熔接装置

文档序号:1642755 发布日期:2019-12-20 浏览:17次 >En<

阅读说明:本技术 熔接装置 (Welding device ) 是由 山浦诚司 小岛浩教 于 2018-11-28 设计创作,主要内容包括:本发明提供一种装置(1),该装置(1)具有:一对模具(10a)和模具(10b),其夹持多个薄膜状构件相叠合的部分并进行加热,从而进行熔接;一对加热块(20a)和加热块(20b),其分别支承一对模具;多个第1支承块(37),其借助在中途包含阻碍热传递的部分的多个棒状构件(50)连接于一个加热块(20a);多个第2支承块(38),其借助多个棒状构件(50)连接于另一个加热块(20b);以及驱动机构(60),其借助这些支承块以使一对模具的间隔可变的方式来夹持薄膜状构件。多个第1支承块包含至少1个能够移动的支承块(39),该能够移动的支承块(39)包含与作为支承对象的加热块的第1方向上的热变形对应地相对于驱动机构在第1方向上移动的机构(35),多个第2支承块包含至少1个能够移动的支承块(39)。(The invention provides a device (1), the device (1) comprising: a pair of molds (10a, 10b) for holding and heating the overlapped portions of the plurality of film-shaped members to weld the film-shaped members; a pair of heating blocks (20a, 20b) for supporting the pair of molds; a plurality of 1 st support blocks (37) connected to one heating block (20a) via a plurality of rod-shaped members (50) including portions that inhibit heat transfer in the middle; a plurality of No. 2 support blocks (38) connected to another heating block (20b) via a plurality of rod-shaped members (50); and a drive mechanism (60) for holding the film-like member by the support blocks so that the distance between the pair of molds can be changed. The plurality of 1 st support blocks include at least 1 movable support block (39), the movable support block (39) includes a mechanism (35) that moves in the 1 st direction relative to the drive mechanism in accordance with thermal deformation in the 1 st direction of the heating block to be supported, and the plurality of 2 nd support blocks include at least 1 movable support block (39).)

熔接装置

技术领域

本发明涉及一种对薄膜状构件进行熔接的装置。

背景技术

日本特开2011-181390号公报中记载有提供一种能够精度良好地维持压力和温度分布这两者的熔接装置。该文献所公开的装置具有:一对模具,其对多个薄膜状构件相叠合的部分中的至少一部分进行熔接;以及一对支承单元,其分别支承一对模具。支承单元分别包含加热块和支承块,该加热块为金属制且内置有加热器,在一侧安装有各模具,该支承块经由多个棒状构件与加热块连结。棒状构件分别由金属制成,其中途变细,且棒状构件相互隔开间隔地配置。

发明内容

提供一种将由金属层(金属箔、金属薄膜)和树脂层层叠而成的薄膜状的构件(层压薄膜)用于电池壳的电池。在制造该层压型电池的过程中,将两张薄膜状构件(层压薄膜)以彼此的树脂层成为内侧的方式重叠,在薄膜状构件的周围对彼此的树脂层进行热熔接,由此将两张薄膜状构件接合(粘接)起来,从而制造出电池壳。

近年来,正在谋求电池的大容量、大型化,电池壳也不断变大。并且,对于在将层压薄膜熔接而制造电池壳时的熔接部的加热精度(热输入的精度)的要求较严格。因此,对于为了熔接而夹持薄膜状构件的一对模具,期望的是:该一对模具与大型化对应地变长,且能够维持由翘曲等引起的变形较小、精度较高的形状。

本发明的一技术方案提供一种装置(熔接装置),其对多个薄膜状构件进行熔接,其中,该装置具有:一对模具,其分别沿第1方向延伸,该一对模具夹持多个薄膜状构件相叠合的部分并进行加热而对叠合的部分中的至少一部分进行熔接;以及一对加热块,其分别支承一对模具,且分别沿第1方向延伸。该装置还具有:多个第1支承块,其在第1方向上分散地配置,且借助多个棒状构件连接于一对加热块中的一个加热块;以及多个第2支承块,其在第1方向上分散地配置,且借助多个棒状构件连接于一对加热块中的另一个加热块。各个棒状构件沿与第1方向正交的方向延伸,且在中途包含阻碍热传递的部分、例如中途变细的部分。该装置还具有驱动机构,该驱动机构借助多个第1支承块和多个第2支承块以使一对模具的间隔可变的方式来夹持薄膜状构件,多个第1支承块包含至少1个能够移动的支承块,该能够移动的支承块包含与作为支承对象的加热块的第1方向上的热变形对应地相对于所述驱动机构在所述第1方向上移动的机构,多个第2支承块包含至少1个能够同样地移动的支承块。

