碳纤维增强复合材料的成型品及其制造方法

文档序号:156910 发布日期:2021-10-26 浏览:26次 >En<

阅读说明:本技术 碳纤维增强复合材料的成型品及其制造方法 (Molded article of carbon fiber-reinforced composite material and method for producing same ) 是由 光冈秀人 尾关雄治 于 2020-03-25 设计创作,主要内容包括:本发明的课题在于提供碳纤维增强复合材料的成型品,其能够与所组合使用的粘接剂、金属的种类无关地良好地进行粘接,此外,即使在粘接后经过长时间后,也可维持其接合力。另外,本发明涉及碳纤维增强复合材料的成型品,其为至少包含碳纤维和树脂组合物的纤维增强复合材料的成型品,其特征在于,前述纤维增强复合材料的成型品的表面粗糙度Ra为0.01μm以上且2μm以下,并且,在表面上介由厚度为0.1mm以上且3mm以下的含有环氧化合物的粘接剂层而与金属接合时的拉伸剪切接合强度(F-(0))为10MPa以上且40MPa以下。(The invention provides a molded article of a carbon fiber-reinforced composite material, which can be bonded well regardless of the type of an adhesive or a metal used in combination, and which can be bonded well even after a long period of time has elapsed after bondingThe engaging force can be maintained. The present invention also relates to a molded article of a fiber-reinforced composite material containing at least carbon fibers and a resin composition, wherein the molded article of the fiber-reinforced composite material has a surface roughness Ra of 0.01 to 2 μm and a tensile shear bond strength (F) when bonded to a metal through an epoxy compound-containing adhesive layer having a thickness of 0.1 to 3mm on the surface thereof 0 ) Is 10MPa or more and 40MPa or less.)

碳纤维增强复合材料的成型品及其制造方法

技术领域

本发明涉及在与金属材料的粘接接合中显示出高拉伸剪切接合强度的碳纤维增强复合材料的成型品。

背景技术

为了将成型品与其他同种或不同种的材料的成型品进行接合,有如下方法:利用螺栓、螺钉进行机械紧固的方法;使用粘接剂进行接合的方法;在使材料的表面暂时软化后、固化前使其与其他材料接触,从而进行接合的方法等,对于利用粘接剂进行的接合,例如有如下所示的例子。

在经碳纤维增强的热固性树脂与热塑性树脂的接合中,已知的是,将热塑性树脂组合物的总表面自由能和热固性树脂组合物的总表面自由能之差的绝对值设为10mJ/m2,从而使两者良好地粘接(专利文献1)。

介由粘接层将结晶性热塑性树脂彼此接合的情况下,已知的是,利用干式处理来控制处理前后的材料的表面自由能的变化率,从而良好地粘接(专利文献2)。

在介由基于热固化树脂的粘接层来将铝和热塑性树脂进行接合的情况下,已知的是,通过控制在铝表面形成的基底处理被膜的表面自由能、热固化树脂层的表面自由能的关系性、和铝表面的基底处理被膜的表面粗糙度,从而良好地粘接(专利文献3)。

现有技术文献

专利文献

专利文献1:日本特开2004-269878号公报

专利文献2:日本特开2017-128683号公报

专利文献3:日本特开2008-132650号公报

发明内容

发明所要解决的课题

在介由粘接剂而将碳纤维复合材料的成型品和金属接合的情况下,针对该碳纤维复合材料的成型品、粘接剂、金属,基于其特性的相对关系性来选择材料的设计、组合,因此即使在开发出具有优异特性的碳纤维复合材料的情况下,也有因所组合使用的其他粘接剂、待接合的金属材料的特性的关系而难以使用该碳纤维复合材料的成型品的情况。

另外,在为了将碳纤维复合材料成型而成为成型品时,为了易于从成型模具中取出成型品,有在成型操作前在成型模具中涂布脱模剂的情况、由脱模膜夹持待成型的材料来进行成型的情况。这样的情况下,从成型模具中取出的成型品的表面上附着有脱模剂、脱模膜成分的一部分。该附着物在后续工序、使用成型品时的加工中,有阻碍利用粘接剂的接合、使接合力下降这样的情况。

此外,后续工序中,在将成型品与其他树脂、纤维增强树脂的成型品或金属介由粘接剂进行接合的情况下,通过由喷砂处理、剥离层(peel ply)等方式对成型品的表面进行磨损,由此来除去脱模剂、脱模膜成分,或实施在表面形成凹凸等预处理。因此,有由加工引起的制造工序的节拍时间增加、加工成本增加等课题。

本发明的目的在于解决上述问题。即,提供碳纤维增强复合材料的成型品,其能够与所组合使用的粘接剂、金属的种类无关地良好地进行粘接,此外即使在粘接后经过长时间后,也能够维持其接合力。

另外,本发明的目的在于提供成型品,即使在成型后不实施花费加工时间的喷砂处理等,也能够由粘接剂进行良好地接合。

用于解决课题的手段

本申请的发明人发现,通过以下的发明可以解决上述课题。

作为碳纤维增强复合材料的成型品,有以下发明。

(1)碳纤维增强复合材料的成型品,其为至少包含碳纤维和树脂组合物的纤维增强复合材料的成型品,其特征在于,前述成型品的表面粗糙度Ra为0.01μm以上且2μm以下,并且,在表面上介由厚度为0.1mm以上且3mm以下的含有环氧化合物的粘接剂层而与金属接合时的拉伸剪切接合强度(F0)为10MPa以上且40MPa以下。

而且,作为碳纤维增强复合材料的成型品的优选方式,有以下发明。

(2)前述碳纤维复合材料的成型品,其中,前述成型品的表面自由能(γTOTAL)为30mJ/m2以上且80mJ/m2以下,构成前述表面自由能(γTOTAL)的表面自由能极性成分(γp)与表面自由能分散成分(γd)之比{γpd}为0以上且1以下。

