多发动机系统和方法

文档序号:1461373 发布日期:2020-02-21 浏览:23次 >En<

阅读说明:本技术 多发动机系统和方法 (Multi-engine system and method ) 是由 K.摩根 S.马 P.博谢纳-马特尔 E.迪罗谢 于 2019-08-08 设计创作,主要内容包括:本发明涉及多发动机系统和方法。一种操作多发动机直升机的方法包括使用全权限数字发动机控制(FADEC),从而控制该多发动机直升机的第一发动机以主动模式操作,以满足多发动机直升机的功率或旋翼速度需求,以通过该多发动机直升机来执行巡航航段,并且控制该多发动机直升机的第二发动机以待机模式操作。控制该第二发动机的燃料流率,以将第一发动机和第二发动机之间的燃料流率差维持在70%和100%之间。(The invention relates to a multi-engine system and method. A method of operating a multi-engine helicopter includes using a Full Authority Digital Engine Control (FADEC) to control a first engine of the multi-engine helicopter to operate in an active mode to meet power or rotor speed requirements of the multi-engine helicopter to execute a cruise flight with the multi-engine helicopter and to control a second engine of the multi-engine helicopter to operate in a standby mode. The fuel flow rate of the second engine is controlled to maintain a fuel flow difference between the first engine and the second engine between 70% and 100%.)

多发动机系统和方法

技术领域

本申请涉及用于飞机的多发动机系统和控制这样的系统的方法。

背景技术

直升机通常配备有至少两个涡轮轴发动机。在这种现有技术的直升机中,直升机的发动机可通过共同的减速齿轮箱连接到主旋翼,并且发动机中的每一个可尺寸设定成使得每个发动机的功率大于巡航所需的功率。在巡航状态下,以相对高的状况(regime)操作单个发动机同时以较低的状况操作另一个发动机,而不是以中等水平的状况操作两个发动机,可允许整体更好的燃料效率。较低的操作状况有时被称为“待机”模式。虽然这种现有技术的操作状况可能适合于操作这种现有技术的直升机,但是期望改进。例如,期望减少发动机从待机模式加电所需的时间。作为另一个示例,还期望改进现有技术的主动-待机操作方法以便提高燃料效率。

发明内容

在一个方面,提供了一种多发动机系统,其包括:驱动共同的减速齿轮箱的第一涡轮轴发动机和第二涡轮轴发动机,该共同的减速齿轮箱被构造成驱动共同的负载,所述第二涡轮轴发动机构造成以待机模式操作,至少所述第二涡轮轴发动机包括:可相对于彼此独立旋转的至少两个管轴,所述至少两个管轴中的低压管轴包括将低压压缩机部段互连到低压涡轮部段的低压轴,并且所述至少两个管轴中的高压管轴包括将高压压缩机部段互连到高压涡轮部段的高压轴;设置在所述低压压缩机部段的入口处的第一组可变导向叶片,所述第一组可变导向叶片控制所述低压管轴的操作状态;以及设置在所述高压压缩机部段的入口处的第二组可变导向叶片,所述第二组可变导向叶片控制所述高压管轴的操作状态。

在另一个方面,提供了一种用于多发动机系统的涡轮轴发动机,所述涡轮轴发动机构造成驱动共同的负载,所述涡轮轴包括:可相对于彼此独立旋转的至少两个管轴,所述至少两个管轴中的低压管轴包括将低压压缩机部段互连到低压涡轮部段的低压轴,并且所述至少两个管轴中的高压管轴包括将高压压缩机部段互连到高压涡轮部段的高压轴;设置在所述至少两个管轴中的每一个的入口处的一组可变导向叶片,所述一组可变导向叶片构造成控制所述至少两个管轴中相应的管轴的操作状态;以及输出轴,其传动地接合到所述低压轴并且构造成传动地接合共同的输出轴,所述共同的输出轴驱动所述共同的负载并且由另一个涡轮轴发动机传动地接合。

在另一方面,提供了一种操作传动地耦接到负载的多发动机系统的方法,所述方法包括:操作所述多发动机系统的第一涡轮轴发动机以驱动所述负载,同时所述多发动机系统的第二涡轮轴发动机以降低功率模式操作;增加第二涡轮轴发动机的输出功率水平以通过如下方式来驱动负载:引导气流通过第二涡轮轴发动机的第一组可变导向叶片;通过低压压缩机部段来压缩所述气流;引导所述气流通过第二组可变导向叶片;以及通过高压压缩机部段来压缩所述气流,所述低压压缩机部段和所述高压压缩机部段相对于彼此独立地旋转。

