微波介质陶瓷材料,但其频率温度系数较大,对实际的应用产生不良影响。而上述专利中,介电常数20左右的微波介质瓷粉普遍采用Sr、Yb、Y、Sm、Ce、La、Pr、Nd和V、Bi等稀土元素来保持其介电性能,不利于成本降低(La(Ti1/ 2Mg1/2)O3、Bi2TiSiO7、Ca0.5Sr0.5TiO3等化合物的制备工艺也复杂)。因此,现有技术中缺乏一种微波性能良好且价格较低的微波介质陶瓷。

发明内容

本发明为了解决现有的问题,提供一种微波介质烧结粉体材料的制备方法、微波介质陶瓷及其应用。

为了解决上述问题,本发明采用的技术方案如下所述:

一种微波介质烧结粉体材料的制备方法,包括如下步骤:S1:制备主粉体xMgO-(1-x)TiO2,其中,x为MgO的摩尔分数比,0.475≤x≤0.495;S2:将所述主粉体xMgO-(1-x)TiO2和改性剂CaCO3、ZnO、ZrO2、Mn3O4、SiO2混合得到混合物;S3:向所述混合物加水后球磨粉碎并干燥得到微波介质烧结粉体材料;其中,所述改性剂CaCO3、ZnO、ZrO2、Mn3O4、SiO2占所述主粉体xMgO-(1-x)TiO2的质量百分比分别为1.7%~5.89%、0.05%~2%、0.05%~1%、0.05%~1%、0.05%~1%。

优选地,制备主粉体xMgO-(1-x)TiO2包括:将MgO和TiO2以摩尔比x:1-x混合并加水后球磨粉碎,干燥,预烧即得所述主粉体xMgO-(1-x)TiO2

优选地,所述MgO和所述TiO2均为微米级,所述MgO和所述TiO2的粒度大小在1~20μm之间。

优选地,所述预烧为在1050℃~1150℃下烧结2~4小时。

优选地,所述CaCO3、所述ZnO和所述Mn3O4均为纳米级,所述CaCO3、所述ZnO和所述Mn3O4的粒度大小在100~200nm之间。

优选地,所述干燥为喷雾干燥。

本发明还提供一种微波介质陶瓷材料,由上任一所述的微波介质烧结粉体材料的制备方法制备的微波介质烧结粉体材料为原料,经喷雾造粒、压制成型后,在1320℃~1380℃条件下烧结2-4h制备而成。

优选地,所述喷雾造粒是将所述微波介质烧结粉体材料和PVA水溶液、分散剂、消泡剂混合搅拌均匀后,经喷雾制备得到,所述分散剂为聚丙烯酸铵,所述消泡剂为聚二甲基硅氧烷。

优选地,由喷雾干燥机进行喷雾,其中所述喷雾干燥机的进风口温度为250℃~300℃,出风口温度为150~180℃。

本发明再提供如上任一所述的微波介质陶瓷在微波器件中的应用,所述微波器件包括环形器、隔离器、滤波器。

本发明的有益效果为:提供一种微波介质烧结粉体材料的制备方法、微波介质陶瓷及其应用,通过合理选取微波介质烧结粉体材料的主粉体和改性剂,采用氧化物法制备得到介电常数为18~23的改性xMgO-(1-x)TiO2微波介质烧结粉体材料,烧结过程无需气氛保护,制备工艺简单,也不会对环境造成污染,所得的微波介质陶瓷致密,具有优异的微波性能,其ε为18~23,Q*f值>72000GHz,τf为-1.5~0.5ppm/℃,可满足环形器、隔离器、滤波器微波器件的应用。

附图说明

图1是本发明实施例中一种改性微波介质烧结粉体材料的制备方法的示意图。

图2是本发明实施例中实施例5烧结样品表面的扫面电镜显微(SEM)示意图。

图3是本发明实施例中对比例4烧结样品表面的扫面电镜显微(SEM)示意图。

图4是本发明实施例中对比例5烧结样品表面的扫面电镜显微(SEM)示意图的。

具体实施方式

为了使本发明实施例所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。

需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者间接在该另一个元件上。当一个元件被称为是“连接于”另一个元件,它可以是直接连接到另一个元件或间接连接至该另一个元件上。另外,连接既可以是用于固定作用也可以是用于电路连通作用。

需要理解的是,术语“长度”、“宽度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。

此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多该特征。在本发明实施例的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。

实施例1

如图1所示,本实施例提供了一种改性微波介质烧结粉体材料的制备方法,包括如下步骤:

S1:制备制备主粉体xMgO-(1-x)TiO2,其中,x为MgO的摩尔分数比,其中x=0.495;