(3)前述任一项所述的碳纤维复合材料的成型品,其中,利用X射线光电子能谱法测定的前述成型品的表面的氟(F)与碳(C)的原子数之比{F/C}为0以上0.5以下。

(4)前述任一项所述的碳纤维复合材料的成型品,其中,利用X射线光电子能谱法测定的前述成型品的表面的氧(O)与碳(C)的原子数之比{O/C}为0.2以上且1.2以下。

(5)前述任一项所述的碳纤维复合材料的成型品,其中,利用X射线光电子能谱法在成型品的表面测定的窄扫描C1s峰分裂中,归属于C-O及C-N的峰(X)相对主峰(M)的强度比{X/M}为0.4以上且0.8以下。

(6)前述任一项所述的碳纤维复合材料的成型品,其中,利用X射线光电子能谱法在成型品的表面测定的窄扫描C1s峰分裂中,归属于C=O的峰(Y)相对主峰(M)的强度比{Y/M}为0.1以上且0.3以下。

(7)前述任一项所述的碳纤维复合材料的成型品,其中,利用X射线光电子能谱法在成型品的表面测定的窄扫描C1s峰分裂中,归属于C(=O)-O的峰(Z)相对主峰(M)的强度比{Z/M}为0.1以上且0.3以下。

(8)前述任一项所述的碳纤维复合材料的成型品,其中,前述成型品中包含的碳纤维的平均直径为1~20μm、平均长度为10mm以上,碳纤维复合材料中包含的碳纤维的含量为5~75体积%。

(9)前述任一项所述的碳纤维复合材料的成型品,其中,前述碳纤维复合材料的成型品中包含的树脂组合物为含有环氧树脂的热固性树脂组合物。

(10)前述任一项所述的碳纤维复合材料的成型品,其特征在于,在湿热处理后测定的拉伸剪切接合强度(F11)与拉伸剪切接合强度(F0)之比{F11/F0}为0.75以上且1以下。

而且,作为用于制造上述碳纤维复合材料的成型品的优选方法,有以下发明。

(11)碳纤维复合材料的成型品的制造方法,其为将碳纤维复合材料成型来制造前述任一项所述的碳纤维复合材料的成型品的方法,其特征在于,在成型时,使用包含氟元素的脱模剂或包含氟元素的脱模膜。

(12)碳纤维复合材料的成型品的制造方法,其特征在于,在压制成型后,进一步对碳纤维复合材料的表面进行等离子体处理。

发明的效果

对于本发明的碳纤维复合材料的成型品而言,能够与所组合使用的粘接剂、金属的种类无关地良好地进行粘接,进而能够提供即使在粘接后经过长时间后也能维持其接合力的碳纤维增强复合材料的成型品。

如此,能够与所组合使用的粘接剂、金属的种类无关地良好地进行粘接,由此,通过使用本发明的碳纤维复合材料的成型品,例如能够与具有完全不同的力学的特性的材料接合等,在设计最终制品时,能够实现创造出具有以往所不能实现的形状、特性的结构体。

另外,如以往那样将碳纤维复合材料成型时,即使在使用脱模剂、脱模膜等的情况下,由于不需要在接合前进行喷砂处理等需要长处理时间的前处理,因此可有助于低成本化。

附图说明

图1为示出用X射线光电子能谱法测定本发明的碳纤维复合材料的成型品而得的窄扫描C1s峰分裂的图。

具体实施方式

首先,针对碳纤维复合材料进行说明。将碳纤维复合材料成型而成的材料是碳纤维复合材料,将碳纤维复合材料成型为所期望的形态前的材料也是碳纤维复合材料。只是为了区别成型前后的材料,将前者称为碳纤维复合材料的成型品,将后者简称为碳纤维复合材料。

本发明的碳纤维复合材料中,为了呈现其优异的机械特性、其特性的设计的容易性,使用碳纤维是重要的。

碳纤维复合材料至少包含碳纤维和树脂组合物。在树脂组合物中,如果相对于树脂而存在1质量%以上的碳纤维,则该碳纤维与在碳纤维周围形成基体的树脂良好地密合,显示出碳纤维复合材料的优异的力学特性。

作为本发明的碳纤维复合材料中使用的碳纤维,优选使用聚丙烯腈系碳纤维。通过使碳纤维为聚丙烯腈系,在均衡良好地具有比强度、比刚性、轻量性、导电性的同时,能够实现低廉的成本,从该观点考虑是优异的。

对于本发明的碳纤维复合材料及由其而成的成型品中的碳纤维而言,其平均纤维直径优选为1~20μm,进一步优选为3~15μm,最优选为4~10μm。

通过在上述范围内,本发明的碳纤维复合材料的成型品能够显示出优异的力学特性和加工特性。

本发明的碳纤维复合材料及由其而成的成型品中的碳纤维可以是连续纤维也可以是不连续纤维,优选其平均长度为10mm以上且2000mm以下。通过为上述范围,能够赋予优异的比强度、非刚性。

本发明的碳纤维复合材料及由其而成的成型品中,优选包含5~75体积%碳纤维。通过为上述范围,可赋予本发明的碳纤维复合材料优异的成型性,并且可赋予成型品以力学特性。该含量进一步优选为10~65体积%。

对于本发明中的碳纤维复合材料及由其而成的成型品的基体部分而言,为树脂组合物是重要的。通过使树脂组合物包含树脂,可容易地与碳纤维复合化,并且可均衡性良好地维持成型品的比强度及比刚性与制造价格。