在另一个方面,提供了一种操作多发动机直升机的方法,其包括:使用全权限数字控制(FADEC),从而控制多发动机直升机的第一发动机以主动模式操作,该主动模式包括满足多发动机直升机的动力或旋翼速度需求以通过多发动机直升机执行巡航航段;以及使用所述FADEC,从而控制所述多发动机直升机的第二发动机,以将所述第一发动机和所述第二发动机之间的燃料流率差维持在70%至100%的范围内,不包括100%。

在一些实施例中,所述控制所述第二发动机被执行成将所述燃料流率差维持在70%至90%的范围。

在一些实施例中,所述控制所述第二发动机被执行成将所述燃料流率差维持在80%至90%的范围。

在一些实施例中,所述控制所述第二发动机通过使用通过所述第二发动机的燃料流率作为对所述第二发动机的控制输入变量来执行,并且所述控制所述第一发动机通过使用所述功率或旋翼速度需求作为对所述第一发动机的控制输入变量来执行。

在一些实施例中,所述控制所述第一发动机以所述主动模式操作包括控制所述第一发动机以经由所述多发动机直升机的齿轮箱来驱动所述多发动机直升机的旋翼,并且控制所述第二发动机包括使所述第二发动机与所述齿轮箱分离。

在一些实施例中,所述控制所述第一发动机以所述主动模式操作包括控制所述第一发动机以经由所述多发动机直升机的齿轮箱来驱动所述多发动机直升机的旋翼,并且控制所述燃料流率差,以便利用所述第二发动机以处于所述第二发动机的额定全功率的0%至1%的范围内的功率来驱动所述齿轮箱。

在一些实施例中,方法包括独立于处于第一发动机的高压压缩机部段的上游的第二组VGV的位置而在80度位置和-25度位置之间调节处于第一发动机的低压压缩机部段的上游的第一组VGV。

在一些实施例中,方法包括执行以下各项中的至少一项:a)控制所述第二发动机的低压压缩机部段以将与所述第二发动机的低压压缩机部段相关联的压力比维持在0.9至1.4之间;以及b)将通过所述第二发动机的燃料流量控制在通过所述第一发动机的巡航燃料流量的大约20%至大约10%的范围内。

在另一个方面,提供了一种多发动机系统,其包括:驱动共同的齿轮箱的第一涡轮轴发动机和第二涡轮轴发动机,所述共同的齿轮箱被构造成驱动负载,至少所述第二涡轮轴发动机包括:可相对于彼此独立旋转的至少两个管轴,所述至少两个管轴中的低压管轴包括将低压压缩机部段互连到低压涡轮部段的低压轴,并且所述至少两个管轴中的高压管轴包括将高压压缩机部段互连到高压涡轮部段的高压轴;设置在所述低压压缩机部段的上游的第一组可变导向叶片;以及设置在所述高压压缩机部段的上游的第二组可变导向叶片,所述第一组可变导向叶片与所述第二组可变导向叶片分离,并且所述低压压缩机部段包括混流转子。

在一些这样的实施例中,所述第一组可变导向叶片可在80度位置和-25度位置之间操作,并且所述第二组可变导向叶片可在80度位置和-25度位置之间操作。

在一些这样的实施例中,所述第一组可变导向叶片可在与所述第一组可变导向叶片相关联的所述80度位置和所述-25度位置之间操作,而所述第二组可变导向叶片被维持在给定位置。

在一些这样的实施例中,所述多发动机系统包括:所述至少两个管轴中的中压管轴,所述中压管轴包括将中压压缩机部段互连到中压涡轮部段的中压轴;以及设置在所述中压压缩机部段的入口处的第三组可变导向叶片,所述第三组可变导向叶片控制所述中压管轴的操作状态。

在另一个方面,提供了一种用于多发动机系统的涡轮轴发动机,所述涡轮轴发动机构造成驱动共同的负载,所述涡轮轴包括:可相对于彼此独立旋转的至少两个管轴,所述至少两个管轴中的低压管轴包括将低压压缩机部段互连到低压涡轮部段的低压轴,并且所述至少两个管轴中的高压管轴包括将高压压缩机部段互连到高压涡轮部段的高压轴;所述低压压缩机部段由单个混流转子限定;以及多组可变导向叶片,其包括设置在所述至少两个管轴中的每一个的入口处的一组可变导向叶片,所述多组中的第一组与所述多组中的第二组机械地分离。