对沿第1方向延伸的一对模具的形状精度进行保持的1个方法是,利用沿第1方向延伸的其它刚性较高的支承块来沿着第1方向支承模具。然而,若为该方式,则模具会变长,从而用于进行支承的支承块也变长,即使阻碍了成为高温的模具与支承块之间的热传递,但由于长时间地使用模具,支承块的温度也会上升。因此,本申请的发明人们发现了:与温度上升相对应的支承块的热变形也变大,其结果,由支承块支承的模具发生变形。

能够导入如下机构、例如滑动机构,在支承块热变形而沿第1方向延伸时,该机构相对于驱动机构在第1方向上移动。然而,当支承块的热变形变得较大时,难以使那样的机构稳定地工作。

因此,在本发明的装置中,通过将多个支承块在第1方向上分散地配置,从而限定加热块与支承块之间的结合部位,并且,借助在中途包含阻碍热传递的部分的棒状构件将各个支承块和加热块连接起来。而且,使多个支承块中的一部分支承块或全部支承块为能够移动的支承块,该能够移动的支承块包含能够与作为支承对象的加热块的第1方向上的热变形相对应地相对于驱动机构在第1方向上移动的机构。能够利用多个支承块来稳定地支承加热块,并且,通过使各个支承块较小且分散开而进一步抑制热的流入,能够抑制热变形。因此,能够提供如下一种装置,能够以简单的结构来设置具有沿第1方向稳定地移动的机构的能够移动的支承块,能够使加热块在第1方向上稳定地延伸。因而,能够提供一种熔接用的装置,其是在第1方向上较长的模具,该模具不易产生翘曲等且能够对作为熔接对象的薄膜状构件更均等地施加压力。

也可以是,多个第1支承块的各个支承块利用配置在分散的3处或4处的多个棒状构件进行连接,多个第2支承块的各个支承块利用配置在分散的3处或4处的多个棒状构件进行连接。也可以是,多个第1支承块由包含能够移动的支承块在内的两个或3个支承块构成,多个第2支承块由包含能够移动的支承块在内的两个或3个支承块构成。

也可以是,一对加热块中的一个加热块的全长Lh和与该加热块相对应的多个支承块、例如多个第1支承块的合计长度Ls满足以下的条件(1):

0.05<Ls/Lh<0.5…(1)。

为了减小热变形(热延伸)的影响,多个支承块的合计长度Ls期望较短。另一方面,当合计长度Ls过短时,难以借助支承块施加压力来使加热块和模具移动。条件(1)的上限可以是0.3,也可以是0.25。条件(1)的下限可以是0.07,也可以是0.1,还可以是0.15。

该装置还具有真空容器,该真空容器内置一对模具、一对加热块、多个第1支承块和多个第2支承块。

附图说明

图1是表示本发明的一个实施方式的熔接装置的俯视图。

图2是表示从前方观察模具和加热块的状态的图。

图3是表示从侧方观察模具、加热块以及支承块的状态的图。

图4是表示从前方观察支承块的状态的图。

具体实施方式

在图1中示出从上方观察熔接装置1的一个例子的情形。该熔接装置1是将两张薄膜状构件(层压薄膜、薄膜)重叠并对一部分进行熔接来制造层压包(日文:ラミネートパック)的装置。

熔接装置1包含:一对模具10a和模具10b,其在第1方向(X方向、长度方向)延伸;一对加热块20a和加热块20b,其分别支承一对模具10a和模具10b;以及多个支承块30,其在第1方向X上分散地配置,并对要经由加热块20a和加热块20b向一对模具10a和模具10b加压的力进行中转。本例子的熔接装置1的支承块30包括左右成对的支承块31a和支承块32a以及左右成对的支承块31b和支承块32b。支承块31a和支承块32a被包含在对一对加热块20a和加热块20b中的一个加热块20a进行支承的多个第1支承块37中。支承块31b和支承块32b被包含在对一对加热块20a和加热块20b中的另一个加热块20b进行支承的多个第2支承块38中。支承块32a和支承块32b是包含在长度方向X上限定的范围内移动的机构(移动机构)35的能够移动的支承块39,为了表示内部结构的概要而以剖面示出。