作为树脂组合物没有特别限定,例如可使用热固性树脂、热塑性树脂等。

对于用于本发明的碳纤维复合材料的树脂组合物而言,从其力学特性及成型时的加工特性的观点考虑,优选包含热固性树脂。

作为热固性树脂,例如可使用不饱和聚酯树脂、乙烯酯树脂、环氧树脂、酚醛树脂(Resol型)、脲醛·三聚氰胺树脂、聚酰亚胺树脂等,上述树脂的共聚物、改性物、或者将其掺混2种以上而成的树脂等。

其中,为了得到力学特性优异的碳纤维复合材料的成型品,由于树脂与碳纤维易于配合,因此优选环氧树脂。如果使用环氧树脂,则还有易于成型的优点。其中,从经济性、力学特性的均衡性的观点考虑,优选以双酚A型环氧树脂为主成分的环氧树脂。

另外,为了提高耐冲击性,也可以在热固性树脂组合物中添加弹性体或者橡胶成分。

作为这样的碳纤维复合材料的例子,可举出使用织物、单向连续的碳纤维的热固性预浸料、热塑性预浸料、使碳纤维不连续而无规分散的碳纤维增强SMC、碳纤维增强可冲压基材、注射成型中使用的长纤维粒料、短纤维粒料等。

作为本发明的碳纤维复合材料的成型方法,可从树脂传递模塑(RTM)成型法、高压釜成型法、压制成型法、长丝缠绕成型法等中进行适当选择,没有特别限定。

以下,对由上述的本发明中的碳纤维复合材料得到的成型品用于实现高拉伸剪切接合强度和耐久性的优选方式进行说明。

重要的是,本发明中的碳纤维复合材料的成型品的表面粗糙度Ra为0.01μm以上且2μm以下。该成型品的Ra的值越小,对应于成型品的表面越平滑。Ra的值小于0.01μm的情况下,有时该成型品的操作性显著下降。另一方面,在成型品的Ra大于2μm的情况下,碳纤维暴露于材料表面、或材料表面劣化,强度下降等,有表面容易破坏的情况。

为了得到Ra为0.01~2μm的碳纤维复合材料的成型品,重要的是,碳纤维在树脂组合物中均匀地分散、在成型时与树脂组合物接触的模具、膜使用平滑性高的材料、原材料,适当地调节与模具的密合性、脱模性。

例如,将使热固性树脂含浸于碳纤维而得的预浸料进行压制成型而将碳纤维复合材料制为成型品的情况下,通过在该预浸料与加压装置的模具之间使用表面粗糙度小的膜、通过降低加工时温度,结果,使膜表面的凹凸变得难以转印,由此得到所期望的表面粗糙度Ra。

进一步地,对碳纤维复合材料的成型品以下述条件施加大气压等离子体处理,从而即使在成型时使用脱模剂、脱模膜等的情况下,也能够在将Ra的值保持在上述范围内的同时,在短时间内赋予与其他部件的良好的粘接接合性。

大气压等离子体处理条件的一个例子:

等离子体喷嘴转速1000~3000rpm

等离子体喷嘴的背压40~60mbar

来自等离子体喷嘴的气体的流量Q35~55L/分钟

等离子体的功率Pp:400~490W

使用气体:空气、氧或氮

处理速度(处理时的等离子体喷嘴的移动速度):1m/分钟~10m/分钟

处理距离(等离子体喷嘴最前端与被处理的材料的距离):1mm~30mm。

本发明中,在进行大气压等离子体处理的情况下,根据由使等离子体产生的电压值与电流值确定的功率Pp(等离子体功率)和每单位时间流入的气体的流量Q,优选由下式定义的等离子体密度Pd为7.2~14。

Pd=Pp/Q。

本发明中的碳纤维复合材料的成型品的表面粗糙度RSm优选为0.01μm以上250μm以下。这是由于,通过在该范围,在尽可能使材料表面的碳纤维暴露的情况减少的同时,使材料表面的微细的凹凸与粘接剂组合,显示出锚固效果,由此能够提高粘接接合性。

另外,对于本发明的碳纤维复合材料的成型品而言,重要的是,在其表面上介由厚度为0.1mm以上且3mm以下的含有环氧化合物的粘接剂使金属接合时的拉伸剪切接合强度为10MPa以上且40MPa以下。

在形成于本发明的碳纤维复合材料的成型品的表面的粘接剂的厚度小于0.1mm的情况下,在碳纤维复合材料的成型品和金属受到由热引起的应变的情况下,存在无法缓和其膨胀度之差、发生剥离的情况。另一方面,在该粘接剂层的厚度大于3mm的情况下,剪切应力下降,有时作为接合体对于从外部施加的力变得不稳定。

从粘接强度及生产率的观点考虑,形成于本发明的碳纤维复合材料的成型品的表面的粘接剂的厚度优选为0.2mm~2.5mm,进一步优选为0.3mm~2mm。

例如,为了使粘接剂的层厚度在上述范围内,例如,在本发明的碳纤维复合材料的成型品和金属中的任一个或两者的面上涂布粘接剂并使其粘合时,在添加具有相当于所期望的厚度的粒径的玻璃制珠粒、或设置具有相当于所期望的厚度的直径的金属制丝线后,用夹子夹住接合处的成型品和金属、或固定任一者,并从夹着粘接剂的另一方的材料的表面向另一侧施加压力来固定的方法。

对于本发明的碳纤维复合材料的成型品而言,重要的是,在其表面上介由含有环氧化合物的粘接剂而使金属接合时的拉伸剪切接合强度为10MPa以上且40MPa以下。本发明中使用的粘接剂含有环氧化合物的重要的。所谓环氧化合物,是具有环氧基的化合物。通过含有环氧化合物,其环氧基与存在于成型品的表面的官能团进行化学反应,可以通过由反应产生的化学相互作用而赋予良好的粘接性和优异的拉伸剪切接合强度。

