一种界面微流法制备超薄复合膜的制备方法

文档序号:1699360 发布日期:2019-12-13 浏览:42次 >En<

阅读说明:本技术 一种界面微流法制备超薄复合膜的制备方法 (Preparation method for preparing ultrathin composite membrane by interfacial microfluidization method ) 是由 张国亮 李洋 于 2019-08-29 设计创作,主要内容包括:本发明公开了一种界面微流法制备超薄复合膜的制备方法,所述的方法为:将预处理的中空纤维超滤膜浸渍在盛有哌嗪的水溶液中,然后向所述的中空纤维超滤膜中通入均苯三甲酰氯的正己烷溶液,持续通入15~180s,发生聚合反应,所述的中空纤维超滤膜的内表面生成超薄的聚酰胺层,然后用正己烷溶剂清洗覆有聚酰胺层的中空纤维超滤膜的内表面,再进行干燥后得到超薄复合膜。本发明并非相继在膜的一侧放上哌嗪与酰氯,而是在膜的内外两侧放置,从而在膜的界面处合成了超薄的聚酰胺层,大大提高了水通量,避免了膜的转移,制备超薄膜的同时无明显缺陷,而且原料可回收,减少了浪费。(the invention discloses a preparation method for preparing an ultrathin composite membrane by an interfacial microfluidization method, which comprises the following steps: dipping a pretreated hollow fiber ultrafiltration membrane in an aqueous solution containing piperazine, introducing an n-hexane solution of trimesoyl chloride into the hollow fiber ultrafiltration membrane, continuously introducing for 15-180 s to generate a polymerization reaction, generating an ultrathin polyamide layer on the inner surface of the hollow fiber ultrafiltration membrane, cleaning the inner surface of the hollow fiber ultrafiltration membrane covered with the polyamide layer by using an n-hexane solvent, and drying to obtain the ultrathin composite membrane. The invention does not place piperazine and acyl chloride on one side of the membrane in sequence, but places the piperazine and the acyl chloride on the inner side and the outer side of the membrane, so that an ultrathin polyamide layer is synthesized at the interface of the membrane, the water flux is greatly improved, the transfer of the membrane is avoided, no obvious defect exists when the ultrathin membrane is prepared, the raw materials can be recycled, and the waste is reduced.)

一种界面微流法制备超薄复合膜的制备方法

技术领域

本发明涉及一种界面微流法制备超薄复合膜的装置及应用,属于功能性膜制备及分离应用的技术领域。

背景技术

由L-S法制备的各向异性反渗透/纳滤膜厚度较大,且在高压下极易压密,对压力驱动膜不利,为解决这些缺陷,1972年,Cadotte第一次运用界面聚合法制备出高性能的反渗透复合膜NS100,其脱盐率和水通量比L-S法制备的膜大为提高,目前全世界的反渗透/纳滤膜有90%是用界面聚合法生产出来的。而如何进一步提高膜的处理效率是一直以来的重大难点,一种普遍的方式为降低膜的厚度,在降低膜的传质阻力的同时,便可大幅度提高其水处理效率,这里我们用一种两相液体在超滤膜界面处发生聚合的方式,制备出具有超薄聚酰胺层的复合纳滤膜,这种方式避免了膜的转移,制备超薄膜的同时无明显缺陷,而且原料可回收,减少了浪费。与传统的界面聚合膜相比,在没有添加新材料的情况下,增大了膜的通量,为新一代高通量膜的制备提供了另一种途径。

发明内容

为解决现有技术存在的缺陷,本发明的目的是提供一种新的利用界面微流法制备超薄复合膜实现高效水处理,应用于海水淡化。

本发明采用的技术方案如下:

一种界面微流法制备超薄复合膜的方法,按照如下步骤进行:

将预处理的中空纤维超滤膜浸渍在盛有哌嗪的水溶液中,然后向所述的中空纤维超滤膜中通入均苯三甲酰氯的正己烷溶液,持续通入15~180s,发生聚合反应,所述的中空纤维超滤膜的内表面生成超薄的聚酰胺层,然后用正己烷溶剂清洗覆有聚酰胺层的中空纤维超滤膜的内表面,再进行干燥后得到超薄复合膜;所述的哌嗪水溶液的质量分数为0.05%~5%,均苯三甲酰氯的正己烷溶液的质量分数为0.01%~1%。