在一些这样的实施例中,所述第一组可变导向叶片可在与所述第一组可变导向叶片相关联的80度位置和-25度位置之间操作。

在一些这样的实施例中,所述第二组可变导向叶片可在与所述第二组可变导向叶片相关联的80度位置和-25度位置之间操作。

在一些这样的实施例中,所述第一组可变导向叶片可在与所述第一组可变导向叶片相关联的所述80度位置和所述-25度位置之间操作,而所述第二组可变导向叶片被维持在给定位置。

在一些这样的实施例中,所述高压涡轮部段仅包括单个涡轮级。

在一些这样的实施例中,所述涡轮轴发动机包括所述至少两个管轴中的中压管轴,所述中压管轴包括将中压压缩机部段互连到中压涡轮部段的中压轴。

在一些这样的实施例中,所述第一组可变导向叶片被设置在所述低压压缩机部段的上游。

在一些这样的实施例中,所述第二组可变导向叶片被设置在所述高压压缩机部段的上游。

附图说明

现在参照附图,其中:

图1是燃气涡轮发动机的示意性剖视图;

图2是示例性多发动机系统的示意图,其示出了两个示例性涡轮轴发动机的轴向剖视图;

图3A是图2的两个涡轮轴发动机中的一个的示意图;

图3B是根据另一示例性表示的图2的两个涡轮轴发动机中的一个的示意图;以及

图4是示出了操作多发动机直升机的方法的示图。

具体实施方式

图1图示了燃气涡轮发动机10的一个示例。在该示例中,燃气涡轮机10是涡轮轴发动机10,其通常包括串流连通的以下部件,即:用于加压空气的低压(LP)压缩机部段12和高压(HP)压缩机部段14;燃烧器16,在其中压缩空气与燃料混合并且被点燃以便产生热燃烧气体的环形流;高压涡轮部段18,其用于从该燃烧气体中提取能量,并且驱动高压压缩机部段14;以及较低压涡轮部段20,其用于进一步从该燃烧气体中提取能量,并且驱动低压压缩机部段12。涡轮轴发动机10可包括传动装置38,其由低压轴32驱动并且驱动可旋转输出轴40。传动装置38可改变低压轴32和输出轴40的旋转速度之间的比。

低压压缩机部段12可与高压压缩机部段14独立地旋转。低压压缩机部段12可包括一个或多个压缩级,并且高压压缩机部段14可包括一个或多个压缩级。在图1中所示的实施例中,低压压缩机部段12包括单一的压缩机级12A,该压缩机级12A包括单个混流转子(mixed flow rotor,MFR),如共同拥有的美国专利6,488,469 B1中所述,该美国专利题为“MIXED FLOW AND CENTRIFUGAL COMPRESSOR FOR GAS TURBINE ENGINE”,并且在此明确地通过引用整体结合于本文中。'469专利的MFR是可用于实施本技术的MFR的一个示例,如本文件中提到的MFR一样。预期可同样地使用其他MFR。

涡轮轴发动机10具有多个、即两个或更多个管轴,其可执行压缩以对通过空气入口22接收的空气加压,并且其在它们经由排气出口24离开之前从燃烧气体中提取能量。在所示实施例中,涡轮轴发动机10包括安装成用于绕发动机轴线30旋转的低压管轴26和高压管轴28。低压管轴26和高压管轴28可绕轴线30相对于彼此独立地旋转。术语“管轴(spool)”在本文中意在广泛地表示传动连接的涡轮和压缩机转子。

低压管轴26可包括低压轴32,其将低压涡轮部段20与低压压缩机部段12互连,以驱动低压压缩机部段12的转子。换句话说,低压压缩机部段12可包括直接传动地接合到低压轴32的至少一个低压压缩机转子,并且低压涡轮部段20可包括直接传动地接合到低压轴32的至少一个低压涡轮转子,以使低压压缩机部段12以与低压涡轮部段20相同的速度旋转。在其他实施例中,低压压缩机部段12可经由例如齿轮传动系统来连接,以比低压涡轮部段20更快或更慢地运行。高压管轴28包括高压轴34,其将高压涡轮部段18与高压压缩机部段14互连,以驱动高压压缩机部段14的转子。换句话说,高压压缩机部段14可包括直接传动地接合到高压轴34的至少一个高压压缩机转子,并且高压涡轮部段18可包括直接传动地接合到高压轴34的至少一个高压涡轮转子,以使高压压缩机部段14以与高压涡轮部段18相同的速度旋转。在一些实施例中,高压轴34可以是中空的,并且低压轴32穿过其延伸。这两个轴32、34彼此独立地自由旋转。