对于本发明的碳纤维复合材料的成型品而言,在其表面上介由含有环氧化合物的粘接剂而使金属接合时的拉伸剪切接合强度小于10MPa的情况下,由于粘接接合力弱,因此用于汽车、航空器、建筑等结构部件的接合的实用性变低。

另一方面,拉伸剪切接合强度大于40MPa的情况下,本发明的碳纤维复合材料的成型品与金属因热而产生应变时,粘接层无法追随其变形,接合体有时受到破坏。

从接合体的实质的强度和由热引起的变形时的耐久性的观点考虑,拉伸剪切接合强度优选为15MPa~35MPa,更优选为20~30MPa。

为了使本发明的碳纤维复合材料的成型品与金属粘接接合而成的试验体的拉伸剪切接合强度成为10~40MPa,重要的是,使用粘接剂中具有更多的环氧基的粘接剂,将粘接剂均匀地涂布在粘接面整面上,在涂布前先将粘接剂充分地脱泡,以使所涂布的粘接剂中不产生孔隙、气泡。这是因为,粘接剂中的环氧基变得越多,与存在于本发明的碳纤维复合材料的成型品的表面的官能团的化学相互作用变得越强,粘接剂中的孔隙、气泡越少,粘接剂层自身的剪切强度变得越高。

本发明的碳纤维复合材料的成型品的表面自由能(γTOTAL)优选为30mJJ/m2以上80mJ/m2以下。更优选为35~75mJ/m2。通过使表面自由能为30~80mJ/m2,可对本发明的成型品的表面赋予良好的粘接活性,因此优选。

本发明的成型品的表面自由能越高,上述特性越倾向于优异,因此优选。然而,如果表面自由能过高,则有材料的表面变脆的情况、其活性无法长期持续,在粘接剂涂布时有无法显示出良好的粘接性的可能性。

对于碳纤维复合材料的成型品的表面自由能而言,可通过在成型时使用的脱模剂、脱模膜、成型后的表面处理来进行控制。脱模剂、脱模膜中所含的氟元素的含量越少,表面自由能变得越大。另外,通过对成型后的碳纤维复合材料的表面施加大气压等离子体处理,可以使表面自由能变高。

表面自由能(γTOTAL)可通过用作形成碳纤维复合材料的基体树脂的树脂而变化,该树脂为如环氧树脂、聚苯硫醚树脂、聚丙烯树脂、乙烯酯树脂、不饱和聚酯树脂、氰酸酯树脂等。

本发明的碳纤维复合材料的成型品的表面自由能极性成分(γp)与表面自由能分散成分(γd)之比{γpd}优选为0以上且1以下,更优选为0.1~1,进一步优选为0.2~1,最优选为0.3~1。通过使表面自由能分散成分与表面自由能极性成分之比为上述范围内,可对本发明的成型品的表面赋予良好的与粘接剂的反应性。而且,同时,可良好地保持本发明的成型品表面的强度。其结果,在从外部对与金属的接合体施加冲击时,使得不易发生在粘接剂与成型品之间的界面的剥离破坏、碳纤维复合材料的成型品自身的表面附近不易破坏。

对于表面自由能极性成分(γp),可利用在成型时使用的脱模剂、脱模膜、成型后的表面处理进行控制。例如,在对成型后的碳纤维复合材料的成型品的表面进行大气压等离子体处理时,可通过所使用的气体的种类、处理时的等离子体喷嘴与成型品间的距离、处理速度来对导入到成型品表面的官能团的种类、量进行调节,从而进行控制。

对于本发明的碳纤维复合材料的成型品的表面而言,利用X射线光电子能谱法测定的碳纤维复合材料的成型品的表面的氟(F)与碳(C)的原子数之比{F/C}优选为0以上0.5以下。更优选为0~0.4,进一步优选为0~0.3,最优选为0~0.2。

本发明的成型品的表面的氟浓度越低,则可赋予越高的粘接性。这是因为氟元素阻碍粘接剂的环氧基与本发明的碳纤维复合材料的成型品的表面的化学相互作用。

氟浓度可利用在成型时使用的脱模剂、脱模膜、在成型后本发明的成型品的表面处理来进行控制。可通过利用氟元素的含量少的脱模剂、脱模膜的成型、在成型后对碳纤维复合材料的表面施加大气压等离子体处理,使氟元素的浓度降低。

在成型中,如果使用包含氟的脱模剂、脱模膜,则上述比例实际上可以为0.1以上且3.0以下。

对于本发明的碳纤维复合材料的成型品的表面而言,利用X射线光电子能谱法测定的碳纤维复合材料的成型品的表面的氧(O)与碳(C)的原子数之比{O/C}优选为0.2以上且1.2以下。更优选为0.2~1.0,最优选为0.2~0.8。

本发明的成型品的表面的氧浓度越高,则越能够赋予高粘接性。这是因为,包含氧元素的官能团大量存在于碳纤维复合材料的成型品的表面,变得易于与粘接剂的环氧基形成化学相互作用。

{O/C}的值大于1.2的情况下,成型品的表面会与空气中的水蒸气等进行反应,因此实质上难以在{O/C}较大的状态下进行保管。

表面的氧(O)与碳(C)的原子数之比可通过在成型后对其表面进行处理而控制。例如,通过对得到的成型品的表面进行大气压等离子体处理,可对本发明的碳纤维复合材料的成型品的表面导入更多的氧元素。为了控制导入的氧元素的量,可举出:使照射大气压等离子体的喷嘴与成型品的距离变短而进行处理、使处理速度变慢的方法。此外,可代替干燥空气将氧气、氮气用作在等离子体照射时导入到等离子体发生喷嘴的气体,进而通过调节它们的气体浓度、混合比、流量(L/分钟),从而提高成型品的表面的氧浓度。