此外,一对模具10a和模具10b、一对加热块20a和加热块20b、左右成对的支承块31a和支承块32a、以及左右成对的支承块31b和支承块32b分别具有共同的结构,在说明具体的结构或构造之际,参照一个模具10a、一个加热块20a、以及一个支承块31a、一个支承块32a。

熔接装置1还包含多个棒状构件50,该多个棒状构件50以将多个支承块30的各个支承块31a和支承块32a与加热块20a连接起来的方式沿与第1方向(X方向)正交的方向(Y方向)延伸。各个棒状构件50在中途包含阻碍热传递的部分51。利用各个支承块31a和支承块32a并借助在左右上下配置的4个棒状构件50来支承加热块20a。包含阻碍热传递的部分51的棒状构件50的一个例子是中途的阻碍热传递的部分51的面积缩小了的形状的金属制的构件。

更具体而言,本例子的棒状构件50成为将朝向中央的阻碍热传递的部分51变细的两个圆台或两个棱台在中央组合而成的形状。由于截面积变窄的中央(中间)的部分51的截面积缩小(减少),因此,热传递所需的截面积减少,从而该部分51成为阻碍热传递的部分。也可以是,取代减少棒状构件50的中央部分51的截面积而夹入绝热性优异的材料,或者是在减少截面积的同时夹入绝热性优异的材料。对于为单一材料特别是金属制的材料且包含能够阻碍热传递的结构的本例子的棒状构件50,其是结构简单且能够精度良好地传递加压力的构件的较佳的例子。

熔接装置1还包含:真空容器3,其内置有一对模具10a和模具10b、一对加热块20a和加热块20b、以及左右成对的支承块31a和支承块32a、以及左右成对的支承块31b和支承块32b;以及驱动机构60,其借助多个支承块31a、31b、32a、32b以使一对模具10a和模具10b的间隔可变的方式来夹持薄膜状构件。驱动机构60包含:多个轴66,其以经由衬套65贯穿真空容器3的壁的方式配置,且分别与支承块31a~支承块32b相连接;以及一对驱动杆67,其自真空容器3的外侧驱动多个轴66。在本例子中,一个驱动杆67被固定,另一个驱动杆67被液压缸或气缸等加压机构(未图示)推拉,由此,借助支承块31a~支承块32b、一对加热块20a和加热块20b来以使一对模具10a和模具10b的间隔可变的方式夹持作为熔接对象的薄膜并进行加压。轴66也可以是为了提高绝热性而夹入有适当的绝热材料的构造。

驱动机构(驱动装置)60只要是如下构造即可,并不限定于本例子的结构,即,驱动机构(驱动装置)60能够借助多个支承块30使一对模具10a和模具10b相对地移动,并能够控制所述模具10a与模具10b之间的间隙18而对被夹在模具10a与模具10b之间的薄膜状构件进行加压。更具体而言,驱动机构60只要是如下那样的机构即可,即,能够借助针对一侧的加热块20a和模具10a在第1方向(X方向)上分散地配置的多个第1支承块37的各个支承块31a和支承块32a来控制模具10a的位置,且能够借助针对另一侧的加热块20b和模具10b在第1方向(X方向)上分散地配置的多个第2支承块38的各个支承块31b和支承块32b来控制模具10b的位置。

图2示出从前方(Y方向、II方向)观察模具10a和加热块20a的情形。图3示出从侧方(X方向、III方向)观察模具10a和加热块20a利用棒状构件50连接于支承块31a的样子的情形。另外,图4示出从前方(Y方向、IV方向)观察支承块31a的情形。

模具10a安装于加热块20a的前方,如图3的虚线所示,在模具10a与模具10b之间的间隙18中夹持薄膜状构件19相叠合的部分并进行加压和加热,从而对薄膜状构件19进行熔接。与模具10a同样地,加热块20a是沿X方向(第1方向)延伸的、剖面为方形的金属制的构件,加热块20a在中心沿着长度方向X***有加热器22。加热块20a将模具10a加热到熔接所需的温度,并且具有作为散热片的功能和作为对模具10a进行支承的支承构件的功能。模具10a使用在X方向上分散地配置的螺纹件(螺栓)12相对于加热块20a固定,通过夹持垫环(日文:シムリング),能够调整模具10a相对于加热块20a的直线性。

