生物质燃烧气溶胶制备与检测一体装置及其方法

文档序号:1671730 发布日期:2019-12-31 浏览:22次 >En<

阅读说明:本技术 生物质燃烧气溶胶制备与检测一体装置及其方法 (Biomass combustion aerosol preparation and detection integrated device and method thereof ) 是由 程占军 曹聪聪 陈冠益 王静兰 田婧 颜蓓蓓 于 2019-10-21 设计创作,主要内容包括:本发明公开一种生物质燃烧气溶胶制备与检测一体装置,包括依次连接的微型流化床反应器、传输线、以及在线检测装置。所述微型流化床反应器包括热解反应器与热解炉;所述热解反应器装置包括热电偶、导入管、石英砂;所述在线检测装置为光电离在线质谱;所述光电离质谱包括激光解析系统、激光电离器和光能电离器。本发明有利于保留气溶胶颗粒的原始状态,固定式微型流化床反应器由于其具有较高的、稳定的热传导效率,可以实现生物质的快速热解。对研究气溶胶颗粒的形成机理更加有利。(The invention discloses a biomass combustion aerosol preparation and detection integrated device which comprises a micro fluidized bed reactor, a transmission line and an online detection device which are sequentially connected. The miniature fluidized bed reactor comprises a pyrolysis reactor and a pyrolysis furnace; the pyrolysis reactor device comprises a thermocouple, an inlet pipe and quartz sand; the online detection device is a photoionization online mass spectrum; the photoionization mass spectrum comprises a laser desorption system, a laser ionizer and a light energy ionizer. The invention is beneficial to keeping the original state of aerosol particles, and the fixed micro fluidized bed reactor can realize the fast pyrolysis of biomass due to higher and stable heat conduction efficiency. It is more beneficial to research the forming mechanism of aerosol particles.)

生物质燃烧气溶胶制备与检测一体装置及其方法

技术领域

本发明涉及一种生物质燃烧过程中产生的气溶胶产物的制备与在线检测研究领域,特别涉及一种生物质燃烧气溶胶制备与检测一体装置及其方法。

背景技术

森林火灾位居破坏森林的三大自然灾害之首,每年都会给林业生产带来严重损失,影响着森林资源的保护和发展。由于森林火灾突发性强、破坏性大、扑救极为困难等特点,一旦爆发,便会造成重大的人员伤亡、财产损失和环境污染。森林火灾产生的黑炭等气溶胶会对太阳辐射有着较强的吸收,引起空气质量严重下降,从而对气象造成严重影响。随着人类科学技术的发展,为了进一步了解林火的燃烧机理,前人已经做了大量的研究,因其复杂的物理化学燃烧特性,大部分实验和理论研究中使用了大量的假设(如无限快化学反应速率假设、固体热薄型假设以及无限宽假设),主要从宏观层面(空气卷吸和热反馈)进行分析。森林火灾中的可燃物(木头、干草)多属于生物质一类,对生物质燃烧进行机理研究,有助于森林火灾的认识和防控。

气溶胶又称气胶、烟雾质,是指固体或液体微粒均匀地悬浮于气体介质中形成的分散体系。由于粒子比气态分子大而比粗尘颗粒小,因而它们不像气态分子那样服从气体分子运动规律,但也不会像粗尘颗粒那样受地心引力作用而沉降,具有胶体性质,故称为气溶胶。

生物质为固体可燃物,受热后温度升高,达到一定温度时开始发生热解反应并且释放出可燃气体和气溶胶等有害物质。当可燃气体遇到明火或者其温度、浓度等达到自燃临界条件时,热解气体和固体可燃物开始着火。其中,森林火灾过程中伴生的烟尘,包含了大量烟尘气溶胶粒子,气溶胶是由固体或液体小质点分散并悬浮在气体介质中形成的胶体分散体系,又称气体分散体系。据报道,与气溶胶有关的东南亚森林火灾等引发的大气雾霾在南亚每年就可导致50万人寿命缩短。目前,国际上对于生物质燃烧排放物还处于探究阶段,生物质燃烧过程中排放的气态和颗粒态等物质作为污染源之一,对生态环境污染产生重要影响,除了直接排放气态和颗粒态物质外,还会产生次生污染物,生成二次气溶胶。

前人对于生物质燃烧的研究主要集中在火焰形态及热辐射等,很少涉及生物质热解和点火机制,以及气溶胶生成机理进行研究。近年来气溶胶及其气候和环境效应研究已成为当前国际大气化学、燃烧化学研究的热点之一。生物质燃烧作为产生有机气溶胶的主要来源之一,在其中发挥了不可忽视的作用,所以目前对气溶胶产生机理的研究刻不容缓。