S2:将主粉体0.495MgO-0.505TiO2和改性剂CaCO3、ZnO、ZrO2、Mn3O4、SiO2混合得到混合物;

S3:向混合物加水后球磨粉碎,干燥,即得。

其中,改性剂占主粉体0.495MgO-0.505TiO2的质量百分比分别为1.7%CaCO3、1.5%ZnO、0.05%ZrO2、0.05%Mn3O4、0.1%SiO2。其中,MgO和TiO2的粒度为1μm,CaCO3、ZnO和Mn3O4的粒度为200nm。

在一种具体的实施例中,采用喷雾干燥方式。

其中,主粉体0.495MgO-0.505TiO2由如下方法制备而成:将MgO和TiO2以摩尔比0.495:0.505混合,加水后球磨粉碎,干燥,在1100℃下预烧3h,即得。详见表1。

实施例2

本实施例提供了一种改性微波介质烧结粉体材料的制备方法,包括如下步骤:

S1:制备制备主粉体xMgO-(1-x)TiO2,其中,x为MgO的摩尔分数比,其中x=0.49;

S2:将主粉体0.49MgO-0.51TiO2和改性剂CaCO3、ZnO、ZrO2、Mn3O4、SiO2混合得到混合物;

S3:向混合物加水后球磨粉碎,干燥,即得。

其中,改性剂占主粉体0.49MgO-0.51TiO2的质量百分比分别为2.86%CaCO3、0.05%ZnO、0.2%ZrO2、0.2%Mn3O4、1%SiO2。其中,MgO和TiO2的粒度为20μm,CaCO3、ZnO和Mn3O4的粒度为100nm。

其中,所述主粉体0.49MgO-0.51TiO2由如下方法制备而成:将MgO和TiO2以摩尔比0.49:0.51混合,加水后球磨粉碎,干燥,在1150℃下预烧2h,即得。详见表1。

实施例3

本实施例提供了一种改性微波介质烧结粉体材料的制备方法,包括如下步骤:

S1:制备制备主粉体xMgO-(1-x)TiO2,其中,x为MgO的摩尔分数比,其中x=0.49;

S2:将主粉体0.49MgO-0.51TiO2和改性剂CaCO3、ZnO、ZrO2、Mn3O4、SiO2混合得到混合物;

S3:向混合物加水后球磨粉碎,干燥,即得。

其中,改性剂占主粉体0.49MgO-0.51TiO2的质量百分比分别为2.28%CaCO3、2%ZnO、0.2%ZrO2、0.2%Mn3O4、0.1%SiO2。其中,MgO和TiO2的粒度为2μm,CaCO3、ZnO和Mn3O4的粒度为150nm。

其中,所述主粉体0.49MgO-0.51TiO2由如下方法制备而成:将MgO和TiO2以摩尔比0.49:0.51混合,加水后球磨粉碎,干燥,在1150℃下预烧2h,即得。详见表1。

实施例4

本实施例提供了一种改性微波介质烧结粉体材料的制备方法,包括如下步骤:

S1:制备制备主粉体xMgO-(1-x)TiO2,其中,x为MgO的摩尔分数比,其中x=0.475;

S2:将主粉体0.475MgO-0.525TiO2和改性剂CaCO3、ZnO、ZrO2、Mn3O4、SiO2混合得到混合物;

S3:向混合物加水后球磨粉碎,干燥,即得。

其中,改性剂占主粉体0.475MgO-0.525TiO2的质量百分比分别为5.89%CaCO3、0.05%ZnO、1%ZrO2、1%Mn3O4、0.05%SiO2。其中,MgO和TiO2的粒度为4μm,CaCO3、ZnO和Mn3O4的粒度为120nm。

其中,所述主粉体0.475MgO-0.525TiO2由如下方法制备而成:将MgO和TiO2以摩尔比0.475:0.525混合,加水后球磨粉碎,干燥,在1050℃下预烧4h,即得。详见表1。

实施例5

本实施例提供了一种微波陶瓷,由本发明的微波介质烧结粉体材料的制备方法制备的实施例1中微波介质烧结粉体材料为原料,经喷雾造粒、压制成型后,在1320℃下烧结、保温4h得到,其中喷雾造粒是将0.495MgO-0.505TiO2微波介质烧结粉体材料和15%聚乙烯醇水溶液、0.2%聚丙烯酸铵、0.1%聚二甲基硅氧烷混合搅拌均匀后,经喷雾干燥机喷雾制备得到,其中进风口温度为270℃,出风口温度为150℃。经检测,该微波陶瓷的ε为18,Q*f值为79200GHz,τf为-1.5ppm/℃。详见表2。