涡轮轴发动机10包括处于每个压缩机部段12、14的入口或其他上游处的一组可变导向叶片(VGV)36。换句话说,第一组可变导向叶片36可被设置在低压压缩机部段12的上游,并且第二组可变导向叶片36可被设置在高压压缩机部段14的上游。这些可变导向叶片阵列36中的每一个都可以独立地控制。每组可变导向叶片36可将空气引导到相应压缩机部段12、14的第一级。在操作中,该组可变导向叶片36可高效和快速地调节涡轮轴发动机10的气流和功率。

在一些实施例中,处于低压压缩机部段12的上游的一组可变导向叶片36与处于高压压缩机部段14的上游的一组可变导向叶片36机械地分离(即,没有与处于高压压缩机部段14的上游的可变导向叶片36的机械联接)。在一些这样的实施例中,两组叶片36例如都可操作性地连接到全权限数字控制器(FADEC)或者其他合适的控制器,以由此彼此独立地操作。换句话说,在一些实施例中,叶片36和/或发动机10A、10B可使用例如常规的FADEC之类的全权限数字控制(FADEC)来控制,以执行如本文件中所描述的各种控制步骤和方法。出于本文件的目的,术语“独立地”意味着可操作一组叶片36而不引起对另一组叶片36的状态的任何改变。

在一个方面,这可允许管轴26、28以如下方式来操作,即:在管轴26、28之间没有气动耦合。因此,管轴26、28中的每一个都可以不同的速度操作并且可在很宽的速度范围内以任何速度操作。在另一方面,叶片36的独立操作可允许两个管轴26、28在所有操作范围内以恒定的速度操作,包括从待机到巡航功率(或更多)。在一些实施例中,这可允许两个管轴26、28以与在最大功率下运行的管轴26、28的速度非常接近的速度或者相同的速度来运行。在一些实施例中,这还可允许管轴26、28中的一个以高速运行,而另一个以较低的速度运行。

这样的控制策略可允许发动机10的功率恢复相对较少地受到管轴26、28的惯性影响,并且因此,由于快速作用的VGV/叶片系统36和/或燃料控制而更加快速。在一些实施例和应用中,这可允许极大地加速发动机10的功率响应恢复。作为示例,本技术的创造者已经发现,与使用现有技术的控制方法操作的相似尺寸和输出的至少一些现有技术的发动机相比较,例如当使用如本文所述的控制方法操作时,使用如上所述的叶片36结合具有一个或多个MFR的低压压缩机部段12和/或具有一个或多个MFR的高压压缩机部段14可通过发动机10、10A、10B的核心提供相对更多的空气和/或流控制权限和范围,和/或发动机10、10A、10B的显著更快的功率响应恢复。

作为示例,已发现本文所描述的发动机架构可允许每组叶片36构造成可调节的,并且可被调节成多达大约80度和大约(负)-25度的范围,如例如图1中关于其中一组叶片36所示的。在一个更具体的实施例中,与MFR结合使用的VGV 36的范围可从78.5度到-25度,更特别地从75度到-20度,并且再更特别地从70度到-20度。另一组叶片36可被构造成可调节的,并且可在相似的位置范围内调节。在至少一些实施例和应用中,可在避免压缩机不稳定的同时执行这样的功能,而在至少一些现有技术的发动机中,叶片仅可被控制在例如大约0度和30度之间。因此,即使在极端的VGV“关闭”(例如,至多达80度)的情况下,如本文所述的发动机10、10A、10B的MFR也能够基本上稳定地操作。这有利于如本文所述的具有组合操作的这样的MFR和VGV的发动机在与如本文定义的“待机”模式相关联的极低功率设置下操作的能力,其中,以待机模式操作的发动机的压缩机以非常低的状况(低流量和/或低压力比)操作。