通过对生物质热解与燃烧产物的中间体检测,进而了解生物质的燃烧机理与气溶胶产物的有害成分,实现对火灾过程中生物质燃烧从微观层面到宏观层面更全面的认识,进而有效地降低森林火灾发生的可能性。

发明内容

有鉴于此,本发明的目的在于克服现有技术的不足,提供一种生物质燃烧气溶胶制备与检测一体装置及其方法。

本发明为解决现有技术中的部分难题,采用的技术方案是生物质燃烧气溶胶制备与检测一体装置,包括依次连接的微型流化床反应器、传输线、以及在线检测装置。

所述微型流化床反应器包括热解反应器与热解炉;所述热解反应器装置包括热电偶、导入管、石英砂;所述在线检测装置为光电离在线质谱;所述光电离质谱包括激光解析系统、激光电离器和光能电离器。

所述微型流化床反应器采用固定式设计,反应器中放置有定量的石英砂。

热电偶穿过直通时通过氟橡胶圈进行密封,石英砂高于反应器底部3cm,厚度为3mm。

所述传输线外部使用较厚的保温层,内部使用外径3mm铜管保护毛细管,毛细管用不锈钢卡套及石墨垫密封差分。

所述光电离质谱使用两种激光源对气溶胶进行解析与电离。

本发明的第二个技术方案是生物质燃烧气溶胶制备与检测一体装置气溶胶制备方法,实验前,将生物质样品置于热解反应器上半部,同时密封并通入氮气以排除氧气,在进行热解反应时,将生物质导入石英砂,石英砂均匀的温度区间令其热解,得到气溶胶产物。

本发明的第三个技术方案是生物质燃烧气溶胶制备与检测一体装置的大分子的气溶胶的检测方法为:先通过1064nm的激光对其解析,然后使用10.6eV的真空紫外光对其进行电离,产生的离子进入飞行时间质谱分析。

气溶胶产物通过粒径筛分后,被吸入处于280℃温度状态的质谱传输线,经传输线导入光电离质谱在线检测,不同类型的气溶胶根据其特征分别由两种激光电离解析。

检测结果将直接反应在采集软件上。

有益效果

固定式微型流化床反应器的设计适合基础实验研究。由于热解反应器内部体积小,载气流速快,热解气体停留时间较短,可尽量避免热解气溶胶发生二次反应,进而有利于保留气溶胶颗粒的原始状态。

固定式微型流化床反应器由于其具有较高的、稳定的热传导效率,可以实现生物质的快速热解。对研究气溶胶颗粒的形成机理更加有利。

区别于传统的固定床反应器,流化床装置可以实现固体物料的连续输入和输出,结构较为简单,生物质装卸较为容易,石英砂颗粒的相对运动使得床层具有良好的传热性能,床层内部温度均匀,而且也易于控制,反应器的传质传热效率更高,进而有利于生物质在反应器内部充分热解或者燃烧。

在反应结束后,为了对热解气体进行在线研究,通常会将热解得到的气溶胶导入在线检测装置中进行检测,以分析其组成和结构。实验中,为了防止制备的气溶胶在传输过程中冷凝并堵塞管道,该技术采用了新型的外径为6mm加热绳进行加热,区别于传统的加热带,加热绳对细管道的缠绕更加方便,包覆更为紧密,且满足多种接口的需求。同时在与质谱连接过程中,采用了密封式的毛细管设计,可以实现常压到真空系统的密封差分。

本技术对光电离质谱也进行了优化功能设计,在光电离质谱电离时使用两种电离能量,一种为10.6eV的第二激光发射器,另一种为1064nm的第三激光发射器,构成本装置的激光解析系统。

区别于与传统的光电离质谱,本装置的优势在于可以同时测定两种类型的气溶胶,当第一载气通入管和第二载气通入管通入的气体为氮气时,生物质在反应器中发生热解反应时产生的是大质量的含氧化合物,如苯酚及烷基化合物等。当通入的气体为空气时,生物质在反应器中发生的是燃烧反应会产生是大分子的多环芳烃的二次热解产物。

本装置的优势在于可以通过两种电离能电离解析气溶胶,当产生的气溶胶为含氧化合物时,可以使用10.6eV的光源第二激光发射器对分子进行电离;当产生的气溶胶为大分子的颗粒物时,可以使用1064nm的激光第三激光发射器对其进行解析,再用10.6eV的真空紫外光电离。由于本装置可以在线检测两种类型的气溶胶产物,大大提高了生物质燃烧过程中产生的气溶胶机理的研究效率,且适用于基础研究。