进一步,所述的中空纤维超滤膜预处理过程为:将中空纤维超滤膜用体积比为1:1的水和甲醇的混合溶液清洗,然后在去离子水中浸泡一天,而后烘干待用。

进一步,所述的超滤膜的材料包括聚偏氟乙烯、聚丙烯、聚丙烯腈、聚乙烯、聚氯乙烯、聚砜、聚醚砜、聚酰亚胺等。

进一步,所述干燥温度为60~90℃,干燥时间为5~20min。

本发明所述的均苯三甲酰氯的正己烷溶液通过蠕动泵连接流动管道泵入所述的中空纤维超滤膜中。

本发明所述的流通管道外接正己烷流动管道用于反应结束后向所述的中空纤维超滤膜中通入正己烷清洗内壁,所述的均苯三甲酰氯的正己烷溶液的流动管道和正己烷流动管道通过Y型或T型连接管道并联再与所述的中空纤维超滤膜串联。

再进一步,所述的中空纤维超滤膜的两端的端口连接处通过环氧树脂胶密封。

进一步,所述的均苯三甲酰氯的正己烷溶液的流速为20~200μL/hr。

进一步,所述的中空纤维膜的长度为5~20cm,数量10~30根。

与现有技术相比,本发明的优点在于:本发明并非相继在膜的一侧放上哌嗪与酰氯,而是在膜的内外两侧放置,从而在膜的界面处合成了超薄的聚酰胺层,大大提高了水通量,避免了膜的转移,制备超薄膜的同时无明显缺陷,而且原料可回收,减少了浪费。

下面通过实例来进一步说明本发明。

附图说明

图1中空纤维膜内侧复合纳滤膜表面SEM图。

图2实验装置图,1、正己烷储液罐,2、均苯三甲酰氯的正己烷溶液储液罐,3、Y型连接管道,4、哌嗪水溶液,5、中空纤维超滤膜,6、收集装置,7、蠕动泵。

具体实施方式

下面结合具体实施例,对本发明加以详细描述,但本发明并不限于下述实施例,在不脱离本发明内容和范围内,变化实施都应包含在本发明的技术范围内。

复合膜制备中所需的材料与试剂:

聚砜(PSF)上海曙光化学厂,聚偏氟乙烯(PVDF)上海曙光化学厂,聚醚砜(PES)上海曙光化学厂,聚丙烯(PP)上海曙光化学厂,聚丙烯腈(PAN)上海曙光化学厂,聚氯乙烯(PVC)上海曙光化学厂,无水甲醇阿拉丁试剂(上海)有限公司,均苯三甲酰氯(TMC)、无水哌嗪(PIP)阿拉丁试剂(上海)有限公司、硫酸钠(Na2SO4)、硫酸镁(MgSO4)、氯化镁(MgCl2)、硝酸钠(NaNO3)、氯化钠(NaCl)、N,N-二甲基甲酰胺(DMF),N-甲基吡咯烷酮(NMP)、二甲基乙酰胺(DMAC)国药集团化学试剂有限公司。

实例1

基膜的预处理:将中空纤维聚砜超滤膜剪成20cm长的小段,用水和甲醇水1:1的溶液各洗三遍,在水中浸泡一天,而后烘干待用。

装置的搭建:准备直径2.5cm,长18cm的玻璃长管,所述的玻璃长管两端开口,侧壁上设有进液口和出液口与玻璃长管内部连通,将10根中空纤维膜构成的中空纤维膜组置于玻璃长管中,并用环氧树脂将玻璃长管之间及玻璃长管与中空纤维膜之间端口处的缝隙封口,所述的玻璃长管内构成密闭的空间,待胶干后确保中空纤维膜组中各中空纤维膜内部的畅通,然后将均苯三甲酰氯的正己烷溶液储液罐和正己烷储液罐连接蠕动泵,然后通过Y型连接管道并联后与中空纤维膜组一端连接。