作为一个非限制性示例,操作这样的实施例可能需要一种控制方法,该控制方法可包括:使低压压缩机部段12在低功率(或无功率)模式(亦称“空转巡航状况”(ICR)或“次空转”巡航状况范围)中以恒定的速度在0.9至1.4的压力比范围内操作,同时根据适当的安排来调节其上游的叶片36。例如,一个这样的安排可包括以下:高闭合角(例如,50度至80度),以便迎合在0.9至1.4的压力比下操作的较低压力比状况。作为另一个非限制性示例,一些这样的实施例可能需要以下控制策略:使低压压缩机部段12在待机模式(亦称ICR范围)中以恒定的速度在1.0至1.7的压力比范围内操作,同时根据适当的安排来调节其上游的叶片36。例如,一个这样的安排可包括以下:高闭合角(例如,50度至80度),以迎合1.0至1.7的较低压力比状况。在一些这样的实施例中,叶片36的位置可在压力范围内线性映射。

在一些实施例中,这种改进的气流控制权限和/或控制可允许使发动机10以处于通过发动机10的参考燃料流量的大约30%下至大约12%的范围内的燃料流量以持续降低功率的模式来操作。该参考燃料流量例如可以是起飞燃料流量或巡航燃料流量。在一些实施例中,这样的气流控制权限和/或控制可允许使发动机10以处于通过发动机10的巡航(或起飞)燃料流量的大约20%下至大约10%的范围内的燃料流量以持续降低功率(或实质上无功率)的模式来操作。在又一方面,这种改进的气流控制权限和/或控制可允许减小与压缩机部段12、14相关联的排放阀的尺寸。在又一方面,这种改进的气流控制权限和/或控制可允许维持高的压缩机12的速度,这是由于能够通过上游的VGV 36和压缩机级12在给定速度下显著减小压力比和质量流量,同时允许在需要时快速增加发动机功率并加速核心压缩机退出待机模式,而无需来自(发动机)外部的电源的帮助。在又一方面,这种改进的气流控制权限和/或控制可允许高压压缩机部段14,例如2级高压压缩机部段14,通过单个上游VGV级36的设置/调节,在设计点处以其压力比的大约17-25%操作,并且在其设计点的40-60%的校正速度下操作。在一些实施例中,可提供所有这些,同时需要少于15-20%的通过相关联的处理排放阀的压缩机处理排放流量。这样的阀可以是常规的,并且因此本文中不再详细描述。

图2图示了可用作动力装置的示例性多发动机系统42的示意图。多发动机系统42可包括一个或多个涡轮轴发动机10A、10B。特别是在巡航操作状况期间,多发动机系统42可管理发动机10A、10B的操作,以减少整体燃料消耗。这种操作管理可被称为“燃料节省模式”,其中,这两个发动机中的一个以“待机模式”操作,而另一个发动机以正常巡航功率操作。多发动机系统42可被用作用于例如直升机之类的飞机的双包装(twin-pack)。除航空应用之外,多发动机系统42还可用于船舶和/或工业应用中。

多发动机系统42可包括第一涡轮轴发动机10A和第二涡轮轴发动机10B。第一涡轮轴发动机10A和第二涡轮轴发动机10B可被构造成驱动共同的负载44。在一些实施例中,该共同的负载44可包括旋翼式飞机的旋转翼。例如,共同的负载44可以是直升机的主旋翼。取决于共同的负载44的类型及其操作速度,涡轮轴发动机10A、10B中的每一个都可经由齿轮箱46传动地耦接到共同的负载44,该齿轮箱46可以是变速(例如,减速)类型的。例如,齿轮箱46可具有多个传动轴48,以从相应的涡轮轴发动机10A、10B的相应输出轴40A、40B接收机械能。齿轮箱46可被构造成将来自该多个涡轮轴发动机10A、10B的组合机械能中的至少一些引向共同的输出轴50,以便以合适的操作(例如,旋转)速度来驱动共同的负载44。应当理解的是,多发动机系统42例如可被构造成驱动相关联的飞机的其他附件。齿轮箱46可被构造成允许共同的负载44由第一涡轮轴发动机10A或第二涡轮轴发动机10B来驱动,或者通过第一涡轮轴发动机10A和第二涡轮轴发动机10B二者一起的组合来驱动。