附图说明

图1流化床反应器与光电离质谱连接示意图;

图2流化床反应器示意图;

图3光电离质谱示意图;

图4实验装置流程示意图;

图5产物质谱图。

附图标记:固定式微型流化床反应器1、传输线2、在线检测装置3、热解反应器101、第一热电偶102、导入管103、第一载气通入管104、生物质进样装置105、热解炉加热丝106、石英砂107、第二载气通入管108、第二热电偶109、第一真空泵301、第二真空泵302、第三真空泵303、气溶胶导入口304、第一激光发射器305、第二激光发射器306、第三激光发射器307。

具体实施方式

下面结合附图,通过实施例对本发明作进一步地描述。

参见图1,一种生物质燃烧气溶胶产物的制备与检测装置,包括依次连接的固定式微型流化床反应器1、传输线2,以及在线检测装置3。

参见图2、4,固定床微型流化床反应器1采用固定式设计,在流化床反应器中放置第一热电偶102与第二热电偶109实时检测生物质反应温度。

所述固定式微型流化床反应器1包括热解反应器101与热解炉;所述热解反应器101包括第一热电偶102、导入管103、石英砂107;所述在线检测装置3为光电离在线质谱;所述光电离质谱包括激光解析系统,激光电离器、光能电离器。

所述的固定式微型流化床反应器1采用固定式设计,材质为石英玻璃,固定式微型流化床反应器1中放置有一定量的石英砂107,实验之前,先将生物质进样装置105置于热解反应器101上半部,同时密封通入氮气以排除空气,在进行热解反应时,将生物质导入石英砂107,石英砂107均匀的温度区间令其热解,生物质热解后制备得到的气溶胶通过传输线2导入在线光电离质谱中进行检测。

第一热电偶102穿过直通时通过氟橡胶圈进行密封,石英砂107高于热解反应器101底部3cm,厚度为3cm。

所述热解炉的外壳均使用石英玻璃加工。

所述传输线2外部使用了较厚的保温层,内部使用外径3mm铜管保护毛细管不易折断。毛细管用不锈钢卡套及石墨垫密封,易于更换。

所述的光电离质谱使用了两种激光源对气溶胶进行解析与电离,大分子的气溶胶,先通过1064nm的激光对其解析,再使用10.6eV的真空紫外光对其进行电离,产生的离子进入飞行时间质谱分析。

参见图3,光电离质谱加入新型的激光解析系统,在存在光束线第二激光发射器306的基础上,再加入一束1064nm的激光第三激光发射器307,用于解析不同状态下的气溶胶。光电离质谱中301、302、303均为真空泵抽气口,气溶胶导入口304连接传输线2,气溶胶在经过粒径筛分后进入光电离质谱中。两种状态下的气溶胶分别在不同类型的电离能下解析,因此有利于对不同状态下的气溶胶进行分析、检测。

参见图4,固定式微型流化床反应器1通过传输线2连接光电离质谱3,生物质放置于热解反应器101中。一般将生物质通过铁丝缠绕方式固定在生物质进样装置105上,然后导入石英砂107中进行热解,氮气通过第一载气通入管104、第二载气通入管108进入反应器中,在加热到一定温度后,生物质开始发生燃烧或者热解反应,热解过程中产生的气溶胶通过载气流动通过导入管103导入传输线2中,传输线2与质谱上的气溶胶导入口304相连,气溶胶在光电离质谱中通过粒径筛分后,两种类型的气溶胶分别由两种激光电离解析。

工作原理说明

以某一特例进行阐述,取生物质原料榆木若干,将榆木加工成直径6mm,长度15mm的圆柱体以备用。热解反应器101中放入一定量石英砂107。首先打开控温仪进行预热(预热温度根据热解反应所需的要求来定)。设预热温度为500℃,预热同时将一定流速的氮气吹入微型流化床反应器中(目的是吹出反应器中残留的空气)。待温度稳定在500℃时,温度较为均匀时,将氮气的流速调至载气所需流速。将制作好的榆木生物质通过铁丝缠绕在生物质进样装置105上,再导入石英砂107中进行热解反应,热解产生的气溶胶通过加热的传输线2进入在线检测装置3进行在线检测。实验中,可以通过调节控温仪来改变热解反应器101中的热解温度,进而有利于研究不同温度下生物质热解过程中产生的气溶胶。如果要检测生物质燃烧过程中产生的二次热解产物的气溶胶,可以将通入的氮气改为氧气或空气,再重新进样检测。

9页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种固定污染源VOCs PID监测及超标留样装置和使用方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类