加热块20a在分散在X方向上的左右两处的位置(接触部分、连接部分)25、26连接并支承于包含分散在X方向上的左右两处的支承块31a和支承块32a的多个第1支承块37。支承块31a和支承块32a与驱动机构60、具体而言驱动机构60的轴66相连接。支承块31a和支承块32a被以同步的时刻和力进行移动的轴66加压。因此,借助支承块31a和支承块32a使加热块20a在Y方向上做动作(对加热块20a加压),使被加热块20a加热后的模具10a移动,从而对被夹在模具10a与同该模具10a对峙的模具10b之间的间隙18中的薄膜状构件19进行熔接。

加热块20a和支承块31a、32a利用分别在上下左右配置的4个棒状构件50相连接。棒状构件50包含阻碍热移动的构造51,棒状构件50为能将驱动机构60施加的压力良好地传递至加热块20a、但不易将来自加热块20a的热传递至支承块31a和支承块32a的构造。在本例子的装置1中,加热块20a的X方向上的全长Lh为550mm,支承块31a和支承块32a的X方向上的长度分别为65mm。因而,支承块31a和支承块32a的合计长度Ls为130mm,Ls/Lh为0.24,满足条件(1)。

在该熔接装置1中,加热块20a的全长为550mm,模具10a的全长也与加热块20a大致相同,能够对宽度500mm左右的薄膜状构件19进行熔接。因此,能够利用本装置1对大型的电池组进行熔接,本装置1适合于制造大容量的电池。当加热块20a变长时,在热膨胀(热变形)的作用下,温度上升时的加热块20a的长度方向(X方向、第1方向)上的延伸也变大。因而,若欲利用单个支承块来支承加热块20a,则会因与支承块之间的温度差或热膨胀系数的差而使加热块20a的应力发生变动,从而加热块20a的形状有可能变得不稳定。并且,若为了防止支承块的热变形而利用阻碍热移动的棒状构件50将X方向上较长的支承块和加热块20a连接起来,则支承块的温度变化与加热块20a的温度变化之间的速度差变大,加热块20a的形状难以稳定。

因此,在该熔接装置1中,首先,并不利用支承块支承整个加热块20a,而是将支承块30分散配置,并且,将加热块20a与支承块接触的接触部分25和接触部分26的接触面积限制在能够确保加压力可稳定地传递的程度的最小限度的面积(二维的量)的程度。另外,利用数量有限的棒状构件50、即热的移动量较低的棒状构件50将加热块20a和支承块31a、32a连接起来。由此,能够将从加热块20a向支承块31a和支承块32a流动的热量限制在最小限度,能够抑制加热块20a的接触部分25和接触部分26的温度降低。

在本例子中,将1个支承块31a分散在4处并利用二维地配置的4根棒状构件50将支承块31a与加热块20a连接起来,能够在保持着支承块31a相对于加热块20a的姿势的状态下将压力传递到加热块20a。也可以是,将支承块31a分散于3处并利用二维地配置的3根棒状构件50将支承块31a与加热块20a连接起来。也可以将支承块31a分散在5处以上并利用二维地配置的5根以上的棒状构件50进行连接,但由于增加棒状构件50的数量,容易增加从加热块20a向支承块31a传递的热流量,容易使加热块20a产生温度差,另外,支承块31a自身会变大,支承块31a的温度也容易上升,因此,热引起的变形的可能性变高。

通过使支承块31a和支承块32a为小型,并利用最小限度的棒状构件50将支承块31a和支承块32a与加热块20a连接起来,能够使加热块20a中向支承块31a和支承块32a流出的热量(热流量)较小。因而,能够利用沿加热块20a的长度方向(X方向、第1方向)***的加热器22进行控制,而使加热块20a的长度方向X上的温度分布更恒定(均匀)。因此,能够使加热块20a尽可能均匀地沿长度方向X变形,抑制因温度上升而产生应力,抑制加热块20a因温度上升而翘曲或弯曲或者变形为未预料到的形状。