对于本发明的碳纤维复合材料的成型品而言,将其表面利用X射线光电子能谱法进行测定,在对其窄扫描C1s的数据进行峰分裂的情况下,归属于C-O及C-N的峰(X)相对于在284.6eV附近观测到的峰面积最大的主峰(M)(归属于CHx、C-C键)的面积比{X/M}优选为0.4以上0.8以下。进一步优选为0.6~0.8。

对于本发明的成型品而言,将其表面利用X射线光电子能谱法进行测定,在对其窄扫描C1s的数据进行峰分裂的情况下,归属于C=O的峰(Y)相对于峰面积最大的主峰(M)的强度比{Y/M}优选为0.1以上且0.3以下。进一步优选为0.15~0.3。

对于本发明的成型品而言,将其表面利用X射线光电子能谱法进行测定,在对其窄扫描C1s的数据进行峰分裂的情况下,归属于C(=O)-O的峰(Z)相对于峰面积最大的主峰(M)的强度比{Z/M}优选为0.1以上且0.3以下。进一步优选为0.15~0.3。

针对存在于本发明的成型品的表面的官能团,在C-O、C-N、C=O、C(=O)-O这样的官能团较多的情况下,可与粘接剂中的环氧基进行化学相互作用的点增加,可在碳纤维复合材料与粘接剂间赋予良好的粘接强度。在这些当中,最优选与环氧基的反应性高的C=O的峰强度高。

对于本发明的成型品的表面的官能团的种类,可利用碳纤维复合材料中包含的树脂组合物的种类、成型后的表面处理进行控制。例如,对于树脂组合物,使用在树脂的化学结构中包含许多C-O、C-N、C=O、C(=O)-O这样的成分的树脂、在将成型后的表面进行大气压等离子体处理时,通过提高产生等离子体的气氛的氧的浓度,从而可调节上述官能团的浓度。

对于本发明的碳纤维复合材料的成型品而言,在其表面介由含有环氧化合物的粘接剂层而使金属接合的接合体的拉伸剪切接合强度(F0)、和在湿热处理后测定同样地准备的接合体的拉伸剪切接合强度(F11)之比{F11/F0}优选为0.75以上且1以下。进一步优选为0.80~1,最优选为0.85~1。

通过拉伸剪切接合强度之比{F11/F0}为上述范围,在将本发明的成型品与金属介由粘接剂层进行接合而成的接合体用作汽车部件、航空器部件、建筑部件的情况下,可长期保持所期望的接合强度。因此,可对这些最终制品赋予高耐久性、可靠性,从而优选。

对于该拉伸剪切接合强度之比{F11/F0}而言,作为所使用的粘接剂,可通过调节环氧基的含量、吸湿性、耐热性来进行控制。

以下,示出使用压制成型法,将碳纤维预浸料作为成型前的碳纤维复合材料时的成型品的制造方法的一个例子。

例如,将单向预浸料P3842S-20(东丽株式会社制)以碳纤维的方向成为平行(0/0)的构成来进行层叠,在该层叠体的两表面上设置聚丙烯膜(东丽(株)制“TORAYFAN”(注册商标)BO2500厚度50μm,有光泽型),然后,使用加热加压在120℃、压力2MPa下加热加压压缩40分钟,得到厚度约3mm的层叠板。

对于得到的层叠板,使用日本Plasmatreat Co.,Ltd.的等离子体发生装置(发生器FG5001、旋转喷嘴RD1004),将等离子体处理喷嘴与层叠板的距离设为5mm,将处理喷嘴在层叠板上移动的速度设为5m/分钟,以将在常温常湿下在空气中产生的等离子体照射于层叠板的形式实施处理,从而可得到具有本发明的特征的的碳纤维复合材料的成型品。

作为等离子体处理的处理条件,优选等离子体喷嘴转速为1000~3000rpm、等离子体喷嘴的背压为40~60mbar、来自等离子体喷嘴的气体的流量为35~55L/分钟。进一步优选等离子体喷嘴转速为1500~2800rpm、等离子体喷嘴的背压为45~55mbar、来自等离子体喷嘴的气体的流量为40~50L/分钟。通过在该条件下进行处理,可有效且高效地在碳纤维复合材料的成型品的表面导入官能团。

本发明的碳纤维复合材料的成型品可介由粘接剂层而形成与金属的牢固的接合。特别地,在用作最终制品完成后难以分解·修补的汽车、航空器、建筑物的结构部件时,与金属材料的接合性优异,可长期维持其接合强度,因此与以往的碳纤维复合材料的成型品相比,可赋予高的可靠性,因而优选。

实施例

基于实施例对本发明进行说明。以下,将碳纤维复合材料的成型品简称为成型品。

I.特性的测定方法

特性的测定方法如下所述。

1.拉伸剪切接合强度

使用在成型品的粘接面上涂布粘接剂并使金属材料粘接在该处而成的重叠试验片,进行拉伸剪切接合强度测定。利用万能试验机实施拉伸试验,进行重叠试验片破坏时的负荷以及接合部的破坏状态的目视观察。