实施例6

本实施例提供了一种微波陶瓷,由本发明的微波介质烧结粉体材料的制备方法制备的实施例2中微波介质烧结粉体材料为原料,经喷雾造粒、压制成型后,在1350℃下烧结、保温2h得到,其中喷雾造粒是将0.495MgO-0.505TiO2微波介质烧结粉体材料和15%聚乙烯醇水溶液、0.2%聚丙烯酸铵、0.1%聚二甲基硅氧烷混合搅拌均匀后,经喷雾干燥机喷雾制备得到,其中进风口温度为250℃,出风口温度为180℃。经检测,该微波陶瓷的ε为21,Q*f值为78000GHz,τf为-1.0ppm/℃。详见表2。

实施例7

本实施例提供了一种微波陶瓷,由本发明的微波介质烧结粉体材料的制备方法制备的实施例3中微波介质烧结粉体材料为原料,经喷雾造粒、压制成型后,在1350℃下烧结、保温2h得到,其中喷雾造粒是将0.495MgO-0.505TiO2微波介质烧结粉体材料和15%聚乙烯醇水溶液、0.2%聚丙烯酸铵、0.1%聚二甲基硅氧烷混合搅拌均匀后,经喷雾干燥机喷雾制备得到,其中进风口温度为300℃,出风口温度为150℃。经检测,该微波陶瓷的ε为20,Q*f值为77000GHz,τf为-0.8ppm/℃。详见表2。

实施例8

本实施例提供了一种微波陶瓷,由本发明的微波介质烧结粉体材料的制备方法制备的实施例4中微波介质烧结粉体材料为原料,经喷雾造粒、压制成型后,在1380℃下烧结、保温2h得到,其中喷雾造粒是将0.495MgO-0.505TiO2微波介质烧结粉体材料和15%聚乙烯醇水溶液、0.2%聚丙烯酸铵、0.1%聚二甲基硅氧烷混合搅拌均匀后,经喷雾干燥机喷雾制备得到,其中进风口温度为270℃,出风口温度为150℃。经检测,该微波陶瓷的ε为23,Q*f值为72100GHz,τf为0.5ppm/℃。详见表2。

对比例1~3

对比例1~3具体参照表1。

对比例4~6

对比例4是以对比例1提供的微波介质烧结粉体材料为原料,对比例5是以对比例2提供的微波介质烧结粉体材料为原料,对比例6是以对比例3提供的微波介质烧结粉体材料为原料,具体参照表2。

表1实施例1~4和对比例1~3一览表

Figure BDA0002272148520000071

表2实施例5~8和对比例4~6一览表

Figure BDA0002272148520000072

Figure BDA0002272148520000081

从表2中可以看出,本发明各实施例制备得到的微波介质陶瓷具有优异的微波性能,介电常数在18~23可调,Q*f值>72000GHz,τf为-1.5~0.5ppm/℃。

图2显示实施例5的结晶均匀致密,因此介电性能优异。

图3显示对比例5的致密性较差,因此介电常数和Q*f值偏低。

图4显示对比例6的结晶异常(晶粒偏大),因此Q*f值偏低。

本发明优选实施例的制备方法中,以偏离正分子式MgTiO3(MgO/TiO2摩尔比小于1)的主粉体为基础,优化原材料MgO、TiO2的选择和组分设计(xMgO-(1-x)TiO2,其中0.475≤x≤0.495),以CaCO3、ZnO、ZrO2、Mn3O4、SiO2为复合改性剂(不添加改性剂的话,微波性能会恶化,尤其是Q*f值和温度系数τf),其中纳米CaCO3和纳米ZnO的使用可以得到活性较好的CaTiO3、ZnTiO3钙钛矿相或固溶相(MgTiO3-CaTiO3-ZnTiO3),最终控制介电常数和Q*f值在合适的范围内,微量ZrO2、SiO2主要是通过离子掺杂存在晶界处,改善其热稳定性,并不影响其微波性能的恶化,微量Mn3O4主要用于调整烧结外观,并不影响其微观结构和微波性能的改变,最终优化主成分和改性剂的配比,采用一步预烧合成法和控制合成工艺参数,通过本发明优先实施例的制备方法所得的微波介质陶瓷在1320℃~1380℃下烧结致密,具有优异的微波性能,介电常数在18~23可调,Q*f值>72000GHz,τf为-1.5~0.5ppm/℃,并保持成本较低、工艺简单、环境友好的优势。

上述低成本、优异微波性能的微波介质陶瓷在制备环形器、隔离器、滤波器微波器件中,具有小型化、高稳定性和低成本的优势。

以上内容是结合具体的优选实施方式对本发明所做的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的技术人员来说,在不脱离本发明构思的前提下,还可以做出若干等同替代或明显变型,而且性能或用途相同,都应当视为属于本发明的保护范围。

10页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种石墨陶瓷合闸电阻及其制备方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!