并且,由于支承块31a和支承块32a在加热块20a的长度方向(X方向)上分散地配置,因此能够缩短各个支承块31a和支承块32a的长度。因此,能够抑制各个支承块31a和支承块32a的因温度而产生的热变形量(热延伸量),在能够维持能利用棒状构件50传递加压力的功能的范围内,不易产生长度方向X上的应力。因而,能够使支承块31a和支承块32a的因温度上升而产生的变形对加热块20a造成的影响为最小限度。

而且,在本例子的熔接装置1中,第1支承块37的一个支承块32a是能够移动的支承块39,在该支承块39安装有能相对于驱动机构60的轴66沿长度方向X移动的机构(移动机构、滑动机构)35。利用该滑动机构35,与加热块20a的长度方向X上的热延伸对应地,支承块32a会相对于轴66自主地沿长度方向X移动。因而,加热块20a以自身能进行热变形而沿长度方向X延伸的方式被支承块31a和支承块32a支承。因此,能够抑制对加热块20a产生的应力,能够使加热块20a更稳定地沿长度方向X均匀地热变形,其结果,即使模具10a的温度变化,也能够维持其直线性。

如上所述,与其他的支承块30同样地,能够移动的支承块39为小型且利用棒状构件50与加热块20a相连接,因此热的流入也较小,因此不易发生热变形。另外,在采用碳素钢等作为加热块20a的情况下,该加热块20a的因热变形而延伸的量预计为数mm左右。因而,通过简单的构造的移动机构35,能够使支承块39能相对于驱动机构60的轴66移动。在本例子中,作为滑动机构35,采用了如下构造:轴66的具有台阶构造的顶端66a***到设于支承块39的具有台阶构造的孔35a中,台阶部分借助具备垫环的垫圈35b沿长度方向X滑动。孔35a成为相对于顶端66a的直径加上了移动量的大小(尺寸、直径)的圆孔或长孔,通过使轴的顶端66a在孔35a内沿长度方向X移动,能够使支承块39相对于轴66沿长度方向X滑动。通过改变兼用作垫环的垫圈35b的厚度或个数,能够自由地调整支承块39相对于轴66的Y方向上的位置,能够经由加热块20a对模具10a的长度方向X上的倾斜进行微调。安装于能够移动的支承块39的机构35并不限定于本例子,机构35只要能够沿长度方向X移动即可,也可以采用滑轨等其他公知的机构。

如此,在熔接装置1中,不抑制加热块20a的变形,而使加热块20a在被加热时在长度方向X上均匀地变形。其结果,能够防止模具10a因温度变化产生翘曲等变形,能够维持直线性。并且,由于能够抑制从加热块20a向支承块31a和支承块32a移动的热量,因此能够抑制加热块20a的长度方向X上的温度分布的变动。因此,能够抑制翘曲等难以控制的变形,加热块20a容易在长度方向X上均匀地变形。在这一点上,也能够防止模具10a因温度变化而产生翘曲。

为了抑制支承块30的热变形,期望的是,支承加热块20a的多个第1支承块37的合计长度、即本例子中的支承块31a和支承块32a的合计长度Ls尽量较短。另一方面,若以精确定位(日文:ピンポイント)对加热块20a施加力,则会导致产生加热块20a歪斜等变形,有可能损害被加热块20a支承的模具10a的直线性。因而,期望的是,多个第1支承块37的各个支承块31a和支承块32a在加热块20a不易因所传递的压力(加压力)而歪斜的程度范围内将来自驱动装置60的力分散地施加于加热块20a。因而,期望的是,支承一个加热块20a的多个第1支承块37所包含的支承块30的数量为两个以上,数量尽可能较少为好,例如为3个以内。

另外,对于将加热块20a与各个支承块31a和支承块32a连接起来的棒状构件50的数量,该数量在能够不使加热块20a倾斜的情况下支承加热块20a且能够传递加压力的范围内也较少为好。因而,期望的是,在棒状构件50能够上下左右分散地二维配置于各个支承块31a和支承块31b的范围内,棒状构件50数量较少,如上述公开那样,相对于每个支承块,期望棒状构件50为4个或3个。

支承加热块20a的多个支承块37所包含的一个支承块32a具备作为能够如上述那样移动的支承块39的功能。支承加热块20a的多个支承块37所包含的另一个支承块31a也可以是能够移动的支承块39,还可以是不包括滑动机构35的、长度方向X上的位置相对于驱动机构60的轴66固定的支承块。