在操作中,多发动机系统42可使涡轮轴发动机10A、10B以燃料节省模式操作。也就是说,第一涡轮轴发动机10A可处于主动模式,并且第二涡轮轴发动机10B可处于待机模式。例如,第一涡轮轴发动机10A可在主动模式下以全功率状态操作,以供应共同的负载44的功率或旋翼速度需求。第二涡轮轴发动机10B可以空转或低功率状态操作,以最小化燃料消耗。在一些实施例中,第一涡轮轴发动机10A可使用如上面关于发动机10所述的待机模式控制策略来操作。待机或空转状态可表示发动机以较低功率状态和/或以最小燃料流量状态操作。原则上,为提供相同的功率输出,一个高功率发动机可以比两个较低功率的发动机更高效地操作,从而与每个发动机都以降低功率状态操作的常规的双发动机相比,当使发动机按照所述燃料节省模式操作时可能降低总体燃料消耗。

在使用中,第一涡轮轴发动机10A可按照主动模式操作,而第二涡轮轴发动机10B可按照待机模式操作。在操作期间,可能需要第二涡轮轴发动机10B相对于待机模式的低功率状态提供更多功率。例如,这可能仅发生在为直升机供能的多发动机系统42的紧急的“单发动机不工作”(OEI)状态下,其中,从较低功率到高功率的功率恢复可能花费一些时间。通常,可通过减小涡轮轴发动机10的每个管轴的惯性质量来减少从待机模式到主动模式的功率恢复的响应时间。换句话说,可通过减小低压管轴26的惯性质量和高压管轴28的惯性质量来减少响应时间。例如,与具有单个压缩机管轴并且输送与涡轮轴发动机10相同的功率的基线涡轮轴发动机相比,涡轮轴发动机10的每个管轴26、28的惯性质量低于该基线涡轮轴发动机的单个压缩机管轴的惯性质量。较低的惯性质量可使涡轮轴发动机10对功率或旋翼速度需求更具反应性。换句话说,涡轮轴发动机10可相对于基线涡轮轴发动机具有从待机模式到全功率的更快的加速。在一些实施例中,多发动机系统42可包括基线涡轮轴来代替第一涡轮轴发动机10A。

多发动机系统42可包括传动装置52,其由输出轴40B驱动并且驱动可旋转传动轴48。可控制传动装置52来改变输出轴40B和传动轴48的旋转速度之间的比。

参照图3A,其示出了第二涡轮轴发动机10B的示意图。涡轮轴发动机10B包括设置在低压压缩机部段12的入口处的第一组可变导向叶片36A。也就是说,第一组可变导向叶片36A相对于通过涡轮轴发动机10B的气流方向位于低压压缩机部段12的上游。第一组可变导向叶片36A可被构造成控制低压管轴26的操作状态。低压压缩机部段12可包括由低压涡轮部段20的一个或多个涡轮级驱动的一个或多个压缩级。例如,在图3A中所示的实施例中,低压压缩机部段12包括混流转子(MFR)的单个压缩机级12A,并且低压涡轮部段20包括两个动力涡轮级20A。在另一个示例中,低压压缩机部段12可包括两个压缩机级。这两个压缩机级可包括两个轴向压缩机,或者作为另一个示例的单个轴向或离心级。低压涡轮部段20可包括三个涡轮级。输出轴40B可被直接耦接到低压轴32。

涡轮轴发动机10B包括设置在高压压缩机部段14的入口处的第二组可变导向叶片36B。也就是说,第二组可变导向叶片36B相对于通过涡轮轴发动机10B的气流方向位于高压压缩机部段14的上游。第二组可变导向叶片36B可被构造成控制高压管轴28的操作状态。高压压缩机部段14可包括由高压涡轮部段18的一个或多个涡轮级驱动的一个或多个压缩级或单个离心级。例如,在图3A中所示的实施例中,高压压缩机部段14包括两个压缩机级14A,其包括混流转子(MFR)和离心式叶轮,并且高压涡轮部段18包括单个动力涡轮级18A。这两个压缩机级14A可包括两个离心式叶轮。在另一个示例中,高压压缩机部段14可包括三个压缩机级。该三个压缩机级可包括两个轴向压缩机和一个离心式叶轮。高压涡轮部段18可包括两个涡轮级。