另外,对于拉伸试验而言,在23℃、50%RH的气氛下将试验机的卡盘间的距离设为115mm来实施。

2.接合部的破坏状态

观察接合部的破坏状态,如下进行分类。在示出结果的表中记载为A、B、C。

A.粘接剂内聚破坏···是指在拉伸剪切试验后,对于已破坏的试验体,粘接剂附着于金属侧和成型品侧这两侧的状态。

B.在成型品与粘接剂的界面处剥离···是指在拉伸剪切试验后,对于已破坏的试验体,粘接剂层全部残留在金属侧、且在碳纤维复合材料侧没有粘接剂附着的状态。

C.在金属与粘接剂的界面处剥离···是指在拉伸剪切试验后,对于已破坏的试验体,粘接剂层全部残留在成型品侧、在金属侧没有粘接剂附着的状态。

3.表面自由能

将想要测定的试验片设置于水平地设置的玻璃板上。使用KRUSS GmbH制全自动手持式接触角计MSA和软件ADVANCE(Ver.1.8),在该试验片上滴加超纯水(“CASRN”:7732-18-5)、二碘甲烷(“CASRN”:75-11-6)各液体各2μL。从滴加起3秒后,从横向侧观察在试验片上形成的液滴,测定试验片与液滴所成的接触角θ。

在接触角θ(°)的算出中,在该试验片上的任意5处实施同样的测定,将除去其最大值、最小值的3处的测定结果的平均值作为该试验体的接触角θ(°)。

使用得到的接触角θ(°),利用Owens-Wendt-Rable-Kaelble法,算出该成型品的表面自由能(γTOTAL)、表面自由能分散成分(γd)、表面自由能极性成分(γp)。

超纯水的接触角的测定条件如下所述。

接触角测定气氛温度:20℃

在算出表面自由能时使用的超纯水的表面张力数据:72.8mN/m(极性51.0mN/m、分散21.8mN/m)(引用文献:J.Colloid Interface Sci,127,1989,189-204,作者姓名:Janczuk,B.)。

二碘甲烷的接触角测定条件如下所述。

接触角测定气氛温度:25℃

在算出表面自由能时使用的二碘甲烷的表面张力数据:50.8mN/m(极性0mN/m、分散50.8mN/m)(引用文献:J.Colloid Interface Sci,119,1987,352-361,作者姓名:Strom.G.)。

4.X射线光电子能谱法测定

使用PHI社制光电子能谱装置(型号Quantera SHM),将本发明的成型品的小片排列于样品支撑台。将样品腔室内保持在1×108Torr,以碳元素(C1s)为对象,实施在下述条件下扫描全能量范围而高灵敏度地进行元素的检测的定性分析(宽扫描分析),及在高能分解条件下扫描狭窄范围的能量范围的高分辨率分析(窄扫描分析)。然后,实施数据处理·解析。针对各个分析,在0~1100eV、278~298eV的范围内绘出直线基线,从而算出各峰的面积强度。

关于C1s的窄扫描分析,如图1所示,以使284.61eV附近的峰成为CHx、C-C、C=C键的峰、286.34eV附近的峰成为C-O或C-N键的峰、287.66eV附近的峰成为C=O键的峰、289.01eV附近的峰成为O=C-O键的峰、290.80eV附近的峰成为π-π*伴峰、O-C(=O)-O键的峰的方式进行分割后,算出各自的峰面积。

将由宽扫描分析得到的元素的原子数比(atomic%)作为相应的元素在该成型品的表面的原子数。另外,利用窄扫描分析得到的C-O及C-N键的峰的强度设为X,将CHx、C-C、C=C键的峰的强度设为M,将C=O键的峰的强度设为Y,将O=C-O键的峰的强度设为Z。

测定条件如下所述。

激发X射线:monochromatic(单色)Al Kα1,2线(1486.6eV)

X射线直径:200μm

光电子检测角度:45°(检测器相对于样品表面的倾斜度)

X射线功率:15kV、45W。

数据处理如下所述。

平滑化:9点平滑(9-point smoothing)

横轴校正:将C1s扫描的主峰(M)(CHx、C-C键)设为284.6eV。

5.表面粗糙度Ra

使用触针式表面粗糙度计在下述条件下测定成型品的中心线平均粗糙度Ra。在与成型品的碳纤维成直角的方向上扫描20次而进行测定,将得到的结果的平均值设为本发明中的平均粗糙度Ra。

测定装置:小坂研究所制高精度薄膜阶差测定器ET-10

触针前端半径:0.5μm

触针负荷:5mg

测定长度:1mm

截止值:0.08mm

测定环境:温度23℃湿度65%RH。

6.10点平均粗糙度Rz及粗糙度曲线要素的平均长度RSm

使用小坂研究所的三维微细形状测定器(型号ET-350K)及三维表面粗糙度解析系统(型号TDA-22)而测定表面粗糙度Rz(10点平均粗糙度)、及粗糙度曲线要素的平均长度RSm。条件如下所述,取20次测定的平均值作为各自的值。

触针直径:2μm

触针的负荷:0.04mN

纵向倍率:5万倍

截止:0.5mm

进给间距:5μm

测定长度:0.5mm

测定面积:0.2mm2

测定速度:0.1mm/秒。

7.粘接剂涂布前的材料表面处理所花费的前处理时间。

对于成型品成型后、从模具等脱模后,在涂布粘接剂前实施的成型品的表面加工所花费的处理时间,从生产工序的节拍时间的观点考虑,以下述基准进行评价。

将为了对宽度25mm、长度100mm的试验体的表面进行均匀地处理所需的时间如下进行分类。

处理时间为1分钟以下:A

处理时间超过1分钟:B。

8.耐久性试验

使用高度加速寿命试验器(ESPEC Corporation制LIGHT SPEC恒温恒湿器LHU-114型),将由粘接剂接合的重叠试验片在85℃、95%RH的气氛的湿热下放置30天后,自然冷却,在标准状态(23±2℃、50±5%RH)下放置24小时。对该接合试验体进行20次与前述相同条件下的拉伸试验,求出其破坏时的负荷的平均值(F11)。由得到的负荷的平均值(F11)和F0,由下式求出强度保持率F11/F0