以上,以支承一个加热块20a的第1支承块37为例进行了说明,但在支承另一个加热块20b的第2支承块38中也是同样的,既可以是,多个第2支承块38的各个支承块31b和支承块32b中的一者是能够移动的支承块39,也可以是两者都是能够移动的支承块39。

并且,在该熔接装置1中,模具10a和模具10b、两个加热块20a和加热块20b、多个棒状构件50、支承块31a和支承块31b、支承块32a和支承块32b全部都能够由热膨胀系数较小的金属、例如碳素钢、不锈钢等耐热性金属构成,能够在未夹着树脂、陶瓷、纤维等所谓的绝热材料的情况下支承模具10a和模具10b。因而,能够提供一种不易产生在使用树脂、陶瓷、纤维等所谓的绝热材料时的热膨胀、组装精度、耐久性等的问题的熔接装置1。

另外,以上公开了一种装置1,其对多个薄膜状构件19进行熔接,其中,该装置1具有:一对模具10a和模具10b,其以夹持多个薄膜状构件相叠合的部分并进行加热而对相叠合的部分中的至少一部分进行熔接的方式分别沿第1方向X延伸;一对加热块20a和加热块20b,其以分别支承一对模具的方式分别沿第1方向X延伸;多个支承块30,其在第1方向X上分散地配置,并对要经由加热块向一对模具加压的力进行中转;以及多个棒状构件50,其以将多个支承块中的各个支承块和加热块连接起来的方式沿与第1方向X正交的方向延伸。多个棒状构件50分别在中途包含阻碍热传递的部分51,多个棒状构件配置为在至少3处支承各个支承块30和加热块20a以及各个支承块30和加热块20b。

在该装置1中,通过使支承块30在第1方向X上分散,从而限定加热块20a与支承块30之间的结合部位以及加热块20b与支承块30之间的结合部位,并且,借助在中途包含阻碍热传递的部分的棒状构件50将各个支承块和加热块连接起来。因此,利用多个支承块30,能够极力减少热从加热块20a以及加热块20b向支承块流动,从而使加热块的温度分布均匀,使加热块均匀地产生热变形,能够将加热块支承为因温度变化而在作为长度方向的第1方向X上均匀地延伸。因而,即使温度变化,也能够抑制加热块20a和加热块20b的直线性受损。而且,通过在第1方向X上分散地配置多个支承块30并缩短支承块30的第1方向X上的合计长度Ls,能够极力减小支承块30的热变形对加热块20a和加热块20b的影响。因而,能够提供一种熔接用的装置1,该熔接用的装置1具有在第1方向X上较长的模具10a和模具10b,该模具10a和模具10b不易发生翘曲等且能够对作为熔接对象的薄膜状构件更均等地施加压力。

也可以是,多个支承块30中的至少1个支承块包含机构35,该机构35与加热块20a和加热块20b在第1方向X上的热变形对应地在第1方向X上移动。也可以是,以一个加热块20a为支承对象的多个第1支承块37包括至少一个包含有移动的机构35的能够移动的支承块39,以另一个加热块20b为支承对象的多个第2支承块38也包括至少一个能够移动的支承块39。由于能够在热变形较小的支承块39安装可移动的机构35,因此,支承块39能够以简单的结构针对温度变化稳定地移动,能够可靠地吸收加热块20a和加热块20b的热延伸。因此,能够进一步抑制在加热块20a和加热块20b产生由热变形引起的应力,能够抑制模具10a和模具10b的变形。

与一个加热块对应的多个支承块37和多个支承块38也可以分别由两个或3个支承块30构成。期望的是,分散配置的支承块30的数量较少。另外,各个支承块30也可以利用二维地分散配置的3个或4个棒状构件50与各个作为支承对象的加热块20a或加热块20b相连接。产生热传递的棒状构件50的数量在能够稳定地支承加热块20a和加热块20b的范围内也可以较少。

此外,以上,以与其特定的形态和实施方式相关联地说明了本发明,但但应该理解的是,在不脱离本发明的精神或范围的情况下,能够进行上述以外的各种变更。例如,能够在附带的权利要求书所定义的本发明的范围内将同等的要素替换为具体地图示和记载的要素,特定的特征能够相对于其他特征独立地使用,在某些情况下,要素的特定位置可以相反,也可以设置在中间。

11页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:制造热塑性聚合物复合材料部件的方法,和通过所述方法获得的物体

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!