参照图3B,其根据另一示例性表示示出了第二涡轮轴发动机10B的示意图。涡轮轴发动机10B可具有三个或更多个动力管轴。在图3B中所示的实施例中,涡轮轴发动机包括中压管轴27。中压管轴27包括中压轴33,其将中压涡轮部段19与中压压缩机部段13互连,以驱动中压压缩机部段13的转子。换句话说,中压压缩机部段13可包括直接传动地接合到中压轴33的至少一个中压压缩机转子,并且中压涡轮部段19可包括直接传动地接合到中压轴33的至少一个中压涡轮转子,以使中压压缩机部段13以与中压涡轮部段19相同的速度旋转。在发动机10B的其他实施例中,在低压管轴26上可没有压缩机。

考虑到上述技术,并且现在参照图4,本技术提供了操作多发动机直升机(H)的方法60。例如,方法60可用于在巡航航段期间操作例如上面关于图2所描述的发动机系统42。

在一些实施例中,方法60可包括,使用例如全权限数字控制(FADEC),从而控制发动机10A、10B中的一个或多个以主动模式操作,以满足多发动机直升机(H)的功率或旋翼速度需求,以通过多发动机直升机(H)来执行巡航航段。方法60还可包括控制多发动机直升机(H)的其他发动机10A、10B中的一个或多个以待机模式操作,其中,控制待机发动机中的燃料流率,使得主动和待机发动机之间的燃料流率的差维持在70%和100%之间,即在70%至100%的范围内(不包括100%,这是考虑到这将意味着待机发动机完全关闭,这是不期望的)。因此,应当理解的是,关于这两个发动机之间的燃料流率差,如本文所表达的70-100%的范围可包括该范围的下端(即,70%),但需要排除100%。在方法60的一些实施例中,主动和待机发动机之间的燃料流率差可被控制在70%和90%的范围内。在方法60的一些实施例中,该燃料流率差可被控制在80%和90%的范围内。

在至少一些情况下,将燃料流量差维持在这样的范围内可通过具有MFR 12、14和独立调节的VGV组36的组合的发动机架构来实现,如上所述,并且可提供优于至少一些现有技术的多发动机操作状况的燃料经济性改进。这样的操作可被称为不对称地操作发动机10A、10B。在一些实施例中,在这样的不对称操作中,可控制发动机10A、10B中的待机发动机,这是通过使用通过发动机10A、10B中的待机发动机的燃料流率作为对发动机10A、10B中的待机发动机的控制输入变量。在一些这样的实施例中,可控制发动机10A、10B中的主动发动机(例如,其满足直升机42的一个或多个旋翼的功率或旋翼速度需求),这是通过使用直升机的功率或旋翼速度需求作为对发动机10A、10B中的主动发动机的控制输入变量。

在一些这样的实施例中,控制主动发动机可包括控制主动发动机以经由多发动机直升机(H)的齿轮箱46来驱动多发动机直升机(H)的旋翼44/负载44,并且控制待机发动机可包括使待机发动机与齿轮箱46分离。为此,例如可使用常规的直升机齿轮箱,其当该发动机减速到低于给定的功率和/或旋转速度时使给定的发动机分离。在一些这样的实施例中,控制主动发动机可包括控制主动发动机以经由齿轮箱46来驱动旋翼/负载44,并且控制燃料流率差,以便利用待机发动机以处于待机发动机的额定全功率的0%至1%的范围内的功率来驱动齿轮箱46。

在一些这样的实施例中,方法60可包括独立于处于主动发动机的高压压缩机部段14的上游的第二组VGV 36的位置而在80度位置和-25度位置之间(或更特别地,在75度和-20度位置之间)调节处于主动发动机的低压压缩机部段12的上游的第一组VGV 36。在一些这样的实施例中,方法60可包括执行以下各项中的至少一项,即:a)控制低压压缩机部段12以将与低压压缩机部段12相关联的压力比维持在0.9至1.4之间;以及b)将通过待机发动机的燃料流量控制在通过主动发动机的巡航燃料流量(或起飞燃料流量)的大约20%至大约10%的范围内。

上面的描述仅意在是示例性的,并且本领域技术人员将认识到,可以在不脱离所公开的本发明的范围的情况下对所描述的实施例进行改变。例如,压缩机转子可包括轴流式压缩机或离心式叶轮。所述多发动机系统可具有多于两个涡轮轴发动机,在这种情况下,这些涡轮轴发动机中的一个或多个可以待机模式操作。作为另一个示例,虽然方法60关于直升机(H)来描述,但是预期也可对于其他类型的多发动机飞机应用方法60。根据对本公开的回顾,本领域技术人员将清楚落入本发明的范围内的再其他的修改。

17页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:飞行器引擎温度控制和性能

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!