强度保持率(%)=(F11/F0)×100。

9.综合评价

根据以下基准进行评价。需要说明的是,所谓“接合强度在规定内”是指“拉伸剪切接合强度(F0)为10MPa以上且40MPa以下”。

接合强度在规定外的情况:不良

前处理时间超过1分钟的情况:不良

接合强度在规定内的情况,且处理1分钟以内,并且F11/F0大于0.8的情况:优秀

接合强度在规定内的情况,且处理1分钟以内,并且F11/F0大于0.75且在0.8以下的情况:良好

接合强度在规定内的情况,且处理1分钟以内,并且F11/F0大于0.6且在0.75以下的情况:普通。

II.实施例、比较例中的成型品及其中使用的材料

<成型品1>

使纤维方向全部一致地层叠16片单向性碳纤维预浸料(东丽(株)制P3832S-20),在该层叠体的两表面设置聚丙烯膜(东丽(株)制“TORAYFAN”(注册商标)BO2500厚度50μm、有光泽型)后,利用压制成型法得到平均厚度为3mm的成型品1。将使用该成型品1的后述的各实施例中的表面自由能、表面自由能分散成分、表面自由能极性成分,利用X射线光电子能谱法的测定结果以及解析结果示于表中。之后,将各成型品切削加工成45mm×10mm的矩形片。

<成型品2>

成型品1的制作中,使用氟树脂膜(AGC(株)制“AFLEX”(注册商标)25MW 1080NT)代替聚丙烯膜,除此以外,同样地成型而得到成型品2。将使用该成型品2的后述的各实施例中的表面自由能、表面自由能分散成分、表面自由能极性成分,利用X射线光电子能谱法的测定结果以及解析结果示于表中。

之后,将各成型品切削加工成45mm×10mm的矩形片。

<粘接剂1>

使用3M公司制的二液固化型环氧系粘接剂[“AutomixTM(注册商标)Panel bond8115],使用专用的手喷枪(3M公司制Automix Handgun 8117)和专用的混合喷嘴(3M公司制Automix混合喷嘴8193),在试验片上进行涂布。需要说明的是,为了控制粘接面积,使用遮蔽纸,以使粘接剂不会附着在所期望的面积以上。需要说明的是,粘接剂层厚度用φ0.5±0.1mm的玻璃珠进行调节。

<粘接剂2>

使用LORD公司制二液固化型氨基甲酸酯系粘接剂[“LORD”(注册商标)7545-A/D](A为主要材料,D为固化剂),使用手喷枪和专用的混合喷嘴,在试验片上进行涂布。需要说明的是,为了控制粘接面积,使用遮蔽纸,以使粘接剂不会附着在所期望的面积以上。需要说明的是,粘接剂层厚度用φ0.5±0.1mm的玻璃珠进行调节。

<金属1>

用激光将铁(等级SPCC-SD)(厚度1.5mm)切削加工成45mm×10mm的矩形片后,用丙酮对矩形片的表面进行脱脂后使用。

<成型品3>

成型品1的制作中,使用聚-4-甲基-1-戊烯膜(Mitsui Chemicals Tohcello,Inc.制“Opulent”(注册商标)X88B)代替聚丙烯膜,除此以外,同样地进行成型而得到成型品3。使用该成型品3的后述的各实施例中的表面自由能、表面自由能分散成分、表面自由能极性成分,利用X射线光电子能谱法的测定结果以及解析结果示于表1。

之后,将各成型品切削加工成45mm×10mm的矩形片。

<成型品4>

成型品1的制作中,使用聚-4-甲基-1-戊烯膜(Mitsui Chemicals Tohcello,Inc.制“Opulent”(注册商标)X44B)代替聚丙烯膜,除此以外,同样地进行成型而得到成型品4。使用该成型品4的后述的各实施例中的表面自由能、表面自由能分散成分、表面自由能极性成分,利用X射线光电子能谱法的测定结果以及解析结果示于表中。

之后,将各成型品切削加工成45mm×10mm的矩形片。

<成型品5>

成型品1的制作中,使用环烯烃聚合物膜(日本Zeon Corporation制“ZeonorFilm”(注册商标)ZF16-050)代替聚丙烯膜,除此以外,同样地进行成型而得到成型品5。使用该成型品5的后述的各实施例中的表面自由能、表面自由能分散成分、表面自由能极性成分,利用X射线光电子能谱法的测定结果以及解析结果示于表1。

之后,将各成型品切削加工成45mm×10mm的矩形片。

III.实施例、比较例

(实施例1)

对成型品1的矩形片的表面施加大气压等离子体处理。对于大气压等离子体处理而言,使用日本Plasmatreat Co.,Ltd.的等离子体发生装置(发生器FG5001、旋转喷嘴RD1004),将等离子体处理喷嘴与成型品的距离设为5mm,将处理喷嘴在成型品1上移动的速度设为5m/分钟,在等离子体喷嘴的转速1600RPM、导入至处理喷嘴的空气流量45L/分钟、升压后的瓦特数433W的条件下以在常温常湿下、在空气中产生的等离子体照射于碳纤维复合材料1的形式实施处理。

该等离子体处理后的成型品1的表面自由能、表面自由能分散成分、表面自由能极性成分,利用X射线光电子能谱法的测定以及解析结果示于表中。

在从处理起30分钟以内,在成型品1的经等离子体处理的面上涂布粘接剂1,与金属1接合,制作ISO 19095-2(2015)中记载的重叠试验片类型B(粘接厚度:0.5mm)。