纳滤膜的制备:配置质量分数为2%的哌嗪水溶液称为A溶液,配置质量分数为0.05%的均苯三甲酰氯正己烷溶液称为B溶液。关闭玻璃长管的出液口,将A溶液通过进液口通入玻璃长管内部至布满整个玻璃长管关闭进液口,保持30s后将B溶液由蠕动泵以注141μL/hr的速度注入,2min后停止运行,改向所述的中空纤维膜内部通入正己烷除去多余的B溶液,玻璃长管内的A溶液通过出液口排出,然后取出中空纤维膜置于空气中保持3min后放入80℃烘箱中干燥5min,得到超薄复合膜置于水相中保存。

性能测试:于0.6MPa、25L/h下,膜的水通量为17.6L/(m2·h·bar),硫酸钠截留率为95.5%。

实例2

基膜的预处理:将中空纤维聚砜超滤膜剪成20cm长的小段,用水和甲醇水1:1的溶液各洗三遍,在水中浸泡一天,而后烘干待用。

装置的搭建:

准备直径2.5cm,长18cm的玻璃长管,需两端开口,柱侧开两口,将10根中空纤维膜构成的中空纤维膜组置于玻璃长管中,并用环氧树脂将玻璃长管之间及玻璃长管与中空纤维膜之间端口处的缝隙封口,所述的玻璃长管内构成密闭的空间,待胶干后确保中空纤维膜组中各中空纤维膜内部的畅通,然后将均苯三甲酰氯的正己烷溶液储液罐和正己烷储液罐连接蠕动泵,然后通过Y型连接管道并联后与中空纤维膜组一端连接。

纳滤膜的制备:

配置质量分数为2%的哌嗪水溶液称为A溶液,配置质量分数为0.05%的均苯三甲酰氯正己烷溶液称为B溶液。关闭玻璃长管的出液口,将A溶液通过进液口通入玻璃长管内部至布满整个玻璃长管关闭进液口,保持30s后将B溶液由蠕动泵以注141μL/hr的速度注入,30s后停止运行,改向所述的中空纤维膜内部通入正己烷除去多余的B溶液,玻璃长管内的A溶液通过出液口排出,然后取出中空纤维膜置于空气中保持3min后放入80℃烘箱中干燥5min,得到超薄复合膜置于水相中保存。

性能测试:于0.6MPa、25L/h下,膜的水通量为19.8L/(m2·h·bar),硫酸钠截留率为95.5%。

实例3

基膜的预处理:将中空纤维聚砜超滤膜剪成20cm长的小段,用水和甲醇水1:1的溶液各洗三遍,在水中浸泡一天,而后烘干待用。

装置的搭建:

准备直径2.5cm,长18cm的玻璃长管,需两端开口,柱侧开两口,将10根中空纤维膜构成的中空纤维膜组置于玻璃长管中,并用环氧树脂将玻璃长管之间及玻璃长管与中空纤维膜之间端口处的缝隙封口,所述的玻璃长管内构成密闭的空间,待胶干后确保中空纤维膜组中各中空纤维膜内部的畅通,然后将均苯三甲酰氯的正己烷溶液储液罐和正己烷储液罐连接蠕动泵,然后通过Y型连接管道并联后与中空纤维膜组一端连接。

纳滤膜的制备:

配置质量分数为2%的哌嗪水溶液称为A溶液,配置质量分数为0.1%的均苯三甲酰氯正己烷溶液称为B溶液。关闭玻璃长管的出液口,将A溶液通过进液口通入玻璃长管内部至布满整个玻璃长管关闭进液口,保持30s后将B溶液由蠕动泵以注141μL/hr的速度注入,2min后停止运行,改向所述的中空纤维膜内部通入正己烷除去多余的B溶液,玻璃长管内的A溶液通过出液口排出,然后取出中空纤维膜置于空气中保持3min后放入80℃烘箱中干燥5min,得到超薄复合膜置于水相中保存。

性能测试:于0.6MPa、25L/h下,膜的水通量为15.6L/(m2·h·bar),硫酸钠截留率为95.5%。

6页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种两亲性氧化石墨烯改性超薄复合纳滤膜及其制备方法与应用

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类