重叠试验片制作时,对于涂布的粘接剂而言,通过在热风烘箱内,在干燥空气气氛下,在60℃下静置5小时,使粘接剂完全固化,制作成型品与金属的重叠试验片。该试验片在25℃、50%RH气氛下保管。

在从该重叠试验片制作起1周以内,使用ISO 19095-3(2015)中记载的拉伸剪切粘接强度评价用装置的试验片保持器,在室温25℃下,以试验速度5mm/分钟实施拉伸试验。拉伸试验机使用INSTRON社制万能试验机5969,以n数为3进行评价,将其平均值设为拉伸剪切接合强度(F0)。

另外,制作重叠试验片后,以上述耐久性试验中所述的方法制作样品后,使用ISO19095-3(2015)中记载的试验片保持器,在室温25℃下,以试验速度5mm/分钟实施拉伸试验。拉伸试验机使用INSTRON社制万能试验机5969,以n数为3进行评价、将其平均值设为拉伸剪切接合强度(F11)。

将得到的重叠试验片的评价结果示于表中。

(实施例2)

实施例1中,使用成型品2来代替成型品1,除此以外,将与实施例1在同样的条件下实施的情况作为实施例2。

(实施例3)

在成型品1的表面的任一面上涂布粘接剂1,与金属1接合,制作ISO 19095-2(2015)中记载的重叠试验片(粘接厚度:0.5mm)。

在从该重叠试验片制作起1周以内,使用ISO 19095-3(2015)中记载的试验片保持器,在室温25℃下,以试验速度5mm/分钟实施拉伸试验。拉伸试验机使用INSTRON社制万能试验机5969,以n数为3进行评价、将其平均值设为拉伸剪切接合强度(F0)。

另外,制作重叠试验片后,进行湿热处理,然后使用ISO 19095-3(2015)中记载的试验片保持器,在室温25℃下,以试验速度5mm/分钟实施拉伸试验。拉伸试验机使用INSTRON社制万能试验机5969,以n数为3进行评价,将其平均值设为拉伸剪切接合强度(F11)。

将得到的重叠试验片的评价结果示于表1。

(实施例4)

实施例1中,使用成型品3代替成型品1,除此以外,将与实施例1在同样的条件下实施的情况作为实施例4。

(实施例5)

实施例1中,使用成型品4代替成型品1,除此以外,将与实施例1在同样的条件下实施的情况作为实施例5。

(实施例6)

实施例1中,使用成型品5代替成型品1,除此以外,将与实施例1在同样的条件下实施的情况作为实施例6。

(实施例7)

实施例1中,使导入至处理喷嘴的气体不是空气而是氧70体积%、空气30体积%的混合气体,将流量设为45L/分钟,使用在常温常湿下产生的等离子体、并在将成型品切削加工成45mm×10mm的矩形片后实施利用丙酮的脱脂之后使用,除此以外,将与实施例1在同样的条件下实施的情况作为实施例7。

(实施例8)

实施例1中,使导入至处理喷嘴的气体不是空气而是氮70体积%、空气30体积%的混合气体,将流量设为45L/分钟,使用在常温常湿下产生的等离子体、并在将成型品切削加工成45mm×10mm的矩形片后实施利用丙酮的脱脂之后使用,除此以外,将与实施例1在同样的条件下实施的情况作为实施例8。

(实施例9)

在成型品2的成型时,不是在层叠体的两表面设置“AFLEX”(注册商标)25MW1080NT),而是将Neos株式会社制“Frelease”(注册商标)65以蒸馏水稀释5倍并喷雾在加压装置的模具的表面而成型、并在将成型品切削加工成45mm×10mm的矩形片后,实施利用丙酮的脱脂之后使用,除此以外,将在与实施例2同样的条件下实施的情况作为实施例9。

(实施例10)

在成型品2的成型时,不是在层叠体的两表面设置“AFLEX”(注册商标)25MW1080NT),而是将Daikin工业株式会社制“DAIFREE”(注册商标)GW-251以蒸馏水稀释5倍并喷雾在加压装置的模具的表面而成型、并在将成型品切削加工成45mm×10mm的矩形片后实施利用丙酮的脱脂之后使用,除此以外,将在与实施例2同样的条件下实施的情况作为实施例10。

(实施例11)

使用LORD公司制二液氨基甲酸酯粘接剂LORD 7545的粘接剂2来代替使用粘接剂1、并在将成型品切削加工成45mm×10mm的矩形片后实施利用丙酮的脱脂之后使用,除此以外,将在与实施例2同样的条件下实施的情况作为实施例11。

(比较例1)

实施例1中,使用成型品2来代替成型品1,除此以外,将与实施例1在同样的条件下实施的情况作为比较例1。

(比较例2)

使纤维方向全部一致地层叠16片单向性碳纤维预浸料(东丽(株)制P3832S-20),在该层叠体的两表面上设置聚乙烯醇膜(Kuraray Co.,Ltd.制“POVAL”(注册商标)膜#4000),然后利用压制成型法得到平均厚度为3mm的成型品,但在压制成型后无法将聚乙烯醇膜从成型体剥离,因此不能制作试验片。

[表1]

【表1】

[表2]

【表2】

[表3]

【表3】

产业上的可利用性

对于本发明的碳纤维复合材料的成型品而言,与以往的碳纤维复合材料相比,粘接性和粘接性的长期稳定性优异,因此在具有需要利用粘接剂来与金属接合的部位的汽车、航空器、建筑领域中是特别有用的。特别是在汽车车体的车盖、车门等嵌板结构等中,适合将金属材料的外部部件和内部部件接合成接合结构。此外,例如,由于可通过改变与碳纤维组合的树脂组合物而自由地调节粘接性以外的特性,因此可拓展广泛的用途。

20页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:模具

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!